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TRANSVERSELY AFFINE FOLIATIONS
OF SOME SURFACE BUNDLES OVER S1

OF PSEUDO-ANOSOV TYPE

by Hiromichi NAKAYAMA

Introduction.

E. Ghys and V. Sergiescu classified codimension one foliations without
compact leaves of torus bundles over S1 whose monodromy matrices are
hyperbolic automorphism ([2]). They cut the manifold along some fiber
transverse to the foliation T and modified the resulting foliation ^{(T2 x I )
(I = [0,1]) so that y\(T2 x I ) is tangent to each {*} x J(* € T2). Then
y\(T2 x {0}) is equal to ^{(T2 x {!}). However it is difficult to classify
foliations without compact leaves of higher genus surface bundles over
S1 because it is difficult to find a fiber S so that the singular foliation
y\(S x {0}) coincides with ^(S x {1}) and to classify the foliation of
E x J. In this paper, we restrict our attention to transversely affine foliations
without compact leaves of some higher genus surface bundles over S1 of
pseudo-Anosov type and obtain the following results :

MAIN THEOREM. — Let E be a closed orientable surface with genus
greater than 1 and let TT : M —> S1 be an oriented E-bundle over S1

of pseudo-Anosov type such that the real eigenvalues of its monodromy

matrix are \ and -r, and the eigenspace with respect to X (resp. -.) is
A A

one dimensional, where A (> 1) is the dilatation number of M. Suppose
that T is a transversely oriented and transversely affine codimension one
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A.M.S. Classification : 58F
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foliation ofM without compact leaves satisfying the Enter class equality
X(TF) = ±X{TTT) (6 H2^',!)), where TT and T-K denote the tangent
bundles of the foliation T and the bundle foliation ofrc respectively. Then
there is a finite covering otF which is C° isotopic to a suspension foliation
of a pseudo-An osov diffeomorphism.

PROPOSITION. — There is an orientable E-bundJe over S1 of pseudo-
Anosov type satisfying the conditions of the main theorem. (I.e. the real

eigenvalues of its monodromy matrix are \ and y, and the eigenspace with
A

respect to X (resp. -r) is one dimensional, where A is the dilatation number.)
A

In Section 1, we give a precise definition of suspension foliations
of pseudo-Anosov diffeomorphisms introduced by Meigniez [8], and prove
the above proposition. For each bundle structure of pseudo-Anosov type,
there exist suspension foliations of the pseudo-Anosov diffeomorphism. The
hypothesis of the main theorem on the real eigenvalues of the monodromy
and their eigenspaces restricts the bundle structures of M. S. Matsumoto
showed the author examples of transversely affine foliations of M which are
not isotopic to the suspension foliations of pseudo-Anosov diffeomorphisms
and have the same holonomy representation as the suspension foliations
have (\(T^) ^ ±\(TT^))^ which we also describe. In Section 2, we show
the existence of a finite covering p : M —»• M and an embedding g : S —> M
isotopic to a fiber of the S-bundle M over 51 such that y^f is C° isotopic
to a stable or unstable foliation of a pseudo-Anosov diffeomorphism which
is C° isotopic to the monodromy map of M (Theorem 2). We prove the
main theorem in Section 3.

The author wishes to thank Professor T. Tsuboi for his helpful
suggestions and encouragement.

1. Pseudo-Anosov diffeomorphisms
and their suspension foliations.

Let S be a closed orientable surface with genus greater than 1. A
pseudo-Anosov diffeomorphism f : E —^ E ([!]) is a homeomorphism
with two measured foliations (G8^8) and (^n,/^) such that Q8 and Qu

are mutually transverse with the same saddle singularities, f(G8^8) =
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(Q8, -fi8) (A > 1) and /(^u, /^) = (^(, A/^), where we adopt the definition
A

of measured foliations written in [1] and / is supposed to be a C°°
diffeomorphism except at the saddle singularities of Q8. The measured
foliation (Q8 ,/^) (resp. (^M,/^)) is called the stable (resp. unstable)
foliation of /, and A is called the dilatation number of /.

W. Thurston showed that every diffeomorphism of E is C° isotopic
to a "reducible" diffeomorphism or a periodic map or a pseudo-Anosov
diffeomorphism ([I], [16]), and a pseudo-Anosov diffeomorphism is C°
isotopic to neither a "reducible" diffeomorphism nor a periodic map;

Throughout this paper, we assume that Q0 (a = s,u) is transversely
oriented and / preserves the transverse orientation oiQ^ - In particular, the
number of separat rices passing through each saddle singularity is an even
number.

A surface bundle A/ over S1 is of pseudo-Anosov type if its mon-
odromy map is C° isotopic to a pseudo-Anosov diffeomorphism. The di-
latation number A of M is denned by that of the pseudo-Anosov diffeomor-
phism. By the arguments of Expose 12 of [I], A does not depend on the
choice of pseudo-Anosov diffeomorphisms (7° isotopic to the monodromy
map of M. The monodromy matrix of M is the linear automorphism of
Jfi(E) induced by /. Since we assume that / preserves the transverse ori-

entation of Q° ^ A and -r are eigenvalues of the monodromy matrix.
A

Next we define suspension foliations of pseudo-Anosov diffeomor-
phisms. Let M be an oriented E-bundle over S1 of pseudo-Anosov type
and let / be a pseudo-Anosov diffeomorphism C° isotopic to the mon-
odromy map of M. Denote by (Q8 ,^6) and (C^,/^) the stable and un-
stable foliations of / respectively, and denote by K the set of saddle sin-
gularities of Q8. Since Q^ (a- = s,u) is transversely oriented, there ex-
ists a non-singular closed 1-form uj°' of E— K denning the measured fo-
liation ((J^,/^). (I.e. the kernel of u)° coincides with the tangent bun-

dle of Ga and / ^a = ^(7), where 7 is a transverse arc of y ori-
A

ented by the transverse orientation of G'7). Let ^((T.Q;,^^,^) (a = 5,'a,
a ^ 0) denote the foliation of (S — K) x R denned by the non-singular
1-form X6^1^ + adt (t € R), where e(s) = 1 and e(u) = -1. (I.e.
T^T.O,^,^) = Kei^^^+adt).) The completion of 'H{a, a, ̂ ./O
in E x R is denoted by T^a,^,/^). For the Z-action 0 of E x R given
by 6n(x,t) = (/'"^(rr),/: + n) (n € Z), the quotient space of E x R by
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0 is C0 isotopic to M. Since ^(A^^ + acft) = A^)^ 4- adt (here
J^ = A6^^), i:i{a,a,C;a,p.a)/e is a transversely orientable minimal
(7° foliation of M with holonomy (having a locally dense resilient leaf [4]),
denoted by T^.a.Q0^°, f).

PROPOSITION. — Let f and f be pseudo-Anosov diffeomorphisms
C0 isotopic to the monodromy map of M, and let (^(T,/^7) and {Q ,7Z(7)
be the (un-)stable foliations of f and f respectively (cr = s,u). Then
^(cr.a^.y.J) is C° isotopic to T{(T, ±1,^(7,/A<T, f) for any non-zero
number a.

Proof. — Since / and / are C° isotopic pseudo-Anosov diffeomor-
phisms, there is a diffeomorphism g of S isotopic to the identity map satis-
fying gf = Jg and g(G<T^(T) = (<T, kfl^) (a = 5, u) for some k > 0 ([I], Ex-
pose 12). Denote by ̂ a (resp. cJ^) the closed 1-form denning (C^,^) (resp.
((J^,^)), which is defined except at the saddle singularities of Q0 (resp.

cT). Then g^ = ±, ^<T. We define the diffeomorphism 7 i : E x R - ^ E x R

by h(x,t) = (g(x),t + e^ J0^^^ ((a;,^) e S x R). Then /i satisfies

that

^^(a)t^a _^ ̂  ^ ̂  (x^^^ ± (a/\a\)dt\ and

h0n = 0nh,

where 6n{x,t) = (/-^(a;)^ 4- n) and 0n(x,t) = (J"71^)^ + ̂ ) (^ € Z).

This implies that F(a,a,'C!°^,J) is C0 isotopic to ^'(cr, dzl,^",^,/). D

We call ^((T, d:!,^^,^,/) (<7 = 5,^) the suspension foliations of
the pseudo-Anosov diffeomorphism of M, denoted by F^. By the above
proposition, the definition of the suspension foliations of the pseudo-Anosov
diffeomorphism of M does not depend on the choice of pseudo-Anosov
diffeomorphisms C° isotopic to the monodromy map of M.

Next we construct a smooth model of^, where ̂  is a C°° foliation
except at (K x R)/^, denoted by K1\ First we choose a small closed tubular
neighborhood V of K ' in M such that 7'^\9V is the union of C°° product
foliations of tori whose leaves are isotopic to 9VH ((Sx {t})/0) (t € R). By
attaching the copies of the product foliation {D2 x {*}; * e S1} of D'2 x S1
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to J^KM - int V) along the leaves of 9D2 x S1 and QV', we obtain a C°°
foliation of M, denoted by ̂ . The foliation F^_ is (7° isotopic to ̂ .

The transverse orientation of^ (resp. ̂ ) is given by the positive
orientation of X6^^ + dt (resp. A^)^ - dt). Then the Euler class
X(r^) (resp. xCW:)) is equal to ^(TTT) (resp. -^(TTT)). By using this
fact and Seke's theorem ([12]), Meigniez ([8]) showed that ̂  is not isotopic
to^.

We say that a transversely orientable codimension one foliation F is
transversely affine if there exists a system of transition functions consisting
of elements of Aff+R = {x ^ ax + &;a > 0}. By Seke's theorem ([12]),
transversely affine structures are characterized by the pairs (^,Ct;i) of 1-
forms of M such that

1) uj defines the foliation F,

(i.e. the tangent bundle of F coincides with ker^j.)

2) duj = uj A c<;i,

3) di^i = 0,

modulo the identifications (a;, 0:1) ~ (^,^1 — -^) where ^ is a non-zero
function of M.

For example, ̂  is a transversely affine foliation. In fact, F^\(M -
int V) has the transversely affine structure (A^)^ ± (ft, -£((T) log A • dt),
and this transversely affine structure extends to M.

Next we define the holonomy representation of a transversely affine
foliation F. Let XQ denote the base point of M and let p : (M, xo) —> (M, 3:0)
be a universal covering of M withjhe base point XQ (p(xo) = xo). Then
there exist two functions k : {M,xo) —^ (R,0) and h : (M,xo) —>

(R^l) (R^ = {t > 0}) satisfying ^*(a;,^) = (^, ̂ ) ([12]). For each

element 7 € 7Ti(M,.ro), there is an element (a, b) e R^ x R such that
k ' 7 = ak + b and h • 7 = a/i. We define the holonomy representation
hoLp : 7Ti(M,a;o) -* Aff^R of^by hoLp(7) = (a: ̂  ax+b). The holonomy
representation is uniquely determined up to an inner automorphism of
AfFR(= {x ̂  ax + 6; a + 0}).

For example, the holonomy representation of ̂  is as follows (up to
an inner automorphism ofAfFR). Let (3 be a section of7r :M->5 1 passing
through the base point XQ and oriented by the positive orientation of S1.
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Then hol^ ([/?]) is equal to (x ^ X'^x). Let L : E -> M denote the
inclusion map of the fiber passing through XQ and let yo = ̂ (rro). Then
hol^ (i*7Ti(S,i/o)) is contained in the group of translations {re ̂  x -+- &},

- A
identified with R, and [hol^. -^] (€ ^(E^)) is cohomologous to [Per^o-],

where Per^o" : 7ri(E,i/o) — ^ R i s defined by Per^a(^) = / ci/7.
A

S. Matsumoto constructed examples of transversely affine foliations of
M which are not isotopic to the suspension foliations of the pseudo-Anosov
diffeomorphisms.

THEOREM (S. Matsumoto). — Let S be a closed orientable surface
with genus greater than 1 and let TT : M —> S1 be an orientable ^-bundle
over S1 of pseudo-Anosov type such that the saddle singularities of the
(un-)stable foliation Q0 (a = s,u) of the pseudo-Anosov diffeomorphism
f isotopic to the monodromy map of M are the fixed points of f and
have 4 separa trices (4-saddle singularities). Then, for each k € Z satisfying
\k\ < —^(S)/2, there exists a transversely afnne foliation T^ of M
satisfying the following conditions :

1) (^(T^), [E]) = 2k where [S] € H^(M',1) denotes the homology
class represented by the fiber of7r.

2) hol̂  is equal to hol̂  up to an inner automorphism ofAffR.
k J-^

3) T^ has no compact leaves.

Proof. — Let K == {51,52,53, . . . ,«n} denote the set of the saddle
singularities of the (un-)stable foliation Q^^a = s^u) of /. The foliation
of (E — K) x R defined by the non-singular 1-form X6^1^ is denoted by
7-^. Since 7-̂  is invariant under the Z-action 6 (On(x, t) = (/^(x)^ 4- n),
n € Z), H ^ / 0 is the foliation of M - Kf (K' = (K x R)/0), denoted by
T^. The transverse orientation of T^ is given by the positive orientation
ofA5^^.

Denote by a^ (j = 1,2,3,4) the separatrices of Q° passing through the
saddle singularity Si(l < i < n). To simplify the explanation, we assume
that /(dp = a} (1 < j < n, 1 ̂  i < 4).

The leaf (crj x R)/^ of ̂  is diifeomorphic to S1 x R and has holonomy.
Hence there exists a small closed tubular neighborhood Vi of ({si} x R)/0
in M such that QVi is transverse to T^ and ^\QVi consists of four 2-
dimensional Reeb components (Fig. 1).
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Figure 1

Next we construct two transversely oriented foliations /C-(- and 1C- of
S1 x D2 satisfying the following conditions (Fig. 2) :

1) IC^\(S1 x 9D2) is isotopic to F°,\QVi with the same transverse
orientation.

2) /C± has two annular leaves tangent to S1 x {*} (* 6 D2), and the
other leaves of /C± are transverse to S1 x {*} (any * € D2).

3) The transverse orientation of S1 x {0} (0 € D2) induced by the
transverse orientation of /C+ (resp. 1C-) coincides with the positive (resp.
negative) orientation of S1.

(/C± consists of two plus half Reeb components [14] and one dead-end
component of D1 x S1 x S1.)

n / — v

By attaching F^\(M - |j intY,) with k - X{—L copies of /C+ and
1=1

f^\ n

—k — ~—— copies of 1C- along the leaves of ^|(1) (9^), QIC^. and QIC-,
1=1

we obtain a transversely orientable C00 foliation of M, denoted by T^.
By Thurston's proposition of [15], (^(T^), [E]) = 2k. Furthermore, ̂

n

has no compact leaves, because all the leaves of F^\{M — MintF^) su^
z=i

non-compact.
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Figure 2

The transversely affine structure of T^ is given as follows. First
n

we define the transversely affine structure of f^\(M — ^JintVi) by
1=1

(A^^L^, —e(cr)\og \' dt). The foliation /C± also has a transversely affine
structure. By Seke's theorem ([12]), which shows the uniqueness of the
transversely affine structure of a foliation with holonomy, the transversely

71

affine structures of ^TKU <^) an^ ̂ ± are umclue• Therefore the trans-
i=l

versely affine structure of/C± can be attached to that oiF^\{M— M int Vi).
1=1

For this transversely affine structure of F^ the holonomy representation
is equal to hol;-^ up to an inner automorphism of AffR. Dy.

Remark. — If 2k ^ ±x(S), then F^ is not homotopic to ^.
Therefore F^ is not isotopic to T^.

In the end of this section, we prove the proposition in the introduction.

Proof of Proposition. — Let / denote the hyperbolic automorphism

of the torus T2 given by the 2 x 2 matrix ( 5 3 ) = ( 2 1 ) - Then

the fixed points of / are [(0,0)], [Q,j)], [(|^)]. [(|^)] and

M p , ^ M , where T'2 is identified with the quotient of R2 by the integer
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lattice and the element of T2 represented by z € R2 is denoted by

[4 Let K denote the set { [(j'j)]. [(^ |)] } and let a, /? and e

denote the generators of 71-1 (T2 - K) where a, f3 and £ are represented

by ([0,1] x {0})/^({0} x [0,1])/^ and a loop winding around [(- 2)],
respectively.

Let 5i and 5-2 denote two copies of T'2 - ^ [(t, 2t)}', --^<:t<-\.By

attaching 5i to 82 along ^ [(t,2t)}; - r < ^ < r f alternatively, we obtain
0 . 0

a double covering p : S 2 -^ T2 - K, where S 2 is a 2-punctured surface
with genus 2. Let 77 : 7Ti(r2 - K) —^ Z/2Z denote the homomorphism
satisfying 77(0) = rf{/3) = T^) = 1. Then ^71-1(1:2) = Kery^. Since
^*(H) = ^A([/?]) = ^/*(H) = 1, there is a lift // of /.

0

By collapsing two holes of S2, // extends to a homeomorphism /"
of the closed orientable surface E2 with genus 2, which is a pseudo-Anosov

diffeomorphism ([I], Expose 13). We take two lifts of ^ \(t, -\}; 0 < t < 1 \

and ^ (^,n ;0<^ 1^ as the generators of Hi(^). Since / maps

{[(^l)]50^^1} (resp- {[(^)];0^^1}) on {[(^l-3^4-1)] ;

0 <: t <: 1^ (resp. { [ ( 3 ^ + 5 , 2 ^ + 3 ) ] ; 0 $ ^ in which intersects

< [(^,2^)]; -, < t < ^ > two times, the isomorphism of H\(^'^J.) induced

/2 2 3 1\

by /" is represented by the 4 x 4 matrix , whose eigenvalues
I 6 1 Z 2 I
\2 1 1 I/

are ——^—— and ———^———. Therefore the S2-bundle over S1 whose

monodromy map is C° isotopic to /" satisfies the conditions of the main
theorem. D
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2. An embedded surface with the (un-)stable foliation.

The purpose of this section is to prove the existence of a finite covering
of F whose restriction to a fiber is C° isotopic to an (un-)stable foliation of
a pseudo-Anosov diffeomorphism (Theorem 2). First we show the following
theorem.

THEOREM 1. — Let TT : M —^ S1 be as in the main theorem. Iff
is a transversely oriented and transversely affine foliation of M without
compact leaves, then the holonomy representation off is equal to hoi—,y^
or hol^:,, up to an inner automorphism ofAffR, where hol^ (a = s,u)
is the holonomy representation of the suspension foliation of the pseudo-
Anosov diffeomorphism defined in Section 1.

Proof.— We define homomorphisms u : R —)• Aff^R by u(b) = (x ̂
x + b) and v : Aff^R -»• R^ by v(x t-> ax + b) = a. Then the sequence

0 -^ R—^Aff^R—>R^ -^ 1 is an exact sequence ([8]).

Let i : E —> M be the inclusion map of a fiber, and let / : S —» S
be a monodromy map of M according to i. (I.e. there is a diffeomorphism
<t>: (E x I ) / ( ( x , 1) - (f(x), 0)) -^ M (I = [0,1]) such that 0|(E x {0}) = i).
Choose a fixed point yo of /, and the base point of M is given by t(yo). Let
£ denote the loop (f>({yo} x I ) of M oriented by the positive orientation of
{yo} x ^ let f3 denote the element of 7Ti(M,^o)) represented by £. Then
^/*7 = /?~l(^7)/? for any 7 e 71-1 (E, i/o).

For the homomorphism log-z; • holjF • ̂  : 7Ti(S,2/o) -^ R, the following
equation holds for any 7 € 7Ti(E,z/o) :

log^-holjr-^(^7)
=log.^;•hol^(/rl(^7)/?)
= log ' v • hol^(/3) + log ' v • hol^(^7) 4- log ' v - hol^(/5~1)
= log'v - hol^ • ^(7).

This shows that the cohomology class [log-v • hol^- • ^] (e ^f l(S;R)) is a
fixed point of f* : ̂ (E^) -^ ^1(E;R). Since /# : Jfi(E;Z) -^ ffi(E;Z)
has no eigenvalue equal to 1, [log • v • holy ' ^] == 0 in Jf^E^), and
v • hol^ • ^^(7ri(E,z/o)) = {!}• Thus the following commutative diagram
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exists :

1 —— 7Ti(E,2/o) ——— 7Ti(M,^/o)) ——— 7Ti(51) —— 1
I ^ I 7r* I^ HN [ hol^ ^ ffL

1 —^ R —^ Aff-^R —> Rl —^ 1
IA V '

where the upper sequence is the homotopy exact sequence of the fibration TT.
For the cohomology class [H^} represented by H N , the following equation
holds for any element 7 € 7ri(S,yo) f-

f*[HN}W
==^~ lhol^ ^(/*7)
^^hoM/T1^)/?)
= ZA"1 (x i—^rc- t - ce)

where hol^-(/5) = ̂ x \-> - x -{• d\ and hol^-(^7) = (a; ̂  a: + e)

= c^'^hol.^^))

=c[^](7).

First assume that [H^] 7^ 0 in H1^'^). Then c is an eigenvalue of
/# and [H^} is an eigenvector with respect to c. By the conditions of the

monodromy matrix, c is equal to A or -r. Since the cohomology class [Per^^]
A

(resp. [Per^n]) is also an eigenvector of/^ with respect to A (resp. y), there
A

is a non-zero number c' such that [H^] = c'per^] (resp. [HN] = c'per^zA])

if c = A (resp. c = y). Therefore hol^- is equal to hol^:, or hol^:,, up to an

inner automorphism of AffR.

If [H^] = 0, then hol^-7Ti(M,^(i/o)) is an abelian subgroup. Such
transversely affine foliations were studied in [12], [17]. Since T has no
compact leaves, T has no holonomy and F is defined by a non-singular
closed 1-form ([12], Theorem 7, 8). The cohomology class of this closed 1-
form is Tr^c"^]) for some non-zero number c" where [dt] is the generator
ofJf^S'1;!). By the theorem ([6]) of Laudenbach-Blank in a weak form, T
is isotopic to a bundle foliation (the referee showed the author the existence
of direct proofs). This contradicts the non-existence of compact leaves of
T. D



766 HIROMICHI NAKAYAMA

THEOREM 2. — Let TT : M -. S1 be an oriented ^-bundle over S1 of
pseudo-Anosov type. JfJF is a transversely oriented and transversely affine
foliation of M without compact leaves such that x(T^) = ±\(TTT) and
the holonomy representation ofT is equal to hol^, (resp. holj^ ) up to an

inner automorphism ofAffR,jtlien there exists a finite covering?: M -^ M
and an embedding g : S -^ M isotopic to a fiber of the ^-bundle M over
S1 such that ^.p*JF is C° isotopic to the stable (resp. unstable) foliation of
a pseudo-Anosov diffeomorphism which is C0 isotopic to the monodromy
map of M.

The holonomy representation hol^ satisfies that either v'ho\y((3) = -1

and [H^] = c[Per^] (c + 0) or v'ho\jr(f3) = A and [H^] = c[Per^u] (c + 0).
To simplify the following proof of Theorem 2, we assume that i;-holjr(/3) = A
and [HN] =c[Per^u}.

By the Roussarie's lemma ([II], [9]), there exists an embedding
g : S -> M isotopic to a fiber of M such that g*f is a singular foliation with
4-saddle singularities, which are saddle singularities with four separatrices.

Let / : E —> S be a monodromy map of M with respect to ^(E).
(I.e. there exists a diffeomorphism (f) : (S x I ) / ( ( x , l ) ^ (/(rr),0)) -> M
satisfying ̂ |(E x {0}) = g.) We define the infinite cyclic covering q : N -> M
(N = SxR) byq(x,t) =(f)(fi(x),t-i) (i ^ t ̂  i+l,i e Z). In the following,
we give the base point XQ of N by (2/0,0) where yo is a fixed point of /,
arid the base point XQ of M by g(yo). The holonomy representation does
not depend on the choice of the base points up to inner automorphisms.

Let r : (M,XQ) -^ (N,XQ) be a universal covering of N with the base
point and let p = q . r. For the^ transversely affine structure (o;,^i) of F,
there are two functions h : (M,xo) -^ (R^l) and k : (M,xo) ^ (R,0)

such that p*(c^i)= ( d k , d h } .
\ h h /

In order to prove Theorem 2, we need the following lemmas.

LEMMA 1. — c^T is defined by a non-singular closed 1-form. Espe-
cially (f^^ = (g|E x {0})*^) is defined by a closed 1-form.

Proof. — For each element 7 € ^(N,Xo), q^ € 7Ti(M,a;o) is
homotopic to an element of ^7Ti(E,2/o). Hence ho\^(q^) is a translation,
and h ' q.^(x) = h(x) (x C M) by the definition of the holonomy
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representation. For any elements z^ and z'2 (€ M), h(z^) == h(z^) if
^i)=^2).

We define s : (N,xo) -^ (R^, 1) by s = /i.r-1. Since r*(g*^i - ̂ ) =
5

iP^i - ^ ^ = 0, ̂ i is equal to -s. Hence d(sq*ij) = ds/\q'uj-\-sdq"uj =

0. Therefore ry^ is defined by the non-singular closed 1-form sq^uj. n

In the following, the non-singular closed 1-form sq^uj is denoted by
Q, which defines q*F.

LEMMA 2. — There exists a non-singular vector field X of M trans-
verse to both T and ^(S).

Proof. — Let s, (1 <, i <, n) denote the saddle singularities of^|^(S).
Then there exists a non-singular vector field A" of M and pairwise disjoint
small neighborhoods Ui of 5, contained in ^(E) such that A" is transverse

H

to F and tangent to ^(S) - N Ui.

The saddle singularity Sz is called positive (resp. negative) if the
orientation of A" at ^ is equal to the positive (resp. negative) orientation of
the base space S1. Let 7+ (resp. J_) denote the number of positive (resp.
negative) saddle singularities. By Thurston's lemma ([15]), the following
equations hold :

i)-j++j-=(x(mb(s)]),
2)-J+-J_==^(S),

where \(TJ=') € .^(M;!) denotes the Euler class of the tangent bundle
of ^, and [fir(S)] denotes the element of H^M'.l) represented by ^(S).
Since \(TF) = ±^(TTT), either J+ or J_ is equal to 0. Hence the saddle
singularities of ^(S) are all negative or all positive. If all the saddle
singularities of ^'|^(S) are positive (resp. negative), then we can perturb
X toward the positive (resp. negative) direction of the base space S1 in a
neighborhood of ^(E) so that A' is transverse to both T and ^(E). D

LEMMA 3. — There exists an embedding F : S x R+ -^ N such that
r(S x {0}) = S x {0}, F(S x R+) c S x R+ and F*^ = ̂  ± dt, where
the inclusion map if : S -^ N (t € R) is defined by it(x) = (x,t).

Proof. — Let X denote the lift of X with respect to q. Then there is
a non-singular vector field Y of N such that fl(Y) = ±1, Y = uX for some
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non-zero function u of TV, and the orientation of Y at E x {0} coincides
with the positive orientation of {*} x R (* e E). The integral manifolds of
Y are called the leaves of V, which are to be oriented by Y.

Let z be an element of N. Denote by L the leaf of Y passing through
/•w

z. The point w of L satisfying / f2|L = f^Y)^ (t € R) is denoted by
J z

^(z,t). Then ^ is the flow of F because ^(9^} = -^-f [ t ̂ (^dt} =
^ at ^ d t \ J o \ 9t f /

d
— WY)t) = n(r). Note that ^ is not always defined in the whole N x R .

However ̂  is defined on (Ex {0}) xR+, which will be shown in the following.

Let L(x) denote the leaf of Y passing through (x,0) € S x {0} C N ,
and let Li{x) == L(x) n (E x [i,i + 1]) and L+(x) = L(x) H (S x [0,oo)).

When L^.(x) is contained in E x [0,7io) tor some integer no (> 0), ^
is defined on (a;,0) x R+ because ^|(E x [0,no]) is the flow of the compact
manifold E x [0, no] transverse to the boundary.

Suppose that L^.(x) is not contained in a compact region. Then L,(rr)
is not empty for every i >, 0 (z € Z). Let t denote min ̂ l(Y) ( n) > 0.

V^ ^ J L ^ y ) )

£ is the shortest time to reach E x {1} from E x {0} by the flow ^. We
define the covering transformation 6 : E x R -^ E x R of q by 6(x,t) =
(/-l(:c)^ + 1). Since (9*Q = 0*(sq^) == (s ' 0)(q0y^ = \sq^ = AQ,
^*Q = Af2. Thus the following inequality holds :

fl(Y) { Q = fl(Y) ( (^)*^ = Q(V) / A^ ^ A^,
^.{x) Je-^^x} ^L()(6^- t(a;,,^))

where {a;J = L(x) n (E x {z}). Hence Q(Y) / » = oo and ^ is defined
JL^X)

on (a-,0) x R+. Therefore ^ is defined on (E x {0}) x R+.

We define an embedding Y : E x R+ -^ N by F(x,t) = ^((a;,0),^).
Then

r*Q(v, a) (v e r^E, a e r<R+ = R)

=r«((^^a(^))

=^rn(^)+anr,(^)
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=(r'ttYW+afl(Y)

= (^ • toTW ± a (^(z) = ̂ , t), z € N, t € R)
= ̂ <W^)±a

= ^o^(^) ± a (See [3], Chapter VIII, Lemma 1.1.2)

=(p^±^)((^+a(^)) (pi(.r^)=a;)

=(i^±dt)(v,a).

Therefore F*^ = ̂  d= dt. D

LEMMA 4. — There exists a non-zero number c such that / ^f2 =
J'7

c[Per^](7) for any 7 6 7Ti(E,2/o).

Proof. — For any 7 € 7Ti(E,i/o), hol^^) = (a; i-̂  x 4- J(^)^ ^). In
fact,

k ' 9^(xo) - k(xo)

= dk where ~g^j is the lift of g^ with respect to p
^ffTT

whose starting point is a;o,

= [ h p ' u ;
^prT

= / r^sq^)
•/97Y

= / n
•/r.g^r

'/ "•^(<o).7

Since hol^-(^7) is also equal to (x ^ x + c[Per^](7)) for some non-zero

number c, / ^ = c[Per^](7). n
•/(^o)^

By changing the differentiable structure of E, there exists a closed
1-form ^a (a = s,u) of S such that S^ defines (0<r,/A(T) and So = 0 at the
saddle singularities of G°'. (I.e. there is a homeomorphism p of S isotopic
to the identity map such that p * ^ , ^ ) is the measured foliation defined

by S^.) By Lemma 4, t^fl. = c ^u for any 7 € 7Ti(S,i/o).
./^ J^
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LEMMA 5. — There exist em beddings T]^., rj- : E —> E x R^. satisfying
the following conditions :

1) dS^ = rf^o^ + rfO = 771(^0 - ̂ ).

2) yy±(E) is transverse to {*} x R+ for each * € E, and rf^ is isotopic
to E x {0}.

Proof. — By the above argument, [<-o^] ̂ d [cS"] are cohomologous in
^(E; R). Hence there is a function $ : E -^ R such that ̂ -o?" = c^. We
define^ : E -> ExR+ by ^(a;) = (a;,Max(^)-^(.r)) and 77- : E --> ExIR^.
by 7/-(:r) = (.r,$(rr) - Min(O). Then

r]^(p[iQ^ ± p^dt) (pi(x,t) =x, p2(x,t) =t)
={pi^y^±(p^±ydt
= i^ - d^
=c2u. a

Proof of Theorem 2. — There exists a sufficiently large integer
m (> 0) such that FT^E) and r7y-(E) are contained in E x [0,m).
Let c[' : N —> M denote the quotient map of N by O"1. Denote by
p : M —>• M the finite covering satisfying q = p - q ' . If r*Q = LQ^I 4- dt
(resp. r*Q = LQ^I — dt), then we define g : E —> M by q'Tr]^. (resp. qTrf-).
Then ^ : E —> M is an. embedding isotopic to the fiber of M. Since ^*p*^'
is defined by (FT^O = T^(^ ± ̂ ) = cS", ^*^*J^ is C0 isotopic to ^u,
which is an unstable foliation of a pseudo-Anosov diffeomorphism which is
C° isotopic to the monodromy map /m of M. a

Remark. - The foliation 'H obtained by cutting p^J^ along ^(E) is a
C° foliation of E x I with a transverse invariant measure with full support
such that 7^| (E x {0}) is the (un-)stable foliation of a pseudo-Anosov
diffeomorphism which is C° isotopic to /m. If we choose the pseudo-Anosov
diffeomorphism as the monodromy map of Af, then 7Y|(E x {0}) is equal
to 7"^|(E x {!}). (Here 1~i is not a foliation at the saddle singularities of
7Y|(E x 91) by the ordinary definition of foliations. Such foliations are
called pseudo-foliations in [9]. However, in this paper, we call them also
foliations.)
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3. Foliations of S x I with transverse invariant measures.

By Theorems 1 and 2 (see also Remark of Section 2), the main
theorem obviously follows from the following Theorem 3.

THEOREM 3. — Let S be a closed orientable surface with genus greater
than 1. Let f be a pseudo-Anosov diffeomorphism with an (un-)stable
foliation (^y^) ((T == s,u). Suppose that U is a transversely orientable
C° foliation o f S x 7 ( J = [0,1}) satisfying the following conditions :

1) H has a transverse invariant measure v with full support.

2 ) ^ | ( S x { 0 } ) - ^ | ( S x { l } ) = ^ .

Then H is C'° isotopic to ̂ (^a^^^KE x I ) with the boundary fixed
for some non-zero number a, where 'fi(a, a, Q0, ///7) is the foliation ofS x IR
defined in Section 1.

In order to prove Theorem 3, we need some consideration.

First we consider some properties of singular foliations of S. Let Q
1)e a singular foliation of E (all the singularities of Q arc saddle ones). A
leaf L of Q is called ordinary if L is neither a saddle singularity nor a
separatrix, and Q is called minimal if all the leaves except for the saddle
singularities are dense in S. The next lemma is the generalization ofLevitt's
pantalon decomposition theorem ([7]) to singular foliations having saddle
singularities with many separatrices.

LEMMA 6. -- Let Q be a transversely orientable minimal singular
foliation ofS. Then there exist disjoint simple closed curves 7, (1 < /: < n)
satisfying the following conditions :

1) 7 , ( I < i < n) is transverse to Q. Denote by S , ( 1 < j < m) the
ii

connected components obtained by cutting E along I J 7/. Then,

2) i!\Sj (1 < j < m) is a singular foliation transverse to OSj with a
unique saddle singularity whose separatrices reach OSj.

3) All the ordinary leaves of Q\Sj are properly embedded arcs
which connect different boundaries of S / , and there are ordinary leaves
i^, ft\, /^ , . . . , f3^ which cut Sj into a 2-disk.
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Proof. — Suppose that disjoint submanifolds Sj (1 <^ j <, q <, m)
satisfying the conditions 2) and 3) of Lemma 6 are constructed. Denote by

q

N the closure of E - |j Sj.
j=i

If G\N has no saddle singularities, then N is the disjoint union of
annuli, say A{ (1 < i < n), and each Q\Ai is the product foliation
f.D1 x {*};* € S'1}. Denote by 7, one of the boundaries of Ai. Then
7,'s (1 < i < n) satisfy the conditions of Lemma 6.

Next suppose that Q\N has a saddle singularity s. Denote by
^i?^^? • • • 5^2?- the separatrices of s in the clockwise order. Since the
singular foliation Q is minimal, a^ (k = 1,2,3,... , r) intersects 9N. Hence
there exist pairwise disjoint closed transversals p^ (k = 1,2,3,... ,r) con-
tained in the interior of N and intersecting a^k — {s}. Let Zk denote the

r

point of 0-̂ . n (M p i ) nearest to s along a^' The closed transversal pi con-

taining Zk is denoted by p'^ and the restriction of a^k to [s, Zk\ is denoted
by W{^. Then there exists a sufficiently small closed neighborhood Sq+\

r

(C hit N) of ^J (w^ U /4) whose boundary is transverse to Q. The singular

foliation G\Sq^.i satisfies the conditions 2) and 3) of Lemma 6. By induction
q

on the number of the saddle singularities of Q\ i j Sj, Lemma 6 holds. D
j=i

Next we prove the following lemmas about foliations obtained by
n

cutting 'H along l j ( 7 i x I ) '

Let S be an orientable surface with boundary. A transversely ori-
entable C° foliation U of S x I having a transverse invariant measure v
with full support is called a unit foliation if it satisfies the following condi-
tions :

1) (U^v)\(S x {0}) is a measured foliation of S transverse to 9S
satisfying the conditions 2) and 3) of Lemma 6.

2)(U,v)\(Sx{l})=(U,i.)\(Sx{0}).

3) U is transverse to 9S x 7.
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LEMMA 7. — Let {U,v) be a unit foliation. Then U\(OS x I ) has no
vertical leaves, where a leaf of U\(QS x I ) is called vertical if it is isotopic
to {*} x I with {*} x 91 fixed.

Proof. — If U\(QS x I ) has a vertical leaf, tlien all the leaves of the
component of U\(QS x I ) containing the vertical leaf are vertical because
U lias the transverse invariant measure y.

Let C be a vertical leaf of U\(OS x I ) such that QC, is not contained
in any separatrix of U\(S x 01). Let .TO (resp. xi) denote the endpoint
of £ contained in QS x {0} (resp. QS x {!}). Denote by /^.,, (resp. /^)
the ordinary leaf of U\{S x QI) containing XQ (resp. x\), and denote by
yo (resp. 1/1) the other endpoint of f3^ (resp. /^.i). Since U\(oS x I ) has
no holonomy, U\(9S x I ) contains no interior compact leaves. Hence there
exists a properly embedded arc a (C OS x I ) connecting y^ and y\ and
isotopic to {*} x I (* 6 OS) with {*} x 01 fixed such that a is either
transverse or tangent to U\(QS x I ) .

If a is transverse to U\(QS x 7), then there exists a null-homotopic
closed transversal near (.U/3^ Ua'UA.,. Since this contradicts the existence
of the transverse invariant measure v with full support, a is tangent to
U\(OS x I ) .

By Roussarie's theorem ([II], see also [9] for foliations with saddle
singularities in the boundary), a null-homotopic simple closed curve C U
A,, UaU/^., bounds a leaf of U homeomorphic to the 2-disk D2. By Reeb^s
global stability theorem, there exists an immersion 0 : D2 x [-1,1] —> S x I
satisfying the following conditions 1), 2) and 3) :

1) ^(D2 x {t})(t € (-1,1)) is a leaf of U.

2) ^\(D'2 x (-1,1)) is an embedding.

3) Both ^(OD'2 x {1}) and ^(OD'2 x {-!}) contain two saddle
singularities of U\(S x 01).

By considering the transverse orientation of l^\(S x {()}) in tlie
neighborhood of the saddle singularity of/Y|(S' x {( )}) , there exists a number
t{) € (—1,1) sufficiently near 1 or —1 such that ^{D2 x { < u } ) contains a
properly embedded short arc crossing the saddle singularity of U\{S x {()})
(Fig. 3). However this contradicts the non-existence of saddle connections
of U\{S x {()}).

Thus l4\(OS x I ) lias no vertical leaves. D
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^(Z? 2 x{<o} )n(5 'x {0} )
Figure 3

Remark. — The original proof of Roussarie's theorem demands that
the foliations are of class C1' (r ^ 2). However it has already been known
that his theorem is true for C° foliations (see [3], [5], [13]).

A unit foliation {U, v) is called normalized \iU\{QS x I ) is transverse
to {*} x I for any * € QS.

LEMMA 8. — Let (U^v) be a normalized unit foliation. For any
x^y 6 9S, ^({x} x I) = v({y} x I) and the orientation of{x} x I induced
by the transverse orientation of Li coincides with that of {y} x I.

Proof. — If x and y are contained in the same connected component
of 9S, then v({x} x I ) = v({y} x I ) and the orientation of {x} x I induced
by the transverse orientation of U coincides with that of {y} x I .

Let Q denote U\{S x {0}). Suppose that an ordinary leaf /? of Q
connects x and y (x,y e QS). Since {x} x I is homotopic to (/3 x {1}) U
({y} x I ) U (/? x {0}), v({x} x I ) is equal to v({y} x I ) . If the orientation
of {x} x I induced by the transverse orientation oiU is opposite to that of
{y} x I , then there is a null-homotopic closed transversal, which contradicts
the existence of the transverse invariant measure v with full support.

Let 7 and 7' be connected components of QS. Denote by a and a '
the separatrices of Q intersecting 7 and 7', respectively. Then there exists
a series of separatrices a = (TI, cr'^^ (73 , . . . , a^ = c r ' where (Ji is adjacent to
Oi^i for each i. Since there is an ordinary leaf of Q near (T, U a^ for each
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z, v({x} x I ) (x € 7) is equal to ^({2/} x J) (y 6 7'), and the orientation of
{.r} x I coincides with that of {y} x I . n

LEMMA 9. — Let (Z^i,^i) and (^2,^2) be normalized unit foliations
o f S x I satisfying (^i,^i)|<9(5 x I ) = (^2,^)1(9(5 x J), then there exists
a homeomorphism h : S x I — > S x I such that h\Q(S x I ) = id and
/^l^l)=(^2^2).

Proof. — Let Q denote U^\(S x {0}), and let ^ (1 < j <, p) be the
ordinary leaves of Q which cut S into a 2-disk. By Roussarie's theorem
([11]), there are pairwise disjoint properly embedded disks Dj (resp. J9')
transverse to U\ (resp. U^) and bounded by Q(/3j x J). Since U\\Dy and
U'2\D'j are foliations whose leaves are properly embedded arcs, there is a

P p
homeomorphism h: 9(S x I ) U ( (J Dj} -^ 9(S x I ) U ( |j D'^ such that

^l^l)=(^2,^).

Let U\ (resp. U^) denote the foliation of -D3 obtained by cutting
P p

U^ (resp. ^2) along |j Dj (resp. |j D^) (Fig. 4). Ui (i = 1,2) has 2p
j=i j=i

collapsing leaves homeomorphic to I and two saddle singularities in the
boundary. The leaves oiUi near the collapsing leaves are all homeomorphic
to D2. By Poincare-Bendixson's theorem, the ordinary leaves of QUz are
all homeomorphic to 5'1 and the union of the leaves of QUi containing a
saddle singularity is a bouquet. Hence the leaves oiUi containing no saddle
singularities of QUi are homeomorphic to the 2-disks, and the union of
the leaves of U{ containing the saddle singularity is the union of 2-disks
whose intersection point is the saddle singularity. Therefore h extends to a
homeomorphism of S x I which satisfies the conditions of Lemma 9. D

Proof of Theorem 3. — Let 7^ (1 <, i <, n) denote the disjoint
simple closed curves transverse to Q° constructed by Lemma 6, and let Sj
(1 < j< m) denote the connected components obtained by cutting E along
n

|̂ J 7^. Since "H has the transverse invariant measure v with full support, 7Y
1=1
has no interior compact leaves. By Roussarie's theorem ([11]), 7i x I can be
taken by an isotopy of E x J with E x 91 fixed so that 7, x I is transverse to
1-i. Since all the leaves oi7i\(^i x I ) are properly embedded arcs, ^(7^ x {0})
is equal to 7^(7^ x {!}). By the unique ergodicity of the (un-)stable foliation
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llapsing leaves

Figure 4

of the pseudo-Anosov diffeomorphism ([!]), i/|(E x {0}) = ^|(E x {!}).
Therefore ('H\(Sj x J), v\(Sj x I ) ) is a unit foliation.

By Lemma 7,1~i\(Sj x I ) has no vertical leaves. We change S x I again
by an isotopy with S x QI fixed so that {*} x I is transverse to 1~i for any

ii
* € M 7i. Then (7^|(6j x I),i/\(Sj x I ) ) is a normalized unit foliation.

i=l

We take the transverse orientation of H so that the transverse
orientation of 7^|(E x {0}) coincides with that of Qa. Since all the leaves
of 7Y| (7i x I ) are properly embedded arcs, the transverse orientation of
'K|(S x {1}) also coincides with that of Q°'.

By Lemma 8, the orientations o f { * } x J ( * G 9Sj) induced by the
transverse orientation of 'H are either all positive or all negative. For each
7i and 7j, there is an arc in a leaf of Qa connecting ^ with 7^ by the

n

minimality of Q°'. Thus the orientations of {*} x I (* e M 7i) are either all
i=l
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positive or all negative. If they are positive (resp. negative), then we put
6(U) = 1 (resp. 6(H) == -1).

Denote by c the positive number satisfying ci/|(E x QI) = /^.In the
following, the transverse invariant measure of 'H is given by cv.

r 1
Let a denote the positive number satisfying c^({*} xJ) = a f \~E^tdt

Jo
(* € 7,). The foliation U(a, a6(H), ̂ , ̂ ) of E x R (defined by X"^^ +
a6(H)dt in (E — K) x R) has a transverse invariant measure v =

|(u}a-{-a6(H)\~£(CT)tdt) . The transverse orientation ofT^cr, a6(H), G°, y^)
\J
is given by the positive orientation of A^^o/7 + a6(H)dt.

In the following, we construct a homeomorphism h" : E x I —> E x I
satisfying h"(H,cv) = (7^,a(^),^,^)|(E x J),P|(E x I)).

First we define the homeomorphism h : E x QI —> E x 91 by the
identity map. The transversely oriented measured foliations of S1 x I
transverse to both S1 x QI and {*} x I (for any * € 51), are determined
by the lengths of S1 x {0} and {*} x 7, and the orientations of S1 x 91 and

n

{*} x Z (* € 51) ([!]). Hence /i extends to h1 : (E x <9J) U (|j ̂ i x J) ->
i==i

(E x 97) U ((J 7, x J) such that h\U,cv} = (^((T.Q^),^,/^),?) and
1=1

n

/i'({*} x Z) = {*} x J for any * € l ) 7 r By Lemma 9, h' extends to
1=1

h" : E x I -^ E x I which brings U to ^((T.a^.^./i^KE x J).
Therefore 7^ is CQ isotopic to H(a, a6(K), Q0, /A<7)|(E xJ) with the boundary
fixed. D
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