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PARTIAL DIFFERENTIAL OPERATORS
DEPENDING ANALYTICALLY ON A PARAMETER

by Frank MANTLIK

0. Introduction.

Consider a linear differential operator in R" ,

P(X,D)= ^a^)D-:D=-i9,9^{^...,^),
\a\<m

where the coefficients Oa(A) - constant with respect to the variable of
differentiation x - may depend analytically on a parameter A in a complex
manifold A. We assume that P(A,P) is equally strong for each A € A.

In [H2], p. 59 L. Hormander posed the question whether under these
conditions there exists a fundamental solution f\ of P(A, D) which depends
analytically on A. In 1962 F. Treves [T2] had shown that this is true locally
in A and that the assumption of constant strength is necessary for this
to hold [Tl]. Recently the author could construct a global solution in the
hypoelliptic case [M]. The proof of this result based on the fact that for
each compact subset A' of A there exists an integration contour in C71 which
yields fundamental solutions ofP(A,P) simultaneously for all A 6 A'. In a
second step we could apply a theorem of J. Leiterer [L] to obtain a global
solution f;\ by means of a Mittag-LefHer procedure.

The aim of the present paper is to eliminate the assumption of
hypoellipticity. In section 1 we show that also in the general case one can
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always find a uniform integration contour H^i for all A in a compact subset
A' of A. As a consequence we obtain an explicit formula for f\ : A € A'.
Our proof uses some ideas of Hormander [H2] concerning asymptotic
properties of multivariate polynomials. The rest of this article is essentially
an adaptation of the methods of [M]: in section 2 certain distribution spaces
are introduced by means of the contours H^i. These spaces constitute the
setting for our application of the Leiterer theorem [L]. Section 3 contains
the statements and proofs of our main results. We consider the equation
P(A, D)f\ = Q\ where Q\ is a given analytic function of A with values in
some distribution space and prove the existence of a solution f^ which
also depends analytically on A. In the special case Q\ = 6 (the Dirac
distribution) we obtain a solution to the problem described above.

1. Construction of a uniform integration contour.

We begin by fixing some notations : for any n, m C N let
Pol(n,m) :={PeC[:ri, . . . ,a;n] |degP^m};

Pol^n.m) := {P € Pol(n,m) | degP = m} .
If P, Q € C[xi,..., Xn] then we write

MO := dist($, {< e c 7 1 1 P(C) = o}): $ e C71;
P(^) ̂ ^^'IP^COl: ^ec^X),

Ct

Tl .

where |a| := ̂  ctj and P^) := <9°P;
j=i

P(^):=P(U);
P <Q : ̂  sup{P(0/<9(Q I $ € R"} < oo;

P~TV :<^ P«9AQ<P;

W(Q) := {P € C[a;i,...,a;»] | P < Q};

E(Q):={PCC[xi,...,Xn}\P^Q}.

1.1. Remarks.

(i) Note that our definition of P($, t) differs from that of Hormander

[H2], §10.4, who used the notation P(^,t) := (^f21"'!?^^)!2)172.
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According to [H2], 10.4.3 we have

P < Q ̂  sup{P(^)/Q(^) I $ € R71, t ^ 1} < oo .
In this case we say that P is weaker than Q. It P ~ Q then we say that P
and Q are equally strong.

(ii) P < Q =^ degP ^ degQ. This is clear by definition of P. In
particular, W(Q) is a finite-dimensional complex vectorspace (consequence
of[H2], 10.4.1).

(hi) E(Q) is a linearly convex, open subset of W(Q) ([H2], 10.4.7).
For our purposes it suffices to know that E(Q) is holomorphically convex
(cf.[M]).

We assume the integers n, m to be fixed throughout this paper. The
letters c, C denote positive constants which only depend on n and m. We
use the notations

l$h=El^ l ' Kloo:=max|^ | : ^(^...^eC71.
For K = R, C and p >, 0 let

BK-^^UeK-l l^oo^p}.
In the case p = 1 we simply write BK" . Further let

r' :={^ec 7 ' | |^i | =.. .=|^| =1} if r e N .

1.2. THEOREM. — Let Q € Po\'(n,m), H C E(Q) be a compact set
and p >_ 0. Then there exists A ^ 1 and a bounded measurable function
1 ] : R" -> R71 such that

(1.1) P(0<A|P(e+C+^(0)h Pcn^eR^CeBc^p) , z e ~ v 1 .

Our proof of this theorem is long and will occupy the rest of this
section. First it requires a detailed study of the function P(^t) :

1.3. LEMMA. — Let Q e Pol^yi.m) and II C E(Q) be compact.
Then there exists B >, 1 such that
(1.2) B-1 ^ P($, t)/Q(^ t ) < B : P e n, $ e R71, ̂  i .

Proof. — By 1.1 (i) the expression Nq(P) :== svip{P(^t)/Q(^t) |
^ € R", t >: 1} defines a norm on IV(Q). Now let R € II be fixed. Since
Q < R we have

^ := inf{J?(^)/Q(^) | $ € R", ̂  1} > 0 .
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For any P € UJR := {P € W(Q) | ̂ (7; - P) < &fi/2} we get

^>R^^P^>W: ^R^>1.
0(^0 ~ Q(^r)

Since o^ is an open neighborhood of R it follows from the compactness of
II that there exists bo > 0 with

P(^t) > boQ(^t) : P € H, ^ € R", t > 1 .
On the other hand the bonndedness of 11 implies that

Bo := sup{jVo(P) | P € n} < oo ,
hence

P(^t) ̂  BoQ(^t) : P € n, ^ € R71, t^ 1 .

With D := max{l/&o»A)} the assertion follows . D

1.4. LEMMA (cf. [H2], 11.1.4). — TAere exists C ^ 1 sucA that for
any P € Pol'(71, m) the following holds :
(1.3) IP^^IMO101 ^ C|P(0| : ft € C", H < m .

(1.4) G-1 < 6p(Q ̂  IP^^O/P^)!171"' $ C : ^ € C", P(0 ̂  0 .
a^O

(1.5) |P(0| ̂  P($, 6p(Q) ^ C'|P(0| : $ 6 C" .

Proof. — (1.4) is due to Hormander [H2], 11.1.4. (1.5) is a conse-
quence of (1.3) which follows from (1.4). D

1.5. LEMMA (cf. [H2], 11.1.9). — There exists c > 0 such that for
any P, Q € Po\'(n, m) and $ € C71 we have : if
(1.6) B-1 < P($,t)/0(^) < B : 01
holds' wi^A some B >, 1 then

n 7) —— < ^MO < i+g 2
v / 1 + 5 2 - 1 + ^ ( 0 - c '

Proof. — If<^(^);>l then

E ̂ "'(CI-W0' ̂  ̂  E l^"^^)!^^)'"'
a a

(1-5) (1.6)
^ C,B\Q(^\ < CiB^IP^^OI.
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When <$Q(O > 2CiD2 =: D (hence ^Q^)1"1 $ ̂ (O101 - ̂  a ̂  0) this
yields

Ei^^iW0'^™!.
0(

In particular then P($) 7^ 0 and

^^(amoi^'MO ̂  z^p(o/^(o: a 9^ o .
Summing up we get

G.̂ MO/W ^ MO E I^^O/^OI171"'(1^ ^s"1 .
a^O

lience
1 ̂ -MO ^ 1 MO ^ (^ ^ r?2\-l ,r f, (c\ ^ n
iTMO ^ 2MO ^ ( 2 3 ) w ̂  '

In tlie case ^o($) < -D we have

lj_MO>__L_
1+^(0 ~ l4-2GiB2 '

With suitable c > 0 we obtain the lefthand side of (1.7). The second
inequality follows from tills one by interchanging the roles of P and Q. D

1.6. LEMMA (cf. [H2], 10.4.2). — There exists C >. 1 such that for
any P € Pol(n, 7/1), $ € C" and r > 0 :

(1.8) G-1?^ r) < max{|P($ 4- T?)| 1 1 ] C BK" (r)} ^ C'P($, r) ;

(1.9) C~^T <^ max{^(^ + ?/) | ?/ € BK"(T)} ifP is uoiiconstant .

This holds for K = R cUKi K = C.

Proof. Assertion (1.8) corresponds to [H2], 10.4.2. (Onr nseofthe
^i-norm in the definition ofP(^, t) only results in a change of the constants.)

Ad (1.9) : first we note that for r > 0 and r] € B|<"(r),

IP^^ + i])\ < E [^'^(Olr'^ < T-I^P^, r)
ft

by Taylor's formula. As a consequence we have the estimate

(1.10) ?($+//, r) <, CiP(^r) : PePol^mUeC^eBc^r),

which will be used later. By (1.8) there exists for fixed $ € C71 and r > 0
an // € B«"(7") such that

P(^r)<C7,|P(^+7/)|.
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In particular then P(^ 4" rj) ̂  0 and

E l̂ "^ + ̂ /p^ + ̂ l171'' ^ E O^T-I0')1/!0' ^ Car-1 .
Q^O l<,\ci\<m

From (1.4) it follows that 6p(^ + 77) > C^T, hence the assertion. D

Now we can already prove a preliminary version of Theorem 1.2 :

1.7. COROLLARY. — Let Q € Pol'(n,m) and H C E(Q) compact.
Then there exist A, fi >_ 1 such that

(1.11) VT ^ /z, $ € R71 3rj € BR.(T) VP € n : P($,r) ^ A|P($+77)| .

Proof. — By Lemma 1.3 there exists B >, 1 such that

B-1 ^ P(^t)/Q(^t) <B: P € n, $ € R71, ^ > 1 .

With Ai := (1 + B^/c ̂  1 we get from (1.7),

Ai-'O + W) < 1 + (5p(Q : P € n, $ € R71 .

By (1.9) we have

(1.12) max{6QC^ + rj) \ T] € Bpn (r)} > C^r : •$ € R71, r > 0 .

Choose A'2 >. 1 with C'J'1 — Ai/A-j > 0 and put

fi := max{l, (Ai - l)/(Co-1 - Ai/A.,)} .

I f r > ^ then (l^-C^^/Ar >. l+r/Aa. For such a r and arbitrary ^ € R71

we may now choose rf € BR" (r) with SQ^^T]) > C^r according to (1.12).
For any P € II we then obtain

1 + 6p(^ 4- 77) ^ Af^l + <^($ + 77)) > Af^l + Go-'T) ^ 1 + T/AS ,

i.e. T ^ A2<5p($ + 77). Because of (1.5) this yields

P(^ + 77, r) ^ P($ + 77, A2^p($ + 77)) ^ A^P($ + 77, M$ + 77))
<A3|P($+77)|.

Finally, replacing in (1.10) 77 by —77 and ^ by $ 4- 77, we obtain

P($,T) ^ GiP($+77,r) ^ C'iA3|P(^+77)| : P € n . D

For any R € C[a;i,..., Xn} and k C No we put

($,^)(0 := ^ R^^R^W ,
|a|=^
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where R is obtained from R by taking complex conjugates of the coeffi-
cients. Note that ^P € R[a:i,... ,Xn] and (^fi)(0 ^ 0 for $ e R71. With
the notation

(M)(0 := ̂  |̂ )(0|
IQI=A;

we have
771

R(^t) == ^^(^^)($) : R € Pol(n,m) .
/i-=o

1.8. LEMMA. — There exists C ^ 1 such ^Aat for any P €
Pol(n, m), k eNo^eR71 andt>0 :

m ^(i.i3) c-^^pr^t) < (^t^^^)) <, c^pr^t).
j=k

Proof. — First we have by (1.8) (note that ^>kP € Pol(n,2m)),

(1.14) C^^Pr^t) < max (^P)($+^) ^ Ci($,P)-($^)
??€BRn

and
^-i ̂  (P«»))~(^,() ^ ̂  ̂ ^ )P(«)(^+^)| ̂  ̂  ̂  (P^))-^,*) .

|o;|=A; |o:|=A; |a|=A;

Furthermore an easy calculation shows that
m

c'2-1 E (^n^) ̂  E^^)^) ̂  ̂  E (p(a))~(^*) >
|o:|=A; j=k \a\=k

hence
777

G3-1^^-/^(^•P)($)^ ̂  ^ax |P^($+^)1

(1.15) J=' H=^
^C'sf^^-^^P)^).

j=fc

Now let M(n, k) = {a € Ng | |a| = k}. Obviously the expressions

M((^a)aeM(n,fc)) := ( max V fia(^)Sa(^))
\77€BRn '—— /

|a|=A;

A2((-RQ)QeM(7^,^>)) := y max |jRa(^)|, , ^ , ^€BRM
\a\=k
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define norms on the finite-dimensional vector space Po^n.m)^^, hence
they are equivalent. On replacing Ra(rf) by P^(^ + trf) we get

C,1 ̂  max IP^+^I^ ( max(^P)($+^))l/2

. i,^0"" \»?€B|I.. /

^C'4 E^l^^-^l-
|a|=A;

With (1.14) and (1.15) we obtain the assertion. D

1.9. LEMMA. — There exist 0 < c < 1 < C such that for any
P, Q € Pol'(n, m) and $ C FT the following holds : let 0 < k < m - 1 and
B > 1 with

(i.i6) ^-^(^^"'(^^(^/(E^"^^^^^ ^ > i .
3=^ j=k

Further let y ^ 1 sucA ^Aa^ <> := (———— - l)/C' ^ 1. Then wo have with
^:=C'(1+^)(1+B4) :

(i)(^0)(0>^ ^J-^t(^0)(0=^(^P)(0^ E ^'-'(^P)^),
J=^+l j=A;-H

w »»

(ii)(^.0)(O^E ^~'(^Q)(0=^(^P)(0^ E ^-'(^P)(0.
j=^+i . j=^+i

Proof.
m

(i) Let i/ > 1 with (^Q)(^) ^ ^ ^"^^OXO. Then we have
j=k+l

|Q(")(^)|<^-(H-A-)(^Q)(^^^^-(H-fc)^(^)(^ ; l^fe

This implies by Leibniz' rule,

K^/^OI = I E E (^^"^'(o^0^-"^)!
[a|=A; 7</3 v ' /

^G2^-^(^0)(0
for any multiindex /3 (C'2 ^ 1). In particular then (^.Q)(0 7^ 0 and

^kQ^^/^QW^ ^ C'2^-1 : ft + 0 .
An application of (1.4) yields

c,1 ̂ ^^(OEK^O)^^)/^,^)^)!1^' ̂ c^-1^^) •
WO
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By (1.13) and (1.16) we also have

(0>B2)-1 ^ (^P)~(^, <)/(^0)~(^ t) < C^B2 : t ^ l .

Using (1.7) we obtain

1 + ̂ .p(0 „ 1 + ̂ .p(^) „ ci
l+C^C^v - I+^,Q(O - 1+CJ54 '

A ^ -> ^(l+Cs'1^"1^) , ̂  ^v .
6^PW^———T^B~~1^•^^~1=:'/

with 0 < C2 ^ 1. Let ^ be so large that v ^ 1 . Then

(<^m)(1? ̂ "'(^^'(^^^(O) >. c^^pr^^)
^'^^(E^^^^o)2

J=A;

with CT ^ 1, hence
yn

(^•P)(O ^ \/(^P)(O ^ cf71/2 E ̂  ̂ ^^P)^)
j=fc

T?l

> E (^/^^-'(^P)^) .
J=A;+1

With c := C2, G ^ €7 we obtain the first assertion.

m

(ii) Now assume that (^kQ)W ^ E ^ •^(^XO- If then

J=A;+1

771

(^fcP)(0 > E ^-'(^^(O and A := ^—— -1^1
J=fc+l

with some /A ^ 1 we obtain as above (on interchanging the roles of P and
m

Q) : (^0)(0 > E (A/C'T^-^^O)^), hence
J=A;+1

m m

E (A/^^-^^O)^) $ E ̂ ^(^^(a-
J=^+l J=A;+1

This implies fi/Cj <^ ^., i.e.

P. ̂  (1 + C7^)(l + B4)^ ^ C7(l + ^)(1 + B4)/C2 .

Thus, with C := ^7/02 the second assertion also holds. D
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Proof of Theorem 1.2. — The subsequent procedure will yield a de-
composition of^o := R7' into m+1 disjoint subsets, Oo = Qo^i^ • • • U^,
such that the following holds :

3A ^ 1 V^ = 0,... ,m 3r^ 1 V^ € ̂  3% € BRu(^) :

(i') |P(C+^)|^P(^T,): P e n . ^ e T 1 .
Now note that the set

Up := {?(. + o | p e n, c e Be" (p +1)}
is a compact subset of E(Q) since for fixed C the polynomial P(- + C) is
equally strong as P. So we may assume that (1°),..., (F1) is already proved
for lip instead of II. It follows that for any i? e Z71 there exists ̂  € Bpn (r),
where r := max{ro, . . . , r^}, such that if |$ - ̂  <. 1 we have for each
P (E II, C € Be" (p) and z € T1 :

|P(^ + c + zn,)\ = w + ̂  + (^ - e + c))| ̂  —PW (1'^ ——P(O .
^^T- ^iC A

In particular we may choose rf(^) = r]^ in any cube {^ | ̂  < ̂  < ̂  + 1},
where ^i,...,^ are integers, such that (1.1) holds and sup^Oloo ^ r.

This completes the proof. The sets Q^. will be defined inductively as follows :
m

^'k ••= U e "fc I (^fc0)(0 ^ ^ ^"^OXO} (0 $ fc $ m -1)
j=fc+i

with suitable constants Vk >. 1, and

Ofc+i := 0^ ^ ̂  ; ̂  := n,,, .

In what follows the statements (2*') (0 ^ k ^ m) will be needed :

3Bk >. i VP e n, $ e n^., t>. i :
(2')

"I W

^~1 ^ (E^(^p)(o)/(E^(^)(o) <B, .
J=k j=k

With the constants c, C in Lemma 1.9 we set

( CVk \ .^ := r ^ B 4 ' 1 ) / 0 and ^ : = c f ( l+^) ( l+^) .
Then for each 0 <, k <, m - 1 we have by (2^) and Lemma 1.9, if z^ > 1,

m

(3') (^.P)(O > ^ ^"'(^P)^) : P e n, $ e ̂  ,
j=fc+i
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in

(4^) (M)(0 ̂  E ̂ -^P)(O : pen, ^ e Q,+i .
j=^+i

Now the proof of (1^), (2^') proceeds by induction on k. Recall that by
Corollary 1.7 there exist A, ^ >_ 1 such that

(5) Vr ^ fi, $ € R" 3r/ 6 BR,, (r) VP € I! : P(^ r) < A|P(^ + '/y)| .
Without loss of generality we may assume that Q 6 II.

Case k = 0. — Lemma 1.3 yields the existence of Do satisfying (2°).
Choose vo >_ 1 such that I>Q > 1 and define Q^ ^i as above. Let TO := i>o
and for any $ € Qy choose r^ := 0 € BR^ (7-0). We obtain

2|P($ + z-r^\ = 2(^oP)($) ̂  EW^)^) = ̂ (^^o)
j=0

for P € n, ^ € T1, i.e. (1°) is satisfied.

Case 1 :< A; < m. — The inductive assumption yields (2^ '-l) and
(4° ) , . . . , (4A-1). Since ^y,. C Q^._^ this implies for $ € .̂, ^ ^ ^_i :

(22?,_,)-1 ^^-A>(^Q)(0^(2P,_^)-ll f; ^- (A-1)(^,Q)(^)
J=A- :/^-i

C?/-- ! ) -. »<
'^ ^ E ^-^-"(^P)^)

< ^ - i Y in
< ^^-^(^P)(O.

.y=A-
For 1 < t < />/,_i this yields

nt in

(2£?,-.)-1 ̂ -^^(a ̂  ̂ ^/'(^P)^)
.7=^ j==A-

m

^^"/'E^^m).
J=A-

Analogous estimates hold with P and Q interchanged. Setting DI, :=
2Z?/,_i7>;.^-/'' we obtain (2^). Now let

/^. := max{/^ i > u , . . . , ^._j } (^ 1) .

For P € n ,^ € ^4.1 (.; = 0, . . . , k - 1), r > /^. it follows from (4^) :

(^P)(O^ E (^^^(^^(o^^ E ̂ (^)(a./=./+i ' T f=/+i
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Multiplying by r3 and summing up this yields (note that ̂  C n^i) :
A-l

(6) ^>^P)(O ̂  ^P(^r) : P e n, ^ e ̂ , r > ̂  .
J=0 T

In tlie case fc <, m - 1 we choose TA;, ̂ . > 1 such that

(7) ^^...A-1-2^-2^-
Tjfc Yk ~~ 2A

and define ̂ , OA;+I as above. By (3^') (consequence of (2^)) we have
m

(8) E ^(^^(O^^^-PKO^^P^T,): Penmen,.
j=A;+l "A; z/^

Now let $ 6 ̂ . be fixed and choose i^ e BR^TA;) such that

(9) P(^n;)^A|P($+^)|: pen (cf. (5)).
An application of Taylor's formula gives for P e II, ^ e T1 :

1^+^)1^ I E p(^(i)^|-E^(^)(o
|Q|=fc • J^fc

^ElEP^(o^l-2E^^)(o
J=0 \a\=j • j^fe

'T|P((+,,)l-2{^+S}p((,^

^--^-^.^
(7) 1 ^
>^P(^T,).

This yields (1^').

In tlie case A; = m we clioose r^ > 1 such that

(!{}} 1 1 < T A~1 ^mP'm ^ 1\ 1 ' ' ) ^m S ^m5 A ~ ——— ^ ^^ ^
T^i zA

Let $ € n^ :== ^^ be fixed and choose ̂  € B^(r^n) such that

(11) P($,r^)^A|P($+^)| : P e n (cf . (5)) .
Using (6), (10) and (11) an analogous computation as above yields (l^ :

1^+^)| ̂  {A-1-277^}?^^) > _p^^):pe^,.€T l .D
' ' 1 1 1 J ZA
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2. Some distribution spaces.

We adopt the standard notations for spaces of tost functions and
distributions {cf. [HI], [H2]) :

V = C^°(R") — CJ°°-functions with compact support;

V = 'D^R11) — space of all distributions;

S = 5(R") — space of rapidly decreasing ^-functions;

S1 = iS'(R") - space of tempered distributions.

Recall that each of these spaces carries a natural locally convex vector space
topology. The scalar product of two vectors $ ,C ^ C" will be denoted by»
[^ ^] := y ^ ^C^- It ̂  € 5 then the Fourier transform f> of y? is tlie function

^(C):= I exp(-<[<,r]M.rHr : < € R" .
./R"

The Fourier transform u of u € S ' is defined by the formula

(n,^) := (u^} : (p 6 cS\
where (', •) denotes the disbribntion i)airing. The following definitions and
results arc taken from Hormander [H2], §10.1.

2.1. DEFINITION.

(a) A function k : R" —> (0,oo) will bo called <\ temperate weight
function if there exist constants ( i ^ h > 0 sncli tliat

A^+C)<(1+<|)^«): $ , < € R " .
Tlie set of all sncli functions will be denoted l>y K..

(1)) If k C ^ and 1 <, p <, oc we denote l)y B^^. tlie set of all
distrilmtions u € S ' sucli that u is a function and

IHI/,, := ((27r)-" [ WQu^d^^ < ex) .v JR" /

In tlie case p == oo tills expression lias to be interpreted as ess.sup |A:(^)/ /(^)| .
^eR"

By [H2], 10.1.7 we have

<? ̂  B/,,A- ̂  ̂  ,
wliere S <—^ ^ means a continuous embedding of topological vector spaces
S, ̂ . Tlie spaces B^. are Banacli si)<ic(\s wliicli for 1 < p < oo contain P
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as a dense subset. In this case the dual (Bp^.)' of B .̂ is (isometrically)
isomorphic to By/^./, where

l / p + l / j / = = l , ^(0 := 1/A;(-0 .

Any continuous linear form on B .̂ is given by continuous extension of
a form y? i-̂  (v,^), defined for y C T> with v € B^./. The norm of this
functional equals |H|,/,^ ([H2], 10.1.14). Let

B .̂ :== {u € P' | ̂  • u € B^A:, ^ 6 P}

denote the local space associated with Bp^.. This is a Frechet space with
the system of seminorms u t-> \\ip - u\\p^, ̂  € V.

In tlie following we shall consider certain subspaces of B10^. :

2.2. DEFINITION. — Let a : [0, oo) -^ R be a C^-function satisfying
lim a(p) = 4-00 and cr^ is bounded for all j >.!.

/)^+CO

Further let a(x) := exp((7([rc,^])--/l + [x,x]), x € R". For 1 <, p <, oo
and k € /C we consider the distribution spaces

B^ ̂  {u/a | ̂  e B^,} ; B,7; : = { a ' v \ v e B,,,,} .

Obviously these are Banach spaces with the norms

i) ii-"/^n^ == II«HM
2)ll^•^ll,7J==lhllM•

Remarks.

(i) Since <r, I/or 6 C00^) we have B^J C B ,̂ by [H2], 10.1.23.

(ii) It is our intention to keep the spaces B~^ as small as possible.
Tills can be achieved by letting the function cr tend to +00 very slowly.

For example, choose (TQ € ^^(IR) with cro(p) = ^ ' ~ and put
00

cr(p) := ^.o'o(p/ttj — uj), where the sequence (ay) tends to -f-oo very
^=i

fast (e.g. ai := 2, Oj+i := aj').

2.3. LEMMA. — Let 1 < p < oo, k e 1C and a as in Definition 2.2.
Then we have

(2-1) B^ - B .̂ .
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Proof. — Let ^ € T> and v € B^ arbitrary. Since ^ ' a eV CS it
follows from [H2], 10.1.15 that

11̂  • v\\p.k = ||̂  • a . ̂ /(7||^ ^ J<|h/<7||^ = K\\v\\^ ,
with Jf < oo depending only on or, fe and ^. Since the topology of B10^ is
given by the seminorms v ̂  \\^ • v\\p^ the proof is complete. D

The same proof shows that if o-i, 0-2 are such that ai/a^ € <? (e.g. if
limsupcri(p) -- a^(p) < 0) then B^1 ̂  B~?.

p—*oo ' •

2.4. Remade.— Let Q € Pol'(n,m) be fixed and II C E(Q) a
compact set. By Theorem 1.2 there is a bounded measurable function
rj: R" -> R71 such that

P(-O < A|P(-$ - ̂ (0)|: p e n, $ € R71, ^ c T1 .
Using this we can for every P e 11 define a distribution fp € V through

(2.2) (fp^) := (2.)- / / ^+zri^1^^: ^P.
^R" ^€TI ^(-$ - ̂ (0) 27TZ^

This type of formula has been introduced by L. Hormander. Similarly as
in [T2] we could now show that fp is an analytic function of P € II with
values in B"- and fp is a fundamental solution of P(D) for each P. (In

fact, fp takes its values in the smaller space B*^ defined below, where
oo, Q

ff1 = (7?)-) We shall not do so since it is our aim to prove a more general
result (Theorem 3.1 below). However, formula (2.2) serves as a motivation
for the following

2.5. DEFINITION. — In order to simplify notations we introduce the
measure \dz\ := \dz^\' - ' \dzr\ on the torus T7' (r € N). Let 1 < p <, oo,
k e 1C and If = (^)^i : R7' —> (R^' a bounded measurable function.
For any (p 6 V we set

IMÎ  := ((270—— f [ |A:(0^+^r($,^))|^|^|^)l/p(p<oo),
«/R" JT1 ' /

r

where Hr(^z):=^z^rJ^),
6=1

M^k ''= sup{|^($)^ + Jr($, z))\ K € R", z € T^ .

The theorem of Paley-Wiener-Schwartz ([HI], §7.3) ensures that
|M|̂ . is finite for each ^ € P. Obviously, (P, || . ||̂ ) is a normed space.
Its "dual space",
B;̂ , := {v € B ,̂, | IMI;̂ , := sup{|(v, ̂ 1/IMI^; | 0 + y € P} < 00}
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will be endowed with the norm || • ||*^./. Here j / : = l i f p = oo.

The reason why we have introduced the space Bj~^ is that it contains
each B*^', yet it is small enough to give quite precise information on the
growth at infinity of solutions of the equation P(Z))fp = 6 when P runs
through E(Q) and fp depends analytically on P (cf. the remark at the end
of[M]).

2.6. LEMMA. — Let H^ = (?^)^t as in Definition 2.5. With
H1 := (ijsYs=i we t^en have
(2.3) lM|p,, < Ml̂ ; < |K71 : ^ € P ,

hence
/O ,1 \ •0 r v "D*^* r ^ •O*^''1'1(2-4) "p',̂  c-* "p',̂  ̂  B^,^•' •

Proof. — By Cauchy's formula and the Holder inequality we have,
it p < oo,

l^+Tr^))!^ { |^4-^r+l($,^))|pl^-d ,
^2r+l€Tl Z7r

where z = (^,^-n). Inserting this in the definition of ||< |̂|̂  yields the
second inequality in (2.3). In the case p = oo we can argue similarly using
the maximum principle. Choosing H° = 0 we also get ||(^||p,A; = IMI^L. <:
\\^\\H[.. The embedding (2.4) is a direct consequence of these estimates. D

2.7. LEMMA. — Let a as in Definition 2.2 and H1^ as in Definition
2.5. Then there exists a constant K < oo such that
(2.5) |M|̂ , < A'lHÎ  : ^ € 'D .

Proof. — Let / ? := !+ sup{(AT(^ z)\^ | $ € R", z € T7'}. For any
(^ G T> and fixed $ e R", z € T we have

|̂  + ^•($, z))f ^ (j^)" y ^ |̂  4- /OI^I^CI if p < oo .

This implies

dMO" ^ 7^7 /' /' W • ̂  + ̂ )l"l^l ̂
lz7^/ ^R" ^T"

(2.6) = (fT / (27r)-» /' m.exp^K.W^W IrfCI
\27T/ JT" ^R"

= (^)"/^(l|exp(-iK,-])y|lM)" Kl •
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Now consider the functions

^(x) := exp(-i[p^x])/a(x) : C € T1 .

It is not hard to check that {<^} is a bounded subset of<?. With the weight
function Mk € 1C (cf. [H2], §10.1),

Af,(0:= sup fc($+^)A(0: ^R71,
^€R"

we have 5 <-^ BI,A^ ([H2], 10.1.7), hence

sup^Jli^JCeT^^^oo.
It follows from [H2], 10.1.15 that

sup{||$c • V;||p,, | C € T71} < W||p,, : ^ € P .

From (2.6) we thus obtain with '0 = a ' y.

M^'k ^ ((^T / .(^<•a•^k)pw)l/F ̂  KPn\\a•lP\\^ = ̂ 'IMÎ  •
The case p = oo can be treated analoguously. D

2.8. COROLLARY. — Under the assumptions of Lemma 2.7 the
mapping v ^ (v, •} identifies B .̂, isometrically with the dual of the
normed space (P, || • ||̂ .). In particular, B^, is complete. Furthermore
we have

(2-7) B ;̂ ̂  B^. .

Proof. — Clearly, v ̂  { v , ' } defines an isometric embedding of B*/^.,
into (P, || • 11^.)'. We have to show that it is onto. So let £ be a continuous
linear form on (P, || • ||̂ .). By Lemma 2.7 we have

(2.8) \(S/a^}\ < \\£\\ ||̂ /a||̂ : < K\\£\\ |H|,,, :. ^ € P .

If p < oo then ' B p ' ^ 1 is the dual space ofBp^., so t € B,^., C B .̂,. Hence
£ e B^ and ||̂ ||̂ ,, = ||^j|,/,,/ ^ A-||̂ ||;̂  by (2.8).'

In the case p = oo we can analoguously derive (2.8) with a replaced
by (T\(p) := a(p) — 1. Since S «—> Boo,fc the functional ^i := t/ai can be
extended such that |(^i,^)| < K\\t\\ ||^||oo,A; holds for all ^ € S. Hence
i\ G <?' and the Fourier transform of t\ is a continuous linear form on S
equipped with the norm sup |fc(—^)^(^)|. But then (^i,<^) = / (p(^)dp,(^)

^
with a measure dp, in R" of total mass J \dfi(^)\/k(—^) < oo. Noting that
r := (7i/or e 5 we obtain ^/cr == r^i € 5' and (^/o^ = (27^)-nf*d/A which
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is a (^-function satisfying ; |Wa)A($)|/A;(-0 ̂  < oo, i.e. (^) e Bi,^.
As in the case p < oo we conclude that i € B^ and |K||i"^ :< J^'H^K^;'
by the closed graph theorem. ' ' ' Q

Now we shall investigate how a differential operator with constant
coefficients acts in the spaces B^' (1 <, q <, oo, .k e 1C). If P(x) =
^ a^ is a polynomial in x € R" we consider the differential expression

\a\<m

P(D):= ^ a ^ ^ e r e D ^ - i f 0 . . . 9 ) .
|a|<m v^a-'l ^"/

2.9. PROPOSITION. — Let P,Q € Pol'(7i,m) with P < Q and
Hr = (^)S=i as in Definition 2.5. Then the operator P(D) maps B* '̂-
continuously into B*^'.Y)"'

Proof. — Let p :=J>up{|AT($,,z)|o<, | ̂  € R",^ 6 V} and $ € R»,
2 € T'" fixed. With C := ̂ (^ z) we have for any y e P:

1(^)'(0 • (^-D)^ + C)| = \(kQ)'(Q . P(-$ - C). <3($ + <)|

^IW)'(^)-P(-$,/3) •<?($+01

<(l+p)"l^lA;'(o•^+<)l•

P(—^)Since sup „ < oo we obtain
$€R" Q(-0

(2.9) ||P(-Z))y,||^^^ ^ A-||y||^ : y e P .

Now, i f v € B^^ C B 1 - it follows from [H2], 10.1.22 that P(D)v € B^.
Furthermore, (2.9) implies that

|(P(Z5)^)| = \{v,P(-D)y)\ ̂  ll̂ llSll̂ -̂ MÎ ,̂

^ ^II^I^Sll^ll^'

for any y e 'P. In particular this means that P(D)v € B*^' and

11^(£')^11 '̂ <. KM^y . D

2.10. PROPOSITION. — Let P, Q e Pol'(7i,m) ivith P ~ Q,
Hr = (i1s}'s=i as in Definition 2.5 and p := sup^.H''-1^,,?'))^ | ̂  e R",
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z' € T7'"1} (p := 0 ifr = 1,). Assume that with some constant A> 0 we
have

P(-0<A|P(^-C-^,(0)|: ^R^CeBc"^), ^ € T 1 .

TAen the operator P(D) : B* '̂- —^ B^ is surjective.

Proof. — Since <?(-0 ^ BP(-$) the assumption implies that

(2.10) \\P(-DM^^ ^ (AB)-1 |M|̂  : y e V .

Now let w e B^ be given. Then by (2.10) the mapping
P(-D)y——(w,^)

is a well-defined continuous linear form on the subspace P(—D)V of
E := (T>, || • \\Hr,^,)' By the Hahn-Banach theorem there exists a conti-
nuous extension v of this form to the whole of E and Corollary 2.8 implies
that v € B*^1-. Finally it is clear that

q,kQ

{P(D)v, ̂ ) = {v, P(-D)^} = (w, ̂ : y e r>,
i.e. P(D)v = w . D

3. Parameter depending differential operators.

We come back to the main topic of this article. Let Q € Pol^y^m)
be fixed. Consider a family of differential operators

(3.1) P(A,J9)= ^ a,(A)^,
\a\<^m

where the coefficients da (constant with respect to x) are analytic functions
of a parameter A varying in a complex manifold A. The only assumption
we make is that for each value of A the polynomial P(A, •) is equally strong
as Q. Denoting by {^i , . . . , Ry} any fixed basis of the vector space W(Q)
we can write

v
(3.2) P(X,D)=^b^\)R^(D)

^=1
with analytic functions b^ : A —> C. Recall (1.1 (iii)) that the set E(Q) is a
holomorphically convex open submanifold of W(Q). Hence we may take in
(3.2) A = E(Q) and {&^} as the coordinate functions of P with respect to
the basis {R^}.
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It £ is a locally convex vector space we denote by 7^(A, £) the set of all
analytic functions e : A -+ £. Further let a € C°°[0, oo) be any fixed weight
function as in Definition 2.2. Recall that B^ ^ B .̂ for 1 <, q < oo,
k e 1C.

3.1. THEOREM. — Let 1 < q < oo and k € 1C. Assume that A is a
Stein manifold. Then for any Q € 7<(A,B<^) there exists f € ^(A.B"^)

g,fcQ
such that

(i) P(A, .D)f (A)=o(A) , A € A ;

(ii) J l (P)f€^(A,BJ)foraj iy^€W(Q).

In the following corollaries we do not make any assumptions concer-
ning A :

3.2 COROLLARY. — Let 1 <, q < oo and k € 1C. Then for any
Oo e Bq^ there exists f € T^A^"^) sucA that P(A,D)f(A) = oo, and

qr,A;Q
3.1 (ii) holds.

Proof. — By our above remark we may take P itself as a parameter
varying in the Stein manifold E(Q). Theorem 3.1 yields a function f €
n(E(Q),B~<T^) such that P(D)](P) = go, P € E(Q). Since the mapping

q,kQ
A »—> p(A) := P(A, •) is analytic with values in E(Q) we have f := f o p e
W(A, B--) and P(A, P)f(A) = 00 . 0

<y,fcQ

By 6 we denote the Dirac distribution at 0, (<5,<^) := <^(0). The next
corollary answers a question of L. Hormander ([H2], p. 59) :

3.3. COROLLARY. — There exists f € ^(A^"^) such that
oo,0

P(A,P)f(A) = <?, and 3.1 (ii) Aoids wi^A ^ = oo, k = 1.

Proof. — This is a special case of Corollary 3.2 since with k = 1 we
have 6 = QQ € Boo,fc • D

3.4. Remark. — If A is an open subset of Rd (or a real analytic
manifold) then the analogues of Theorem 3.1 and its corollaries hold with
^analytic" replaced by "real analytic".

Proof. — By a result of Grauert [G] there exists a neighborhood
basis of A in Cd consisting of holomorphically convex open sets. Using this
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the real analytic case can be reduced to the analytic one (cf. [M]). D

It remains to prove Theorem 3.1. If 5, (& are Banach spaces we denote
by £(5, ̂ ) the space of all bounded linear operators from 5 to (^ equipped
with the operator norm topology. In the proof of 3.1 we shall make use of
the following result of J. Loiterer [L].

3.5. THEOREM. - Let 5, <S5 be Banach spaces and A a complex
Stein manifold. Let T e M(A,£(5,^)) such that T(A)5 = 0 for each
A € A. Then

(a) There exists for each function Q € 7^(A, ̂ ) a function f € 7<(A, 5)
sudi that ^W^X) = g(A), A € A.

(b) For any open subset A1 of A Jet A/"(A') := { f € 7<(A',5) |
3(A) f (A) = 0}. JfA' is holomorphically convex then the set ^V(A)|A' of
restrictions to A' of functions in •A/'(A) is dense in A^A').

Proof of Theorem 3.1. — Let {Ar}r€N be an exhausting sequence of
open submanifolds of A such that each Ay- is holomorphically convex, \r is
compact and \r ^ Ar+i. For each r 6 N we inductively choose a bounded
measurable function Jf7' = (^5)^=1 : R" —^ (R71)7' in the following way : set
pr := sup^Ar-1^,^)!^ I $ € W\z' € T7'-1} (pi := 0). Then by Theorem
1.2 there exist Ar > 1 and a bounded measurable function rfr '- R71 —^ R"
such that for all A € A,., $ e R", < € Bc»(pr), ^r € T1 we have

(3.3) P(A, -0 ^ A,|P(A, ̂  - C - ZrrfrW)\ .
Thus, JT' is denned for each r € N. Now consider the spaces

^^S?'®'-^1^ r € N -
By (2.1), (2.4) and (2.7) we have the embeddings
(3.4) 5,^^^5:=BJ^B^,

(3.5) B,,,. -. ̂  -. ^,+1 ̂  0 := B -̂J -. B .̂ .

Consider the representation (3.2) ofP(A, D). From Proposition 2.9 we know
that each R^(D) induces a bounded linear operator from Sr into ^r- Hence
the mapping A i-> P(A,D) is analytic with values in £(5r» ^r)- From (3.3)
and Proposition 2.10 we conclude that P(\,D)Sr = ^r tor each A € Ay<.
Furthermore, g € 7^(A,(3,,) by (3.5). It follows from part (a) of Theorem
3.5 that there exists for each r € N a function ]r € 7^(A^, Sr) ^ch that

P(A,Z))f ,(A)=o(A): A e A , .
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We construct a sequence of functions fr € 7Y(A^, Sr) as follows. Put fi := fi
and assume that f i , . . . , ̂  are already defined. Consider then

^r+l(A) := fr+l(A) ~ fr(A) : A € A^ .

By (3.4) we have ^4.1 € H(Ar, Sr-^i) and we may assume inductively that

P(A,£%,+i(A)=0: XeAr .
By part (b) of Theorem 3.5 there exists for arbitrary e^+i > 0 a function
^r+i € ^(A^-n, Sr+i) with the properties
P(A,D)c,+i(A) = 0 : A e A,+i ; sup || î(A) - c^i(A)||^ ^ ̂  ,

AeA,._i
where for convenience we put Ao := 0. Since ffy,+i ^ 5, e^ ^ e
and the operators R^(D) : Sr+i —— ^r+i (/i = 1,...,^) are continuous
(Proposition 2.9) one can choose £v+i so small that

sup IhWA^-c^A)^^^,
A€Ar-l

sup \\R^,(D)(6r+lW-c,+lW)\\e^2-r•. fi=l,...,v.
A€A,._i

With this choice of Cr+i we set

ir+lW:=]r+lW-Cr+l(\): \ € A,-+l .

We obtain a sequence of functions f,. € 'H(Ar,'Sr) C 'H(Ar,'5) with the
properties
(^ P(A,£»)f,(A)=g(A): A 6 A,,

(3-7) sup ([^(A)-^)!!^^^-'-,
ACA,.-!

(3.8) sup ||^(£')(f,.+l(A)-f,(A))||^<2-r: ^=1,...,,,.
A€A,._I

By (3.7) the limit
f(A) := lim f,(A)

r—oo '

exists in 5 for each A € A, and f (=7<(A, 5). Since {R^} is a basis of W(Q)
we conclude from (3.8) that R(D)f € H(A, e) for anyfi € W(Q). Finally it
is clear by (3.6) that P(A, ̂ )f(A) = g(A) since for fixed A € A the sequence
{f r (A)} converges in B 1 - and the operator P( A, D) : B10^ _> B10? is
continuous ([H2], 10.1.22). The proof is complete. Q1kQ q1 Q
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