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PARTIAL DIFFERENTIAL OPERATORS
DEPENDING ANALYTICALLY ON A PARAMETER

by Frank MANTLIK

0. Introduction.

Consider a linear differential operator in R™ |

P(\,D)= Y a,(A)D*:D=-id, 8= (

laj<m

a 6),

oz’ "’ Oz,

where the coefficients a,(A) — constant with respect to the variable of
differentiation x — may depend analytically on a parameter A in a complex
manifold A. We assume that P(]), D) is equally strong for each A € A.

In [H2], p. 59 L. Hérmander posed the question whether under these
conditions there exists a fundamental solution f of P(A, D) which depends
analytically on A. In 1962 F. Treves [T2] had shown that this is true locally
in A and that the assumption of constant strength is necessary for this
to hold [T1]. Recently the author could construct a global solution in the
hypoelliptic case [M]. The proof of this result based on the fact that for
each compact subset A’ of A there exists an integration contour in C”* which
yields fundamental solutions of P(A, D) simultaneously for all A € A’. In a
second step we could apply a theorem of J. Leiterer [L] to obtain a global
solution fy by means of a Mittag-Lefller procedure.

The aim of the present paper is to eliminate the assumption of
hypoellipticity. In section 1 we show that also in the general case one can

Key-words : Linear differential operators — Fundamental solutions — Analytic parameter-
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always find a uniform integration contour Hy: for all A in a compact subset
A’ of A. As a consequence we obtain an explicit formula for §) : A € A’
Our proof uses some ideas of Hormander [H2] concerning asymptotic
properties of multivariate polynomials. The rest of this article is essentially
an adaptation of the methods of [M] : in section 2 certain distribution spaces
are introduced by means of the contours Hj/. These spaces constitute the
setting for our application of the Leiterer theorem [L]. Section 3 contains
the statements and proofs of our main results. We consider the equation
P()\,D)f\ = g where g, is a given analytic function of A with values in
some distribution space and prove the existence of a solution f) which
also depends analytically. on A. In the special case gy = 6 (the Dirac
distribution) we obtain a solution to the problem described above.

1. Construction of a uniform integration contour.

We begin by fixing some notations : for any n,m € N let
Pol(n,m) := {P € C[z1,...,2,) | deg P < m};
Pol'(n,m) := {P € Pol(n,m) | deg P = m} .
If P,Q € C[zy,...,T,] then we write k
6p(€) = dist(,{C € €™ | P(() = 0}): €€ Cmy
P, t) =Y tll[P@g)]: cec, t>0,
where |a| := zn:aj and P(®) := 5"‘P;
j=1
P(g) := P&, 1);
P <Q: <> sup{P(¢)/Q(€) | € € R"} < oo;
P~W:< P<QAQ<P;
W(Q) := {P € C[z1,...,z,] | P < Q};
E(Q):={P €C[z1,...,z,] | P~ Q} .

1.1. Remarks.
(i) Note that our definition of P(¢,¢) differs from that of Hrmander
~ 1/2
[H2], §10.4, who used the notation P(£,t) := (Z t2|°‘||P("‘)(§)|2) .
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According to [H2], 10.4.3 we have

P <Q < sup{P(1)/Q(¢,t) | €R™ t>1} < oo
In this case we say that P is weaker than Q. If P ~ @ then we say that P
and @ are equally strong.

(ii) P < Q = degP < degQ. This is clear by definition of P. In
particular, W(Q) is a finite-dimensional complex vector space (consequence
of [H2], 10.4.1).

(iii) E(Q) is a linearly convex, open subset of W(Q) ([H2], 10.4.7).
For our purposes it suffices to know that E(Q) is holomorphically convex
(cf. [M]).

We assume the integers n, m to be fixed throughout this paper. The
letters ¢, C denote positive constants which only depend on n and m. We
use the notations

1€1:= D161, [€loo = maxlggl: &= (En,--. 60) €C™
For K=R,C and p >0 let
B (p) :={§ €K™ | [€]oo < p} .
In the case p = 1 we simply write Bk~ . Further let
T :={z€C||a|=--=]|z|=1} if reN.

1.2. THEOREM. — Let Q € Pol'(n,m), II C E(Q) be a compact set
and p > 0. Then there exists A > 1 and a bounded measurable function
7 : R"™ — R" such that

(1.1) P(&) < AIP(E+(+2n(€))|: PEILEER™(E€Bcn(p), z€ T .

Our proof of this theorem is long and will occupy the rest of this
section. First it requires a detailed study of the function P(¢,t) :

1.3. LEMMA. — Let Q € Pol'(n,m) and II C E(Q) be compact.
Then there exists B > 1 such that

(12)  BT'<P(t)/QEt)<B: PelIl, E€R™ t>1.

Proof. — By 1.1 (i) the expression No(P) := sup{ﬁ({,t)/é(f,t) |
£ € R", t > 1} defines a norm on W(Q). Now let R € II be fixed. Since
@ < R we have

br = inf{R(¢,8)/Q(€,t) | EER™, £ >1} > 0.
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For any P € wp := {P € W(Q) | No(R — P) < br/2} we get
P&,t) | REt) - (R-P)~(&.1)
Q&) Q1)

Since wy is an open neighborhood of R it follows from the compactness of

II that there exists by > 0 with

P(&,t) > b0Q(E,t): Pell, EeR™, t>1.
On the other hand the boundedness of II implies that
By :=sup{Ng(P) | PeIl} < 00,

>bp/2: £€Rt>1.

hence N N
P(f,t)SB()Q({,t) PGH,{GR", t>1.

With B := max{1/by, By} the assertion follows . 0

1.4. LEMMA (cf. [H2], 11.1.4). — There exists C > 1 such that for
any P € Pol'(n,m) the following holds : -

(1.3) [P (©)|8p (&)™ < CIPE)]: €€C™, aj<m.

(14) €' <6p(8) Y _IP©/PE)V<C: gecC, PE)#0.
a#0

(1.5) |P(€)] < P(€,6p(€)) < CIP(E)]: EeC.

Proof. — (1.4) is due to Hormander [H2], 11.1.4. (1.5) is a conse-
quence of (1.3) which follows from (1.4). (m]

1.5. LEMMA (cf. [H2], 11.1.9). — There exists ¢ > 0 such that for
any P,Q € Pol'(n,m) and £ € C"* we have : if
(1.6) BT < P(61)/QEt) < B: t2>1
holds with some B > 1 then
2
¢ _146p(6) 1+B

(17) 1+B2 = 1+6(€) = ¢

Proof. — 1If (&) > 1 then
6)

3 1P ()]dq(6) e BY Q' (&)8©)"!

"2 o)< e Y 1P
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When 6o (€) > 2C, B? =: D (hence %6Q(£)"’| < bg(e)lel - % a #0) this
yields
Y IP()[8g(e)*! < DIP(§)] -

In particular then P(£) # 0 and
|P(€)/P()|/1*16p(€) < DEp(€)/6q(E): a#0.

Summing up we get

CaB26p(6)/50(€) 2 80(&) T IP@ (/PO '3 5t
a#0
hence

1+ 6p(€) | 16p(8)

1+4+6(8) = 26¢(¢)

In the case 6¢(§) < D we have
1+6p(8) 1

14+60(¢) = 1+2C,B2°

With suitable ¢ > 0 we obtain the lefthand side of (1.7). The second
inequality follows from this one by interchanging the roles of P and Q. O

> (2C2C3B*)™" if 6g(€) 2 D .

1.6. LEMMA (cf. [H2], 10.4.2). — There exists C > 1 such that for
any P € Pol(n,m), £ € C* and 7 >0 :

(1.8) C~'P(£, ) < max{|P(€ + )| | n € B (1)} < CP(€,7) ;

(1.9) C~'r < max{6p(& + 1) | n € B~ (1)} if P is nouconstant .
This holds for K =R and K = C.

Proof. - - Assertion (1.8) corresponds to [H2], 10.4.2. (Our use of the
(y-norm in the definition of P(&,t) only results in a change of the constants.)

Ad (1.9) : first we note that for 7 > 0 and 5 € Bk« (7),

|PCE+m)] <D [Pt < rlel P, 1)
3
by Taylor’s formula. As a consequence we have the estimate
(1.10) 13(£+1),T) <C 13(5,7') : PePol(n,m),£€C™,neBcn (1),
which will be used later. By (1.8) there exists for fixed £ € C* and 7 > 0
an 1 € Bk« (1) such that

P(&,7) < Co| P(E + )] -
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In particular then P(¢ +7) # 0 and
D IPOE+n) P+ttt 3 (Corrlehtiel < ggrt

a#0 1<aj<m

From (1.4) it follows that 6p(€ + ) > C; 7, hence the assertion. O

Now we can already prove a preliminary version of Theorem 1.2 :

1.7. COROLLARY. — Let Q € Pol'(n,m) and I C E(Q) compact.
Then there exist A, p > 1 such that

(1.11) Vr>p, E€R* IpeBr.(r) VP €11 : P(£,7) < A|P(£ +1)| .

Proof. — By Lemma 1.3 there exists B > 1 such that
B 1< P(£,1)/Q(6,t) <B: Pell, £€R™, t>1.
With A; := (1 + B?)/c > 1 we get from (1.7),
ATY(1460(€) <1+6p(6): PeT, E€R™.
By (1.9) we have
(1.12) max{6gC¢+1n) |n €Br- (1)} > Cylr: €€R™, 7>0.
Choose A, > 1 with Cy' — A; /A2 > 0 and put
p = max{1, (4, — 1)/(Cq" = A1/42)} .

If r > pthen (14+Cy'7)/A; > 1+7/A;. For such a T and arbitrary £ € R™
we may now choose 7 € Bg~ (7) with §Q(§+77) > Cy'7 according to (1.12).
For any P € II we then obtain

1+68p(E+m) > AT (A +6(E+m) > AT 1+ Cy'r) > 1+ 7/42
ie. 7 < A26p(€ +n). Because of (1.5) this yields
P(€ +1,7) < P(€ +1,A26p(€ + 1)) < AFP(E +1,6p(€ +1))

< As|P(§ + )l
Finally, replacing in (1.10) 5 by —# and £ by £ + 7, we obtain
P(¢,7) < C1P(E+7,7) < C1As|P(§+7)|: Pell. o

For any R € C[zy,...,z,) and k € Ny we put
(2:R)(€) = 3 ROOF (),

|la|=k
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where R is obtained from R by taking complex conjugates of the coeffi-
cients. Note that ®;R € R[zy,...,z,] and (2xR)(£) > 0 for £ € R*. With
the notation

(TLR)(€) == Y |R™(&)]

|la|=k
we have .
=) t*(%R)(¢): RePol(n,m).
1.8. LEMMA. — There exists C > 1 such that for any P €

Pol(n,m), k € Ng, { €ER® and t > 0 :

(113)  C@PY (61 < (L P HHP)O) < C@PY (61 -
i=k

Proof. — First we have by (1.8) (note that ®,P € Pol(n,2m)),

(1.14)  CTH(@P)~(61) < Jnax (8.P)(§ +tn) < C1(2xP)™(4,0)

and

Cit Y (PO < Y max [P+t < C1 Y (POY(E,1) .

|a|=k la|=k |la|=k

Furthermore an easy calculation shows that

Ot S (PO () S S ETHIPNO S Cr Y (PO (6 1)

la]=Fk Jj=k la|=k
hence
Ci' Y THWP)(E) < D7 max [P+ )]
(1.15) =k lal=k
<Csy 7T P)(E) .
=k

Now let M(n,k) = {a € N? | || = k}. Obviously the expressions
1/2
((R )aeM nk) (neBnn Z Ra ) )

NZ((RQ)QEM(n,k)) = Z ,Iéléi.x |R (77)|
|la|=k
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define norms on the finite-dimensional vector space Pol(n, m)M("™*) hence
they are equivalent. On replacing R,(n) by P(®) (£ + tn) we get

1/2
ot I:'V:: max |P)(€ +tn)] < (nlen!;)i(n (2:P)(€ + t"7))

<Ci 3o max PO+t

|a|=k
With (1.14) and (1.15) we obtain the assertion. O
1.9. LEMMA. — There exist 0 < ¢ < 1 < C such that for any

P,Q € Pol'(n,m) and & € R" the following holds : let 0 < k < m — 1 and
B > 1 with

m

(116) B < (¢ H(%P)©)/ (L0 w,Q©) <B: t21.
ji=k j=k

v 1)/C > 1. Then we have with

Further let v > 1 such that v := (1+_B4 -1)

Cl+v)(1+BY):

(1) (TQ)©) = > v ™*(E,;Q)(€) = (WP)(&) > Z o I7H (T, P)(¢),

j=k+1 j=k+1
(i) (TQO < Y. ¥ HT,Q)(E) = (WP Y. #+(T;P)(e).
j=kt+1 J=kt1

Proof.

(i) Let v>1 with (2,Q)(&) > > v/ 7*(¥;Q)(€). Then we have
j=k+1
Q@) < v=1=P(@,Q)(¢) < Cw I /(2,Q)(€) : la| 2 k.
This implies by Leibniz’ rule,
@@©i=1 X ¥ (2)eea o)
|lal=k <8
< Cor™PI(24,Q)(8)
for any multiindex 8 (C, > 1). In particular then (®,Q)(&) # 0 and
[(2:@)P(©)/ (@O < Cov™' = B#0.
An application of (1.4) yields

C5! < 6a,(8) D (@)D (&)/(B1Q) ()P < Cyv~" 64, (€) -
B#0
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By (1.13) and (1.16) we also have
(CsB?)™! < (8,P)~(£,8)/(21Q)~ (&) < CsB*: t>1.
Using (1.7) we obtain

1+ba,p(6) , 1+bap§) , _ a
1+C;1C;w = 1+ 6,0(€) = 1+C2BY
a(l+C7'Cily) cov -
> -12> -1=
ba,P(§) 2 1 +C§B4 12 1+ B4 1 Y

with 0 < ¢; < 1. Let v be so large that # > 1 . Then

@P)E) 'S ' (BuP)™ (€, b, p()) > C (BcP)™ (€, 7)
(1.13)

2 o1 (354w, P)e)’

=k
with C7 > 1, hence

(2:P)(€) 2 V(@P)(E) 2 672> o k(2 P)(€)
i=k

> ) (#/CrY (TP

J=k+1
With ¢ := ¢, C > C7 we obtain the first assertion.

m

(i) Now assume that (¥,Q)(¢) < Z v I7k(W;Q)(¢). If then

Jj=k+1

(ZLP)(€) 2 %,‘”‘”“’f”"“ and ji:= 12 —121

with some p > 1 we obtain as above (on interchanging the roles of P and
m

Q) : (L@ > D (/Cr)"~*(2;Q)(€), hence

j=k+1
S @/CTTRHE;Q)NE) < Y v ITHE;Q)(E) -
j=k+1 J=k+1

This implies /C7 < v, i.e.
p<(1+Cw)(1+BY)/c; <Cr(14+v)(1+ BY)/cy .

Thus, with C := C7/cs the second assertion also holds. O
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Proof of Theorem 1.2. — The subsequent procedure will yield a de-
composition of £ := R™ into m+1 disjoint subsets, Qo = QLUQU---UN,,,
such that the following holds :

JA>1Vk=0,...,m 37, > 1 V¢ € Q, I € Bre (1)
1 ~
(1%) |P(€+2me)| 2 57 P(67): PET, z€Th.

Now note that the set
I, :={P(-+() | P€Il, (€Bc-(p+1)}
is a compact subset of E(Q) since for fixed ¢ the polynomial P(- + () is
equally strong as P. So we may assume that (1°),...,(1™) is already proved
for IT, instead of II. It follows that for any ¥ € Z™ there exists 7y € Brx (7),
where 7 := max{7,...,Tn}, such that if |{ — 9|, < 1 we have for each
Pell,(€Bc.(p)and 2 € T! :

1 ~ (110 1 -
P+ C+2m)| = [P+ 210+ (€= 0+ O) 2 53 P0) 2 5-—P(6).

In particular we may choose 1(§) = 9y in any cube {£ | 9; < & < 9; + 1},
where 9;,...,9, are integers, such that (1.1) holds and sup |79({)|e < 7.
4

This completes the proof. The sets 2}, will be defined inductively as follows :

= e U (TQ)E© > Y v @O (0<k<m—1)

j=k+1
with suitable constants v, > 1, and

Qg1 == U N Q3 Q=D

m

In what follows the statements (2¥) (0 < k& < m) will be needed :
dB, > 1VPell, E€ Y, t2>1 :
(2*)

m

Bt < (Y 67HE;P)©)/ (itf—’*(w)(s)) < By .

With the constants ¢,C in Lemma 1.9 we set

N CUj .
Uy = (TBf - 1)/0 and ¥y :=C(1+w)(1+ B}) .

Then for each 0 < k < m — 1 we have by (2¥) and Lemma 1.9, if 7, > 1,

m

(3%) (BP)E) > Y. 9)7M(¥;P)¢): Pell, g€,
Jj=k+1
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m

4 (mPYO < Y Y P)E): Pell, €€ Wy .
J=k+1

Now the proof of (1¥), (2*) proceeds by induction on k. Recall that by
Corollary 1.7 there exist 4, p > 1 such that
(5)  Vr>p, E€R" Iy eBg, (1) VP eIl : P(E,7) < AIP(E+1)| .

Without loss of generality we may assume that Q € II.

Case k = 0. — Lemma 1.3 yields the existence of By satisfying (2°).
Choose vy > 1 such that &y > 1 and define ), ©; as above. Let 7y := &
and for any £ € Qf choose 7 := 0 € Bg, (7). We obtain

0 m

2|P(& + zn¢)| = 2L P)(E) 2 Y #(T;P)(€) = P(€,7)

Jj=0
for P eI, z € T!, i.e. (1°) is satisfied.

Case 1 < k < m. — The inductive assumption yields (28=1) and
(49),...,(4*"). Since Q. C Q_, this implies for£ € Oy, t >y :

m . m

(2Bk-1>-'th'-**<chz>(¢>5(213k_.)- > kD ;Q)(€)

Jj=k j=k—1
(,: ') 1

m

Z t/ =L, P)(€)

=k—1

( ll- l) m

< D THEP)E)

J=k
For 1 <t < w,_, this yields

n m

(2By_1)~ th F,0)(€ <Zw (T, P)(€)

m

< HTE Y ETHEP)(E) -
=k
Analogous estimates hold with P and @ interchanged. Setting By :=
2B, " 7" we obtain (2¥). Now let
ju = max{p, oy,..., -1} (1)
For PeIl,£€ Ny (j=0,....k=1), 7 > . it follows from (4/) :

m . . m

o< Y (B i < By rHiwe).

i=j+1 i=j+1
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Multiplying by 77 and summing up this yields (note that Q) C Q;41) :
k=1
©) S ri(EP)E) < ’“’“ Mkper): Pell, ce, r3u.

i=0

In the case £k < m — 1 we choose 71, v > 1 such that
~ - 2kﬂk 2Tk 1
(7) pe < <y, p o 224

and define Q},, Q41 as above. By (3*) (consequence of (2¥)) we have

m

®) > m(LP)E) < 5 (WP)E) < PEm): Pell €€,
J=k+1 ; d

Now let € € Q). be fixed and choose 7¢ € Bg« (7)) such that

(9) P(E,m) S AIP(E+ng)l: PeTl (cf. (5)) .

An application of Taylor’s formula gives for P €I, z € T! :

IPE+ 0l 2| Y a“) %] - LRGP
lal=k i#k
> Y B 23 ria,pyie)
J=0 J|a|=j i#k

U2 1Pl - 2{ 2 + 2 Biem)

9 _ 2k#k 27‘,‘

> v_ooee 2k

et {A T Vk }P(Ev‘rk)
(7)

= 2AP(£’T/-)

This yiclds (1%).

In the case k = m we choose 7,, > 1 such that

- 2mﬂm 1
< 1 _
(1()) i S Ty A T = 2A
Let £ € ), := Q,, be fixed and choose ¢ € Br«(7,,) such that
(11) P&, ) S AIP(E+me)|: PeIl (cf (5)) .

Using (6), (10) and (11) an analogous computation as above yields (1™) :
~1 2mypy,
Pt > {47 =222 (e ) > o B(6 ) PETLz € T

m
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2. Some distribution spaces.

We adopt the standard notations for spaces of test functions and
distributions (cf. [H1], [H2]) :

D =C>*(R™) — C°°-functions with compact support;
D' = D'(R") — space of all distributions;

S = S(R") -— space of rapidly decreasing C*-functions;
S’ = §'(R"™) - space of tempered distributions.

Recall that each of these spaces carries a natural locally convex vector space
topology. The scalar product of two vectors £, € C" will be denoted by
n

[£,¢] = Z €,C,. If p € S then the Fourier transform @ of ¢ is the function

v=I

p(¢) = / exp(—i[¢, ])p(x)de + ¢ €R" .
JRn
The Fourier transform @ of w € 8 is defined by the formula
(ﬁ‘? ‘p> = (“‘s@) : Y€ S ’
where (-, -) denotes the disbribution pairing. The following definitions and
results are taken from Hormander [H2], §10.1.
2.1. DEFINITION.

(a) A function k : R" — (0,00) will be called a temperate weight
function if there exist constants a,b > 0 such that

ME+C) < (1+ale])k(C): €& CER".
The sct of all such functions will be denoted by K.

(b) If k € K and 1 £ p £ 0o we denote by B, the set of all
distributions u € 8' such that @ is a function and

1/p
o = (27 [ @ricepa) ™ < oo

Inn the case p = oo this expression has to be interpreted as ess.sup [k(E)a(€)].
£ER”

By [H2], 10.1.7 we have
S o Bl,,[,- —— y

where § < 6 means a continuous embedding of topological vector spaces
§,®. The spaces B, are Banach spaces which for 1 < p < oo contain D
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as a dense subset. In this case the dual (B, )" of B, is (isometrically)
isomorphic to B,y 1/, where

UYp+1/p' =1, K(§):=1/k(-¢€) .

Any continuous linear form on B, is given by continuous extension of
a form ¢ — (v, ), defined for ¢ € D with v € B,y ». The norm of this
functional equals |[v||,y + ([H2], 10.1.14). Let

Blt :={ueD |y -ueB,y, ¥ €D}

denote the local space associated with B,, ;. This is a Fréchet space with
the system of seminorms u — ||¢ - ul|px, ¥ € D.

In the following we shall consider certain subspaces of B;f",: :

2.2. DEFINITION. — Let o : [0,00) — R be a C*°-function satisfying
lihl_l o(p) = +oo and ') is bounded for all j > 1.
N—1+00

Further let 6(z) := exp(o([z,z])-\/1+ [z,z]),z € R". For1 < p< o0
and k € K we consider the distribution spaces

B;f‘,: :={u/6 |u€Byi}; B [ :={d-v|veEBy}.

Obviously these are Banach spaces with the norms

1) ““/UI Pk ”u”p,k
2) ”0- U”pl\ ”’U”I’vk'
Remarks.

(i) Since 7, 1/6 € C*°(R™) we have Bi"r - B'°° by [H2], 10.1.23.

(ii) It is our intention to keep the spaces B_k as small as possible.
This can be achieved by letting the function o tend to +oo very slowly.

0, p<oO
For example, choose o9 € C®(R) with o¢(p) = {1’ Z; 1 and put
) = Zao(p/aj — aj), where the sequence (a;) tends to +oo very

fast (c.g. a1 :=2, aj4) = a;").

2.3. LEMMA. —— Let 1 < p< o0, k € K and o as in Definition 2.2.
Then we have

(2.1) B, 7 — By .
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Proof. — Let¢Y € Dand v € B’ arbitrary. Since -6 € DC S it
follows from [H2], 10.1.15 that

¥ vllpe =19 -6 - v/Gllpp < Kllv/6llpk = Kll0ll,% »

with K < oo depending only on &, k and ¥. Since the topology of B:,,"'j’c is
given by the seminorms v ~ ||4 - v||, » the proof is complete. o

The same proof shows that if o1, o2 are such that &,/52 € S (e.g. if
limsup o1 (p) — 02(p) < 0) then B 7' — B 7.
p—00

2.4. Remark. — Let Q € Pol'(n,m) be fixed and II C E(Q) a
compact set. By Theorem 1.2 there is a bounded measurable function
7 : R®™ — R™ such that

P(-§) S AIP(~¢ - an(€)|: Pell ¢€R", zeT!.
Using this we can for every P € II define a distribution fp € D’ through

pE+zn) dz .
D) (rpy=n [ FELTE i peD.

This type of formula has been introduced by L. Hérmander. Similarly as
in [T2] we could now show that fp is an analytic function of P € II with
values in B_”a and fp is a fundamental solution of P(D) for each P. (In

)

fact, fp takes its values in the smaller space B;Hlé defined below, where

= (n).) We shall not do so since it is our aim to prove a more general
result (Theorem 3.1 below). However, formula (2.2) serves as a motivation
for the following

2.5. DEFINITION. — In order to simplify notations we introduce the
measure |dz| := |dz|---|dz.| on the torus T" (r € N). Let 1 < p < o0,
k€ K and H" = (n,)t=, : R® — (R™)" a bounded measurable function.
For any ¢ € D we set

ot = (em [ [ @ate+ € )P 1d:l de) o < o0),
where F7(6,2) i= " 24 (6)
s=1

ol = sup{|k()(E + H"(¢,2))| | € €R™, 2 € T7}.

The theorem of Paley-Wiener-Schwartz ([H1], §7.3) ensures that
||<p||f,'b is finite for each ¢ € D. Obviously, (D, || - ||fk) is a normed space.
Its “dual space”,

B, = {v e B, | [ollis = sup{l(v, o)/} | 0 # ¢ € D} < oo}
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will be endowed with the norm || - || A Here p' :=1if p= o0.

The reason why we have introduced the space B;Z is that it contains
each B;‘,{ , yet it is small enough to give quite precise information on the
growth at infinity of solutions of the equation P(D)fp = § when P runs
through E(Q) and {p depends analytically on P (cf. the remark at the end
of [M]).

2.6. LEMMA. — Let H™' = (1,)'1! as in Definition 2.5. With
H" :=(1,)5_, we then have

7 r+1 ,
(2.3) lellps < Mol < llelly” : weD,
hence
(2.4) By v < B, < BT
Proof. — By Cauchy’s formula and the Hélder inequality we have,

if p < o0,

. ~ ~ ~ d

B+ e s [ jpe+ ezl

2z 41€T! 2w

where z = (2, 2,41). Inserting this in the definition of ||c,0||l’;’f;+l yields the
second inequality in (2.3). In the case p = co we can argue similarly using
the maximum principle. Choosing H° = 0 we also get |||, x = ”(\Ollp,;» <
llell o .- The embedding (2.4) is a direct consequence of these estimates. O

2.7. LEMMA. — Let o as in Definition 2.2 and H" as in Definition
2.5. Then there exists a constant K < oo such that
(2.5) el < Kllell}e: oeD.

Proof. — Let p:= 1+ sup{|[H"(£,2)|x | £ € R, z € T"}. For any
@ € D and fixed £ € R", z € T" we have

~ P\ n
B+ BN < (52)" [ 18t + nOrIaclif p < oo

This implies

(ellfay < o [ [ @) ot + ooiact ag
o = (g-;)” [ enr [ ke - exui=ilac, Do) P ldq
(5)" [ rest=itog, Dl 1acl
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Now consider the functions
& (z) := exp(—ilp¢, a])/6(z) :  CE€T™.

It is not hard to check that {®.} is a bounded subset of S. With the weight
function M}, € K (cf. [H2], §10.1),

M(¢) := Sup, k(E+E)/k(E): €€R™,

we have S — By . ([H2], 10.1.7), hence
sup{|[®¢lli,m, |(€ET"} ==K <00.
It follows from [H2], 10.1.15 that
sup{||®¢ - Yllpx | CE T} < K|[Yllpr: ¢ €D.
From (2.6) we thus obtain with ¢ =& - ¢:

P\ n . 1/p - -
ol < ((5)" [ Qecaelpuriac) ™ < Kelo-els = K'llel

The case p = oo can be treated analoguously. O

2.8. COROLLARY. — Under tbe assumptions of Lemma 2.7 the
wmapping v — (v,-) identifies B*, k, 1sometrica11y with the dual of the
normed space (D, || - ||p ). In partzcu]ar, B*, ‘& is complete. Furthermore
we have

(2.7) B}/, - B, .

v — (v, -) defines an isometric embedding of B;,f’,é}

into (D, || - | ",’k)' We have to show that it is onto. So let £ be a continuous
lincar form on (D, || - ||}). By Lemma 2.7 we have
(2.8) 1€/, 0) < Nlell e /3l gk < KNlell Nlgllpi:. 9 €D

If p < oo then B, 4+ is the dual space of B, , S0 e B, v k, Cc B;ﬁfk,. Hence
¢ € Byl and [|€]]% = 11¢/6 |y < K€l by (2. 8)

In the case p = oo we can analoguously derive (2.8) with o replaced
by o,(p) := o(p) — 1. Since S — B the functional ¢, := £/&; can be
extended such that |(¢;, )| < K||¢|| |¢llco,r holds for all ¢ € S. Hence
¢, € 8’ and the Fourier transform of ¢, is a continuous llnear form on S
cquipped with the norm sup |k(—&)@(€)|. But then Zl, = [p(¢)

1

with a measure dp in R" of total mass [ |du(€)|/k(—€) < oo. Noting that
T:=6,/F € S weobtain £/6 = 7-£, € S’ and (£/6)" = (2r)~"7*dp which
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is a C*-function satisfying [ |(£/5)"(€)|/k(—€) d€ < oo, i.e. (£/7) € By .

As in the case p < co we conclude that £ € B{f,g," and |47 % < K’I]éll{fé:v

by the closed graph theorem. O
Now we shall investigate how a differential operator with constant
coeflicients acts in the spaces B;f,f’ 1< qg<o.keK)IfPlz)=

Z aqo2z® is a polynomial in z € R™ we consider the differential expression
la]<m

P(D):= Z aoD® where D := (

|Ja|]<m

0 .2
Oz, 1 0z,/’

2.9. PROPOSITION. — Let P,Q € Pol'(n,m) with P < Q and
H" = (n,)t_, as in Definition 2.5. Then the operator P(D) maps B:}za

continuously into B;f,{r .
Proof. — Let p :=~sup{[f1'f’”(§,z)|oo | € € R",2 € T"} and £ € R™,
z € T" fixed. With ¢ := H"(§, z) we have for any ¢ € D:

[(kQ)'(€) - (P(=D)p)NE + Q)| = {(kQ)'(€) - P(—€ = ) - B(£ + C)]
< |(kQ)'(€) - P(=¢€,p) - B(€ + O]

<+ C 6’uc'os) BE+0) .

Q(-¢)
Since sup ,.(_5) < oo we obtain
¢er" Q(-8)
(2.9) IP(-D)ell " 5 < Klloll: oD
Now, ifv € B*’:Q c B'°“Q it follows from [H2], 10.1.22 that P(D)v € B%.
qa,k

Furthermore, (2.9) implies that
[(P(D)v, )| = [(v, P(-D)¢)| < lloll”} IIP( Dye| ™
Kllvll*”'~|l90|l PR

¢ (kQ)

for any ¢ € D. In particular this means that P(D)v € B* e " and

*H’ - «H"
IPOWIE < Kl o

2.10. PROPOSITION. — Let P, @ € Pol'(n,m) with P ~ Q,
H" = (ns)"_, as in Definition 2.5 and p := sup{|H""!(£,2')|» | £ € R",
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2 € T} (p:= 0 if r = 1). Assume that with some constant A > 0 we
have
P(=€) SAIP(=§ = ¢~ zme(§))]: € ER™(EBen(p), 2 € T .

Then the operator P(D) : B*’:% — B;T is surjective.
g.k ’

Proof. — Since Q(—¢) < BP(—¢) the assumption implies that

(2100 IP(-D)pl" 5, > (AB) el p€D.

Now let w € B}X" be given. Then by (2.10) the mapping
P(=D)yp — (w, ¢)

is a well-defined continuous linear form on the subspace P(—D)D of
E :=(D,] - H;{ r(k5)')' By the Hahn-Banach theorem there exists a conti-
nuous extension v of this form to the whole of E and Corollary 2.8 implies
that v € B;*:a Finally it is clear that

(P(D)v,¢) = (v, P(-D)p) = (w,p) : ¢€D,
ie. P(Dv=w. O

3. Parameter depending differential operators.

We come back to the main topic of this article. Let Q € Pol'(n,m)
be fixed. Consider a family of differential operators
(3.1) P(\,D)= ) as(A\)D*,
lee|<m
where the coefficients a, (constant with respect to ) are analytic functions
of a parameter A varying in a complex manifold A. The only assumption
we make is that for each value of A the polynomial P(),-) is equally strong

as Q. Denoting by {Ri,...,R,} any fixed basis of the vector space W(Q)
we can write

(3:2) P(\, D)= zu: bu(’\)Ru(D)
p=1

with analytic functions b, : A — C. Recall (1.1 (iii)) that the set E(Q) is a
holomorphically convex open submanifold of W(Q). Hence we may take in
(3.2) A = E(Q) and {b,} as the coordinate functions of P with respect to
the basis {R,}.
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It £ is a locally convex vector space we denote by H(A, ) the set of all
analytic functions e : A — £. Further let o € C*[0, 00) be any fixed weight
function as in Definition 2.2. Recall that B;{ — Bl for 1 < ¢ < oo,
kek.

3.1. THEOREM. — Let 1< q < oo and k € K. Assume that A is a
Stein manifold. Then for any g € H(A,By) there exists f € H(A, Bq":a)
such that '

(i) P(A\,D)f(A) =g(X), A€ A;
(ii) R(D)f € H(A,B_§) for any R € W(Q).

In the following corollaries we do not make any assumptions concer-
ning A :

3.2 COROLLARY. — Let 1 < q < oo and k € K. Then for any
g0 € By there exists f € H(A, B;Zé) such that P(\,D)f()\) = go, and
3.1 (ii) holds. ’

Proof. — By our above remark we may take P itself as a parameter
varying in the Stein manifold E~(Q). Theorem 3.1 yields a function f €
H(E(Q)’B_ZG) such that P(D)f(P) = go, P € E(Q). Since the mapping

a.k _
A — p(X) := P(),-) is analytic with values in E(Q) we have f := fop €
H(A, B;:@') and P(A\,D)f(A) = go . o

By 6 we denote the Dirac distribution at 0, (4, ¢) := (0). The next
corollary answers a question of L. Hérmander ([H2], p. 59) :

3.3. COROLLARY. — There exists | € H(A,B;"a) such that
P(\,D)f(\) = 6, and 3.1 (ii) holds with g =00, k=1.

Proof. — This is a special case of Corollary 3.2 since with k£ = 1 we
have § = g9 € Boo i - O
3.4. Remark. — If A is an open subset of R? (or a real analytic

manifold) then the analogues of Theorem 3.1 and its corollaries hold with
“analytic” replaced by “real analytic”.

Proof. — By a result of Grauert [G] there exists a neighborhood
basis of A in C? consisting of holomorphically convex open sets. Using this
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the real analytic case can be reduced to the analytic one (cf. [M]). O

It remains to prove Theorem 3.1. If §, & are Banach spaces we denote
by L(3F, ®) the space of all bounded linear operators from § to & equipped
with the operator norm topology. In the proof of 3.1 we shall make use of
the following result of J. Leiterer [L].

3.5. THEOREM. ~—— Let §, & be Banach spaces and A a complex
Stein manifold. Let ¥ € H(A,L(F,®)) such that T(A\)§ = & for each
A € A. Then '

(a) There exists for each function g € H(\, ®) a function §f € H(A,F)
such that T(A)f(A) = g(A), A € A.

(b) For any open subset A’ of A let N(A') := {j € H(A,F) |
J(A)f(X) = 0}. If A’ is holomorphically convex then the set N'(A)jx: of
restrictions to A’ of functions in N'(A) is dense in N (A').

Proof of Theorem 3.1. — Let {A,},eN be an exhausting sequence of
open submanifolds of A such that each A, is holomorphically convex, A, is
compact and A, C A,4;. For each r € N we inductively choose a bounded
measurable function H” = (n,)5_, : R® — (R™)" in the following way : set
pr :=sup{|H"1(£,2')| | € € R™, 2z’ € T™=1} (p; :=0). Then by Theorem
1.2 there exist A, > 1 and a bounded measurable function 7, : R — R"
such that for all A € A,, £ € R*, ¢ € Ben(py), 2 € T! we have

(3.3) P\, =€) < AP\, =€ = ¢ = 2, (€))] -
Thus, H" is defined for each r € N. Now consider the spaces
. mrH" e m*H" .
31- .—Bq’ka, ®T'-Bq,k . re€N.
By (2.1), (2.4) and (2.7) we have the embeddings

(34 B0 8 o 8 =BT o B,
(3'5) Bq,k — 8, > ®r+1 — G = Bq_’z — Bllo,i .

Consider the representation (3.2) of P(), D). From Proposition 2.9 we know
that each R, (D) induces a bounded linear operator from §, into &,. Hence
the mapping A — P()\, D) is analytic with values in £(F,, ®,). From (3.3)
and Proposition 2.10 we conclude that P(\, D)3, = &, for each X € A,.
Furthermore, g € H(A, ®,) by (3.5). It follows from part (a) of Theorem
3.5 that there exists for each r € N a function §, € H(A,, &) such that

P(’\aD)L(’\) =g(A): A€A,.
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We construct a sequence of functions f, € H(A,, §,) as follows. Put §; := f;
and assume that f;,...,f, are already defined. Consider then

6rr1(A) :=fra(N) = Fr(A) 1 A €A, .
By (3.4) we have 6,+; € H(A,, 3 ,+1) and we may assume inductively that
P\, D)b,41(A)=0: XE€A,.
By part (b) of Theorem 3.5 there exists for arbitrary €,+; > 0 a function
¢r+1 € H(Art1, 8 r+1) with the properties
P(A,D)e,41(A) =0: X € Arpy  Sup 16r+1(X) = crp1 (M5, 41 S Erta s

r—=1
where for convenience we put Ay := 0. Since F,y1 < F, Gy — &
and the operators R,(D) : Fr4+1 — .41 (1 = 1,...,v) are continuous
(Proposition 2.9) one can choose €,4; so small that

sup |[0r41(A) = erp1 (Al <277,

r—1

AESII\IP |1R.(D)(0r41(A) = crp1(MW)lle <277: p=1,...,v.

With this choice of ¢,4+; we set

Frar(N) := frp1(A) = crp1(A) 1 A€ Ay .
We obtain a sequence of functions §, € H(A,, §r) € H(A,,F) with the
properties

(3-6) P(’\’D)fr(’\) = 9(’\) : AEA,,
(3.7) /\SUP Ifre1(A) = F-W)llg £277,

(3.8) Sup IRu(D)(fr41(A) = fr(M)lle £277: p=1,...,v.

By (3.7) the limit
fX) == Jim (%)

exists in § for each A € A, and f € H(A, §). Since {R,} is a basis of W(Q)
we conclude from (3.8) that R(D)f € H(A, &) for any R € W(Q). Finally it
is clear by (3.6) that P(), D)f(\) = g()) since for fixed A € A the sequence
{i+(\)} converges in BL°25 and the operator P()\, D) : B:1°26 — Bl% is
continuous ([H2], 10.1.22). The proof is complete. ’ ]
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which has made it possible to include the case ¢ = 1 in Theorem 3.1 and
its corollaries.
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