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GENUS 2 HEEGAARD DECOMPOSITIONS
OF SMALL SEIFERT MANIFOLDS

by M. BOILEAU, D. J. COLLINS and H. ZIESCHANG

The Heegaard splittings and decompositions of genus 2 of Seifert
manifolds over 5'2 with three exceptional fibres are classified with respect
to isotopies and homeomorphisms. In general there are three different
isotopy classes of Heegaard splittings and six different isotopy classes
of decompositions. Moreover, we determine when an isotopy class is
also a homeomorphism class.

1. Introduction.

Let M3 be a closed connected orientable 3-manifold. A Heegaard
decomposition (M3; V) of genus g of M3 is (defined by) a handlebody V
of genus g embedded in M3 such that W == M3 - V is also a
handlebody. A Heegaard splitting of genus g of M3 is (defined by) a
closed orientable surface F^ of genus g separating M3 into two
handlebodies (of genus g). Two Heegaard decompositions or splittings
of M3 are called isotopic or homeomorphic if there exists an isotopy or
homeomorphism, respectively, mapping one decomposition or splitting,
respectively, to the other.

Heegaard splittings were introduced to construct and classify
3-manifolds. In this context there arises the classification problem for
Heegaard splittings. Moreover, they can be used to study homeomorphisms
of 3-manifolds and to compute the mapping class group of some special
3-manifolds, for example, lens spaces [7] or some «small» Seifert
manifolds [3]. In particular, the classification of Heegaard splittings is
the main tool to show that every homeomorphism of the Poincare
sphere is isotopic to the identity [3].

Key-words : Heegaard decomposition - Seifert manifolds - Generating system - Nielsen
equivalence.
A.M.S. Classification : 57H25.
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In general, the classification of Heegaard decompositions or splittings
of a given manifold M3 is difficult; it is known only for S 3 , S1 x S 2 ,
the lens spaces and S1 x S1 x S\ see [20], [4], [8]. All these spaces
are Seifert manifolds and have, up to isotopy, a unique Heegaard
splitting of a given genus.

M3 is a Seifert manifold if it admits a foliation into circles; this
foliation is called a Seifert fibration. The quotient space obtained by
identifying each fibre (leaf) to a point is a surface F2, called basis of
the Seifert fibration. Let us assume that F2 is closed and orientable.
Under these assumptions M3 admits a S ^action where the orbits are
the fibres and F2 is the orbifold. In fact, all such S ^actions on
3-manifolds are obtained in this way. The pojection n: M3 --> F2 does,
in general, not define a fibre bundle in the usual sense, but the restriction
does when we exclude a finite number of points X i , . . . , x^ of F2 and
the corresponding « exceptional» fibres £1, . . . , s^ of M3. (See 2.1.)

In this article we classify up to isotopy (or homeomorphism,
respectively) the genus 2 Heegaard splittings for the Seifert spaces with
basis 5'2 and three exceptional fibres. It turns out that there are in
general three different isotopy or homeomorphism classes ; in some cases
there are two classes, while in others any two Heegaard splittings are
isotopic or homeomorphic, respectively. The classification with respect
to isotopy diners in a few cases from the classification up to
homeomorphism. These results have been announced in [2]. Furthermore
we classify the genus 2 Heegaard decompositions for the above manifolds.

The results on Heegaard splittings have independently been obtained
by Y. Moriah[13], except for those cases where two exceptional fibres
have the same invariant P;/a, up to sign. In this case the methods used
in [13] do not lead to a definitive answer. On the other hand, our
methods cannot be applied in the form given here when a, = 2 for one
of the exceptional fibres. Although the basic small cancellation techniques
we employ are still available in this situation, a more elaborate argument
would be necessary. Since a simple argument from the method of
Moriah [13] deals with this case, we have not attempted to give a
separate argument here. However the results stated do give a full
classification up to isotopy or homeomorphism of all genus 2 Heegaard
splittings and decompositions of the manifolds considered. We are
grateful to Y. Moriah for making the manuscript of [13] available to
us and to the referee for his valuable suggestions.
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2. Heegaard splittings of Seifert manifolds
^(0;^o; Pi/ai, P2/oi2, Pa/as).

Let M be a closed orientable Seifert manifold with basis the
2-sphere 5'2 and three exceptional fibres Ci , 83, £3. Let us consider first
in more detail the situation at the f-th exceptional fibre.

2.1. Exceptional fibres. — The projection

n•^~l(F2-{x„x^x,})-.(F2-{x„x„x,})

is a locally trivial fibration. Every point x, has a disc neighbourhood
Z)2 such that T, = Ti'^T)2) is a solid torus D2 x S\ the core of which
is mapped to x,. If we use polar coordinates (r,(p) for D} and v|/ for
S1 then the fibres are

r,(p+^,v|/ 0^\|/^27r^ where a, > 1, a,, y,.eZ, gcd(a,,y0=l

Choose P,, 5, such that a,5, - p,y, == 1. When \|/ runs from 0 to 2n
every « ordinary » fibre / with r > 0 is traversed exactly once, but the
central fibre with r = 0 is traversed a, times. The latter is called an
exceptional fibre of type P;/a; mod 1.

Let (the homotopy classes of) the meridian m, and the longitude ^
of Ti be defined by the coordinates (p and \|/, respectively. Here ^ ^ s,
in T^ The curve m, is uniquely determined up to isotopy and reversing
of orientation, while ^ can be replaced by a curve of a class m^1,
k e Z . For the ordinary fibre / we have / ^ mp.^ on cT,. Moreover
there is a simple closed curve 5, c= STi intersecting any fibre of 8T,
exactly once such that s, ^ m^i.^^i on ST., where a,8, - p/y, = 1.
Hence, m, ^ s,"0'1./"131 and ^ ^ sp./8^ on 5^.

Now it is easy to see that we obtain the following presentation of
the fundamental group:

2.2. K,M= </,Sl,S2,53|[s„/1=5a^•=S^53/e=l,f=l,2,3>

where the integer e is the usual Euler class representing the obstruction
to extend a section given on the boundary components of regular
neighbourhoods of the exceptional fibres to the complement.
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Following Thurston, one introduces the rational number

e. = e P l _ P 2 _ P 3

ai 0x2 oc3

(called the rational Euler class) and the manifold M is usually denoted
/ o o n \

by S( 0; Co; —[ ? — 2 » — 3 ) ? where 0 is the genus of the basis of the fibration.
oci oc2 as/

These numbers determine the topological type of the manifolds (also
the type of the Seifert fibration). For details see [15], [17], [18].

2.3. The Heegaard splitting HS(iJ) of M3. On M3 we construct three
Heegaard splittings of genus 2 as follows : take two exceptional fibres
s,, £j;, 1 ̂  i -^ j ^ 3 and connect them by an arc projected to a simple
arc on the base S 2 . A regular neighbourhood V(iJ) of the graph
obtained is a handlebody of genus 2. The closure W(i,j) of the
complement is also a handlebody of genus 2 and one obtains a Heegaard
splitting HS(i,j) = {M^8V(i,j)). This is called a vertical Heegaard
splitting, see [5], [6]. The pairs (M3; V(iJ)) and (M3; W(i,j)) are genus
2 Heegaard decompositions of M3.

According to [3], with only a few exceptions every Heegaard splitting
of genus 2 is isotopic to a vertical splitting :

2.4. PROPOSITION [3]. — Every Heegaard splitting of
S(0',eo; Pi/QCi, P2/OC2, Pa/as) of genus 2 fs isotopic to a vertical splitting,
except in the following cases :

(i) F(2,3,a) = {zeC^+zj+z^OJzl^l} wf^i 3^, a ^ 7,
(ii) ^(2,4,fc) == {zGC'lz^z^+zl^^.llzl^l} m^ 2 ^ f c , fc ^ 5.

(V(2,3,a) is a Brieskorn manifold.) In these exceptional cases M3 admits
a further Heegaard splitting of genus 2 obtained by presenting M3 as a
double covering of S3 branched along a 3-bridge presentation of an
algebraic link. D

Hence, to determine the classes of Heegaard splittings of genus 2
of M3 it suffices to classify the vertical Heegaard splittings. Our final
result is :

2,5. THEOREM. - Let M3 = ^(O^Pi/ai.lVo^fVas) be a Seifert
manifold fibred over S2 mth three exceptional fibres.
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(A) If P, ^ ± 1 mod a, /or f = 1 , 2 , 3 then M3 admits, up to
isotopy, exactly three Heegaard splittings of genus 2, namely HS(\ 2)
^(2,3), HS(3,1).

(B) M= S(0; e^, Pi/ai, P^, ± I/as) with P, E= ± 1 mod a, /or f = 1, 2
/^5, Mp to isotopy, exactly two Heegaard splittings of genus 2, namely
HS(1,2) and HS(3,1) and the latter is isotopic to HS(2,3).

(C) Let M == -S(0;^o;Pi/ai,±l/a2,±l/a3). Then M3 admits, up to
isotopy, a single Heegaard splitting of genus 2 except when M3 is one
of the algebraic varieties V(2,3,a), W(2,4,b), gcd(a,3) = gcd(fc,2) = 1,
a ^ 7, b ^ 5. /n ^ac/i exceptional case M3 admits, up to isotopy, an
additional Heegaard splitting of genus 2 which is not vertical, see W
[3]0.

2.6. COROLLARY. - (a) Two vertical Heegaard splittings HS(i,j),
HS(j,k), k ^ i , 1 ̂  i, j, k ̂  3 are isotopic if and only if ̂  = ± 1 mod o^
or if p, = ± 1 mod a; and P^ = ± 1 mod o^.

(b) If two of these Heegaard splittings are not isotopic then they are
homeomorphic if and only if p,/a, = P^/a^ mod 1.

Moreover, we will distinguish between the Heegaard decompositions
corresponding to a splitting :

2.7. COROLLARY (Classification of Heegaard Decompositions). - In
case (A) of Theorem 2.5 there are six different Heegaard decompositions
up to homeomorphism (and isotopy). In case (B) there are four Heegaard
decompositions up to isotopy. There are three Heegaard decompositions
up to homeomorphism if and only if pi/ai = Pz/oca mod 1. In the non-
exceptional cases of (C) there are two different decompositions up to
homeomorphism except when all P, = ± 1 mod a, when there is only one
Heegaard decomposition up to isotopy. In the exceptional cases there is
only one additional Heegaard decomposition of genus 2.

(1) The exceptional manifolds have the following Seifert invariants:

(̂2,3,.) ̂ fo;--;1^^) if a is odd,\ 6a 2 3 a j

v^w - <o; -i ;^^,(ra^,(3)^^
3a 3 3 a'
1.1 {-by1 (4)-^
4 f o ' 2 ' 4 ' b )

W(2,4, b) = S 0;-

where (n) and (n)~1 denote the number n or its inverse reduced modulo the denominator
to a non-negative integer smaller than the denominator.
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3. The commutator invariant JT(M3; V)
of a Heegaard decomposition.

Let F^ be the free group of rank n and G an arbitrary group. Two
systems (xi, . . . ,x^ and (ji, . . . ,^) of elements of G are called M'^n
equivalent if there exists a homomorphism o- : F^ -> G such that the
two systems are the images under a of two free bases of 7^. It is
important to bear in mind that the homomorphism o- is the same for
both systems. Clearly, using the known generators of Aut (F^), it follows
that the above definition is equivalent to the original idea of calling
two systems Nielsen equivalent if one can be transformed into the other
by a sequence of replacements of x, by x,x^1 or Xi-1 and of permutations
of the elements in question.

Given a Heegaard decomposition (M; V) of a 3-manifold M3 of
genus n, let i : V c-, M3 be the inclusion. A system of free generators
of TiiF ^ F^ is mapped by i# : n^V -> n^M3 to a system of generators
of n^M3 which will be called geometric. Recall that every system of
free generators of n^V can be represented by a system of simple closed
paths on SV where different curves have only the basepoint in common;
hence, a geometric system of generators of n^M3 is obtained from a
«nice» system of curves on the surface SV = 8W. Moreover, any
system Nielsen equivalent to a system defined by V is itself defined by
V and, thus, is also geometric. We denote the Nielsen equivalence class
by ^T(M3; V) and call it adjoined to the Heegaard decomposition.
Changing the sides of the Heegaard decomposition, i.e. considering
(M\W), we obtain the class J^(M3; W) which is in general different
from ^(M^V). A crucial observation is the second statement of the
following proposition.

3.1. PROPOSITION. - (a) Any two geometric systems defined by the
same Heegaard decomposition (M3; V) are Nielsen equivalent.

(b) If two Heegaard decompositions (M3; V) and (M3; V) of M3 are
isotopic, then ^(M3; V) = J^(M3; V) and J^(M3; W) = ^(M^W).

(c) If there is a homeomorphism f : (M3, V) -> (M3, V) then, for
every system (xi, .. . ,x^) e ^T(M3; F), one has

(/# ( î), . • . , f# (x,)) e ^(M3; V),

that is, we can write f#^(M3; V)) = ^(M3; V). In addition,
f^{M^;W)) = ^(M^W).
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Proof. — (b) follows from the fact that all inner automorphisms of
K iM3 are induced by inner automorphisms of n^V, i.e. by Nielsen
processes.

Given two Heegaard decompositions (M3; V) and (M3; V) and a
homeomorphism / : (M3; V) -> (M3; T^') one obtains the following
commutative diagram :

n^V C^, n,V'

i# i#

n,M3 JJL^ n,M3.

Therefore, if (xi, . . . ,x^) e ̂ T(M3; F) then

(/^....^(^e^M3;^).

Hence we can write f#(^(MS;V))=^(M3;Vl) and, similarly,
/#(J^(M3; W)) = ^T(M3; ̂ /). In particular, when / is homotopic
to the identity then ^T(M3; V) = ^(M3; ̂ ) and
^-(M3;^) == ^(M^W). D

To show that two Heegaard decompositions (M3; V) and (M3; ^')
are not homeomorphic, one must be able :

i) to conclude that the two generating systems adjoined to the
Heegaard decompositions are not Nielsen equivalent, and

ii) to determine the images of one of the two generating systems
under all automorphisms of n^M3 (induced by self-homeomorphisms
of M3) and to compare these with the other generating system
according to i).

If two Heegaard decompositions are to be distinguished with respect
to isotopy one only has to solve problem i), but already this is not
decidable in general. The problem ii) is even more difficult.

If one wants to distinguish two Heegaard splittings up to isotopy
(or homeomorphism) one has to solve problem i) at least twice and
possibly four times in comparing the Heegaard decomposition (M3; V)
with (M3; V) and (M3; W).

For genus 2 Heegaard decompositions problem i) is much easier to
handle than in general due to the following result.
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3.2. LEMMA [14]. - Let F<5,f> be the free group of rank 2 and x ,
y e F ( s , t y . Then (x,y) generates .F<s,0 if and only if the commutator
[x,y] is conjugate to [s.t]^1. Q

Hence, J^(M3; V) defines the conjugacy class of one element of
[TTiM^TCiM3] or its inverse as an invariant of (M3;^), up to isotopy.
Let us denote i the union of these conjugacy classes by ^(M3;^).
Next we determine this invariant for the Heegaard decompositions
(M^V(i,j)) and (M3; W(i,j)) of the Seifert fibre manifold
M3 = 5'(0;^o;Pi/ai,P2/a2;P3/a3) described above. By 2.2, the funda-
mental group has the following symmetric presentation according to the
construction i of M3 as Seifert fibration :

n,M3 = (s^s^s^f^fi^s^^s^sj^l, ;=1,2,3>.

The handle T, with core 8, in (M3;^',;)), i ^ j admits a meridian
from the homotopy class s?1/^ (now considered as element of n^ST,)).
To it corresponds a generator of the class s]if^. Instead of using the
subset Jf(M3; V) of n iM3 we consider its image Jf(M3; F) in the
triangle gr<impA(ai,a2,a3) = n^M3/^) obtained from n^M3 by factoring
out the centre of n^M3. (We denote the image of an element x by X.)
Hence, to (M; V(i,j)) there are associated the elements S ] 1 , Sp and
J^(M3; V(i,j)) is represented by the commutator [S]1, Sp]. By [5, section 7]
(see proof of Proposition 2.8), the handlebody W(i,j) of HS(i,j) has as
generator the class 5, (or Sj) plus the generator belonging to the third
exceptional fibre 8^, i i- k + j, that is 5^, and here we deduce that
the commutator [5\,5p] represents Jf(M3; W(i,j)) ; another representative
isK.,^].

The result is :

3.3. PROPOSITION. - The subsets Jf(M3; FQ'J)) and Jf(M3; W(i,J))
of

A(ai,02,03) = <5'l,5f2,5'3|5'?l=5(2a2=^3=5fA5f3=l>

are represented by [ S J ^ S J J ] and [S^SW, respectively, where i^k^j. D

Remarks. - (a) The commutator was first used in Moriah's thesis
[12], see also [13.]. Jt can be used as a tool only for genus 2 Heegaard
splittings. An invariant for higher genus has been constructed by
Lustig [9] and has been applied to classify Heegaard splittings of genus
more than 2 in [10].

(b) In the case at hand it turns out that the weaker invariant
Jf(M3; V) determines J^(M^V) and the isotopy class of (M3; V).
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4. Generating systems for triangle groups.

To prove 2.5 and 2.6 we decide which commutators of; type
[-S'p,^}7^1 or LS'n'S'P^1 are conjugate one to another. To do so we use
the notion of cancellation diagram discussed in [ l l ,V]in particular the
idea of a conjugacy diagram given in pp. 252-259. In the following we
study a triangle group

A(p^,r) = ̂ n^T^CT^l).

We summarize exactly whati WCL need.1 ffonr' [ll].l Liett (XiR^;- bee a
symmetrized group presentation. Thus R is a subset of the free-group
F(X), with basis X, such that (a) every element of R is cyclically
reduced, (b) if r lies in R then all cyclic permutations of r and r~1

also lie in R. A (reduced) word x is a piece relative to R if there are
distinct elements r^ and r^ of ^ which can be written as reduced
products ri = xr'i, rz = xr\. We say that R satisfies C'(l/4) if, whenever

r e R and r = xr" with x a piece, then | x | < . | r [ — here w denotes

the length of w relative to A". Further we say that R satisfies T(4) if
for any r^ , ^2, ^ e 7? at least one of the words r^, ^3, r^r^ either
cancels to the identity in F(X) or is reduced.

4.1. LEMMA. — 7/' p, ^ ^ 5 anrf r ^ 3 ^n ^ presentation
(S,T S±p,T±Q,(ST)±r,(TS)±r) of A(p,^,r) 50^5 C^l^) anrf T(4).

Proof. — Inspection shows that a piece is always of the form 5'^,
T^, whence the lemma is immediate. D

Let (X\Ry be a symmetrized group presentation. A cancellation
diagram over <At.R> is a pair (^,(p) satisfying the following conditions:

(i) K is a finite, connected 2-complex embedded in the plane;
(ii) (p is a function that assigns to each oriented edge (i.e. 1-cell) e

of K an element (p(^) e F(X) (not just a generator or its inverse),
with the requirement that if e is the oppositely oriented edge
to e, then (p(^) = (p(^)~1;

(iii) if D is any region (i.e. 2-cell) of K and a = ^2 .. • e^ is a
(complete) boundary cycle for D, then the product (p(a) defined
by (p(a) = (p(^i)(p(e2) . . . (p(^n) is a reduced product which gives
an element of R.
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A cancellation diagram (A:,(p) is called reduced unless there exist two
(not necessarily distinct) regions with complete (oriented) boundary
cycles of the form ae and e^ such that (p(a) = (p(p)~1 .

A conjugacy diagram over <A"[jR> is a cancellation diagram (7C,(p)
such that the complement of K has precisely two components. Given
a conjugacy diagram (A:,(p), let a = e^ ... ̂  and P == f,f^ . . . f^ be
positively oriented complete boundary cycles for the two components
of the complement of K . By [11, LemmaV.5.1], the words
u == (p(oc) == (p(^) . . . (p(6?J and v = (p(p) = (p(/\) . . . (p(/J represent
conjugate elements of the group G defined by (X\R). In this situation
say that (K, (p) is a conjugacy diagram for u and v. Furthermore, given
any two cyclically reduced words u and v , which represent elements
conjugate in G, by [11, Lemma V.5.2], there is a reduced conjugacy
diagram for u and v . Moreover, if u and v are not conjugate in F(X)
then such a diagram must contain at least one region.

We now describe three types of reduced conjugacy diagrams which
may arise in dealing with a presentation satisfying both C ' ( l / 4 ) and
T(4). Here we are essentially summarizing Theorems V. 5.3 and V.5.5
of [11]. In what follows (A^cp) denotes a reduced conjugacy diagram
and a, P positively oriented complete boundary cycles for the outer
(i.e. infinite) component, respectively inner component, of the complement
of K. We say that a region D of K has an edge of a, respectively P,
in its boundary if some complete boundary cycle of D contains an
edge of a or the inverse of an edge of a (respectively P).

Type I :

(i) The paths a and P are disjoint and simple.

(ii) The boundary of every region of K contains an edge of a or
of P but no region contains edges of both a and P in its
boundary. ^^

(lii) Every region of K has precisely
three edges not in a or P.

(iv) Every interior vertex of K has
degree (or valency) 4.

These conditions mean that K is
an annulus with two «layers» as
illustrated in fig. 1. Figure l.
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Type II:

(i) The paths a and P are simple. (They may be disjoint or not.)
(ii) The boundary of every region of K has one edge in a and one

edge in P.
(iii) The boundary of a region of K has at most two edges not in

a or P and the boundary of some region has at least one edge
not in a or P.

(iv) There are no interior vertices in K.

If, in fact, a and P are disjoint then K consists of an annulus, with
a single layer, and the boundary of any region of K has exactly two
edges not in a or P, see fig. 2. If a and P are not disjoint then the
annulus becomes « degenerate » in the sense that parts of its inner and
outer boundaries coincide. Here some regions will have only one edge
in a or P, see fig. 2.

Type III :

(i) The paths a and P are simple but not disjoint.
(ii) The boundary of every region of K consists of one edge in a

and one edge in P.

Then K is again a « degenerate» annulus with a single layer, but
having all its edges in a or P, see fig. 3.

Type III

Figure 2. Figure 3.

4.2. THEOREM. - Let G = <JT|^> satisfy C ' ( l / 4 ) and T(4) and let
u, v be cyclically reduced words which represent conjugate elements of G
but are not conjugate in F(X). If neither u nor v contains a subword
which constitutes more than half an element of R then there is a reduced
conjugacy diagram for u and v of one of the types I - I I I .
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Proof. — This is essentially the content of Theorems V.5.3 and V.5.5
of [11]. Theorem V.5.3 gives the diagram of type I while Theorem V.5.5
gives types II and III. We have subdivided the description in Theorem V.5.5
because we need to treat the two cases differently. D

4.3. PROPOSITION. - Let A = (S,T\S±p,T±Q,(ST)±r,(TS)±r) where
p , q ^ 5 and r > 3. Let u = [5^,7^, v = [S^T^ where 0 < a,
c < p / 2 , 0 < b, d < q / 2 . Then u and v^1 are conjugate in A if and
only if (fl,b) = (c,d).

Proof. — One implication is trivial. For the other we suppose a 1- c
or b + d and derive a contradiction. In particular we note that u and
v±l are not then conjugate in F(S,T). We observe that neither u nor
y^ has a subword constituting more than half of one of the relators
of A . Hence, by Theorem 4.2, there is a reduced conjugacy diagram
(^,(p) for u and v of one of the types I-III. Since the diagram is
reduced, it follows that:

(1) The label on any edge not in the boundary of K is just 5'^,
T-'± 1

(2) If two regions of K have a common edge in their boundaries,
then one of the two regions is assigned a label GST)^ by (p and the
other S ± p or T ± q .

For a diagram of type I, (2) means that some region D has label
(ST^' From (1) the three edges of D not in the boundary of K
contribute exactly three letters - namely (STS)^1 or (T^ST)^ - to
the label of D. The remaining fourth edge has a label of length 2r — 3
which contradicts the fact that neither u nor i^1 contains a subword
of the form (STS)±l of (T^ST)^.

For a diagram of type II, again (2) means that some region D of
K has label OST)^ . The edges in the boundary of D that are not in
the boundary of K contribute at most two letters to this label and
therefore the remaining two edges in the boundary of D carry, between
them, at least 2r - 2 letters. If r ^ 4 this again contradicts the fact
that neither u nor v±l contains (STS)±1 or (TS^1.

In the case when r = 3 the fact that (STS)^ (or (TS^1 respectively)
does not appear in u and v ± l , together with (1), means that the
boundary of D has four edges. Moreover, the edge in the outer
boundary a will carry label (5T)8, 8 = ± 1, the edge running from a
to the inner boundary P will carry S^ and the edge running from P to
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a will carry T8. (Or the same holds with the roles of S and T
interchanged.) For definiteness, let e = 1. This means that there are
regions adjacent to D carrying (positively oriented) labels 5^ and T~9

and therefore, in traversing a, we encounter a word T~nSTS~m, n,
m > 0 and in traversing P we encounter j ^ ' S ' ^ T ' ^ S " 1 ' , n\ m' > 0.
This implies a = = b = = c = d = l which, at this point in the argument
constitutes a desired contradiction.

There remains the diagram of type III. In this case no region can
have label (ST^' by (p because the diagram is reduced. Since u and
v±l are not conjugate in F(S,T), Khas at least one region and therefore
one of u and v^1 contains say 5^, e = ± 1, and the other contains
^-E(P-A) g^ ̂ ^ ^ ^ ̂  ^ ^_^ ^p /2 , our assumptions on
u and u are contradicted. (A similar argument applies for T^.) D

Direct consequences are the following three statements.

4.4. COROLLARY. - Let p , q ^ 5 and r ^ 3 and let

A(p,^r) = (S,T\SP = T9 = (5Ty=l>

fc6? a triangle group. By [16], any system (xi,...,0 of generators of
A(p,q,r) is Nielsen equivalent to a system (5'°, T6,1, . . ., 1). If n > 2,
any ^wo generating systems are Nielsen equivalent. T\vo generating systems
(5'°, 7^) and (5'°', 7^) ar^ Nielsen equivalent if and only if a = ± a mod p
and P = ± b mod q.

We point out the following special cases not decided in [13].

4.5. COROLLARY. - (^.D or (5', 7^) are not Nielsen equivalent to
(S, T) or to one another except \vhen a = ± 1 mod p or b = ± 1 mod q,
respectively.

4.6. COROLLARY. - The assumptions are the same as in 4.3. Let
u = [S^T^ and w = [S^ST)^ mth 0 < a < p/2, 0 < b < g/2,
0 < c < r / 2 . If u is conjugate to ^v±l in A then a = b = c = = l . I f u
is the image of w^1 under some automorphism of A tn^n ^n^r

a = l , q = r a n d b = c , or b = \ , p = r a n d a = c .

Proof. - When u is conjugate to w^, the argument is similar to
that for Proposition 4.3. The second statement follows from the fact
that all automorphisms of A are inner except when two of p , q and r
coincide. Then, for example, if p = q, the only non-inner automorphism
is given by S \-^ T, T^-> STS~1 and the conclusion follows. D
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4.7. The excluded cases. — There are only a few cases excluded
which are of interest for us. The above solution of the conjugacy
problem cannot be applied if two of the numbers p, q, r are smaller
than 5 or if one of the numbers equals 2. Since in the first case every
number relatively prime to pe{2,3,4} is congruent to =L Imodp there
is only one vertical Heegaard splitting of genus 2 and nothing has to
be proved. In the case r = 2 and 5 ^ p < q the problem has been
solved by Moriah [13] using a representation and considering traces. (In
principle small cancellation methods can also be applied in this case
since the group is of type C(4) and T(4) (see [II], chap. IV) but a
more extended analysis would be required and we do not attempt it
here.) The trace argument does not apply when p = q and it is not
clear from it whether there are in fact two non isotopic or homeomorphic
Heegaard decompositions. This can be obtained as follows.

4.8. PROPOSITION. - Let A = <5\ T\ 5^= 7^= (STY= 1>, v^here p ^ 5.
For gcd(m,j?) = gcd(n,j?) = 1, 0 < m, n < p/2, the elements [5^, T\
and [S, T " ] 8 , £ = : £ ! , are conjugate if and only if m = n = 1.

Proof. — Consider the epimorphism

(p: (s,T\sp=TP==(ST)2=l>)> -> Z p , 5 ' h - > i , r ^ - i .
Take S 1 , 0 ^ i < p as coset representatives. The Reidemeister-Schreier
generators for the kernel ker (p of (p are :

^^=sp~lS=SP, T,=TS~^\ T ^ S ' T S ' ^ ' ^ for l ^ f ^ p - 1 ;

defining relators are :

1 = S? = Vi,
1 — 7-̂  — T T T T
1 —— 1 —— 1 Ql p-l-l p-2 • ' • 1 1 5

1 = Sj(ST)2S~j = Tj+i for 0 ^ j < p - 1,
1 = S^^ST^S-?^ = ^-.To^-iTo.

Hence, ker (p = <To, . . . , Tp-,\T]= l,0^'<p, Tp-iT^ . . . 7\To= 1> .
For the above and the following calculations it is convenient to use
the following equation :

T n _ 'T' T' un ^P~fi •
-^p1?-! • • ' ^ p - n + l ' ^ ?

here the subscripts are taken modulo p . A conjugation with 5' moves
the subscripts ahead by 1 ; e.g. S ^ S ' 1 = Tp+iT^Tp-i . . . T p - ^ ^ S P " ' 1 .
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We obtain the following equations in ker (p :

[5,r"] = ST^-^T-^ T^.TpT^, ... ^-^•^"'"•r-"

== T T T T ^T T T ^ - 1
1 p + 1 1 p1 p-l ' • ' 1 p - n + 2 \ 1 p1 p - 1 • • ' 1 p-n+l)

S'^.J^S'1 = si+mTS~^m~l)'Si~lT~'lS~i

= T^,T-,\
Since

k e r ( p = <7^,. . . ,T, T^= . . . =71=1> ̂  <7\, To r^n=l>,

with ^ = <Tp-i . . . Ta) = ^FiTo)"1), we can apply the solution
of the conjugacy problem for free products with amalgamated
subgroups, see [11, IV Theorem 2.8]. According to this theorem
two elements (in cyclically reduced form) are conjugate if and only if
one is obtained from the other by a cyclic permutation and a conjuga-
tion by an element of the amalgamated subgroup. In particular, they
have the same cyclic length. If n ^ 3 the cyclic length of
Tp^TpTp,, . . . T^,+2. (Tp^p-i . . . Tp-n+i)"1 is 4, while the cyclic length
of (T^+tTr1)"1 is at most 2. Therefore these elements are not conjugate
in ker (p. If n = 2 the first word is conjugate to (TQ^T^T^T?-^ ; hence,
it has cyclic length 2. According to the solution of the conjugacy
problem the critical case occurs for i == 1 when the second word is
7\7^. Since

m + l ^ + l ^ - l

the two words are not conjugate. Therefore [5', 7 ]̂ and [^.'T^1 are
not conjugate in A. D

A similar argument can be given in the case when

A = (^ri^^r'^csT)^!)
with m ^ 2, p, q ^ 1.

5. Classification of the Heegaard splittings and decompositions.

Proposition 2.4 gives the basic fact that, if we forget the exceptional
manifolds V(2,3,a), W(2,4,b), we only have to classify the vertical
Heegaard splittings (and decompositions). For the cases (B) and (C) of
Theorem 2.5 we have to show that some of the splittings are isotopic
and we do this next using geometric arguments.
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5.1. PROPOSITION. — Assume that one of the following conditions is
fulfilled :

(a) pj, = ± 1 mod a,,
(b) P; = ± 1 mod a; and p^ = ± 1 mod o^.

Then the Heegaard splittings HS(iJ) and HS(j,k) are isotopic. More
precisely, in case (a) the Heegaard decompositions (M3; V(iJ)) and
(M3; W{j,k)) = (M^M3-^/^)) are isotopic and in case (fc) (M3; V(iJ))
and (M3;V(j,k)) are isotopic.

Proof. — As in [5, section 7], it is easy to see that the handlebody
W{i,j) is a regular neighbourhod of the graph F formed by the union
of a (parallel to a) section in the boundary of a regular neighbourhood
of the exceptional fibre £, and the third exceptional fibre £^, i ^- k 7^ j ,
joined by an arc which projects to an embedded arc on the basis.

Now the condition (3j; = ± 1 mod a; implies that any such section
in the regular neighbourhood of an exceptional fibre of type P^/o, is
isotopic in the regular neighbourhood to the exceptional fibre itself.
Therefore F is isotopic to F,;^ and this proves the assertion for case
(a). To obtain case (b) it suffices to apply (a) twice, namely first to
(M^FQJ)) and (M3; W(i,k)) and then to (M3; V(j,k)) and
(M^W(i,k)). D

A different proof can be based on [5, Corollary 5.8].

5.2. Isotopy classification of Heegaard splittings (proof of Theorem 2.5).
- According to 3.3 the invariants Jf(M3; V(i,j)) and ^(M^O'J)),
represented by [S]^S]j] and [S,,SW (or [5',,5'p]), respectively, with
i -^ k 1=- j , are associated to the Heegaard splitting HS(iJ).

Case (A) : The assumptions imply that a; ^ 5 for f = 1, 2, 3 and
the situation becomes symmetric in 5\, 5'z, ^3. Let {ij,k} = {1,2,3}.
The handlebody W{i,k) is represented by [S^S]j] or [^,5'p]. By 4.3,
[5\,5'p] is not conjugate to [S]1^]^1 and [^,5'p] is not conjugate to
[5,,5'p^1. Hence, (M3; W{i,k)) is neither isotopic to (M3; V(iJ)) nor
to (M3;^-,;)).

Case (B): Now oci, 002 ^ 5 since P, ^ ± 1 mod a;, i = 1, 2. By
5.1, ?3 = ± 1 mod 0X3 implies that HS(1,3) and HS(2,3) are isotopic.
Assume that 0 3 ^ 3 . The Heegaard decomposition (M3; F^(l,2)) is
represented by

[s,,s^] = [5,, st1] = [^CW^] = K^?1]
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which, by 4.3, is not conjugate to the invariants [.S'1;1,^?^1 =
[^i1,^1]^ and [S^S^ of(M3; ^(1,3)) and (M3; ^(1,3)), respectively.
(Here = denotes conjugacy.)

For 03 = 2 the trace argument of Moriah [12] using a representation
of A(ai,a2,2) in PSL,(R) applies when oci + o^. The case oci = o^ is
treated in 4.8.

Case (C) immediately follows from 5.1. Q

One can reformulate the main result of the proof as follows.

5.3. COROLLARY. - The pairs of commutator invariants
{^(M^ ^O'J))^^3; W(i,j))} give a complete isotopy classification of
vertical Heegaard splittings. Q

5.4. Classification up to homeomorphism (proof of 2.6). - The
statement (a) is already proved in 5.2. Claim (b) is obtained as follows.
If P,/a, = p^ mod 1 then there is a fibre preserving homeomorphism
of M3 interchanging the exceptional fibres s, and s, and, hence, mapping
HS(iJ) to HS(j,k).

Conversely, let /: M3 -> M3 be a homeomorphism mapping HS(i,j)
to HS(j,k). By assumption, these Heegaard splittings are not isotopic.
Now it follows from 5.3 that the corresponding pairs of commutator
invariants are different. Thus / does not induce an inner automorphism
of A (01,02,03) nor an automorphism sending each generator to a
conjugate of its inverse. By [20], the automorphism f# can be realized
by a fibre preserving homeomorphism g : M3 -> M3 which non-trivially
interchanges the exceptional fibres.

If P,/a, ^ p^/a^ mod 1 then neither g nor g2 maps £, to e^. Since g
preserves orientation, see Lemma 5.5, g maps £, or s, to itself, say e,,
and interchanges the other two, i.e. e, and e,. We may assume, possibly
after some isotopy, that g maps HS^k) to HS(j,k) and preserves
HS(iJ). Then (f o g)(HS(iJ)) == HS(j,k). Moreover, (fog)^ = ̂
which by construction induces an inner automorphism of A(ai,oc2,a3),
contradicting, by 5.2, the assumption that HS(iJ) and HS(j,k) are not
isotopic. Hence, P,/a, = p^/a^ mod 1. Q

5.5. LEMMA. - A Seifert fibre space ^;^o; Pi/oci, . . . , p,/aj with
an odd number of exceptional fibres does not admit an orientation reversing
self-homeomorphism.
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Proof. - Under an orientation reversing homeomorphism one obtains
the « normal form » S{g\ -e^ -Pi/ai, . . . , -MxJ by [17]. By the
classification theorem of Seifert manifolds ([15], [18]), there is a
permutation a e S^ such that PO(O/O^,) = - p,/a, mod 1 and - e^ = e^.
Let m' be the number of i with a, = 2. Then m - m' is even and

m ,

Z 9 ^ = ̂  + ^ p,/a,= ^ P,/a,=^modl;
f - l { i : a , = 2 } 2

hence, m1 and m are even. Q
Now we distinguish Heegaard decompositions.

5.6. PROPOSITION. - For M3 = S(0;e,, Pi/o^, p^, Pa/as) let HS(iJ)
be a vertical Heegaard splitting. Let k be the subscript belonging to the
third exceptional fibre, i.e. {fj.fc} = {1,2,3}. Then

(a) (M3; V(iJ)) is isotopic to (M3; W(iJ)) if and only if
Pn = ± 1 mod o^ for n = 1, 2, 3 .

(b) (M3; V(iJ)) is homeomorphic to (M3; W(i,j}) if and only if

P, = ± 1 mod a, and • 1 = l k mod 1, or
a, o^

P, = ± 1 mod a, and ^ = ^ mod 1.
a, o^

Proo/. - (a) Proposition 5.1 implies that the conditions are sufficient.
That they are necessary follows from Proposition 4.6 : to the decom-
positions (M3; V(iJ)) and (M3; W(i,j)) there are associated the commu-
tators [^S^1 and K.5^1 = [^(^W1, respectively. If they are
conjugate then, by 4.6, y^ = ± 1 mod o^ for n = 1, 2, 3. The claim
follows from j^n = ~ 1 mod o^.

(b) Assume that

P, = ± 1 mod a, and R^/a, = P^/a^ mod 1.

According to Proposition 5.1 the first condition implies that (M3; V(iJ))
is isotopic to (M^W(i,k)). The second ensures the existence of a
homeomorphism of (M3; V(iJ)) to (M^^O'J)).

Assume now that (M3; ^(fj)) and (M3; ^(fj)) are homeomorphic.
A consequence of 3.1 (c) is that the commutator invariant [57s 5'p] is
mapped to [^.(^^y^1. By 4.6, either y, = ± 1 mod a, and
Vj/^j = J k / ^ k mod 1 or y, = ± 1 mod a, and y,/a, = y^/o^ mod 1 . D
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5.7. Proof of Corollary 2.7. - For vertical Heegaard decompositions
Corollary 2.7 is a direct consequence of Theorem 2.5 and Proposition 5.6.

In the exceptional case of Case (C) only one Heegaard decomposition
corresponds to the additional (non-vertical) Heegaard splitting. This
follows from the fact that this Heegaard splitting is obtained from a
double covering of S3 branched along a 3-bridge presentation of an
algebraic link ([I], [3]) and that the two sides of the 3-bridge presentation
can be exchanged by an orientation preserving involution of S3 inverting
the link (i.e. respecting each component of the link while reversing its
orientation); see fig. 4, 5. r-i

Figure4- ~ v(2'3'a) is a 2'fold covering Figure 5. - ^(2,4,6) is a 2-fold covering
of S3 branched along the torus knot (3,a) of S3 branched along theaboveTnT g
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