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FACTORISABILITY AND WILDLY RAMIFIED
GALOIS EXTENSIONS

by David J. BURNS

INTRODUCTION

Let p denote a rational prime which, unless explicitly stated to the
contrary, is odd. Let K be a finite field extension of Q,, with L a
finite abelian field extension of K. Let G = Gal (L/K) denote the group
of L/K. Let O denote the ring of integers of L, and set O = 0. Let
#, denote the multiplicative group of fractional (,-ideals.

There is a natural action of K[G] on L and, with respect to this
action, each ideal /e #, is an (O[G]-module. We are interested in
studying the structure of these ¢[G]-modules. Ullom has shown that if
L/K is at most tamely ramified then all ideals 7 are (O[G]-isomorphic
to O[G] ([21] Proposition 1.3). Furthermore, for each ideal one can give
an explicit normal basis (see for example [14]). Thus in the tamely
ramified case there is nothing more to say. If L/K is wildly ramified
however the situation is very different.

For each ideal /e 4, we let &/ ks,(/) denote the full set of elements
of K[G] which induce endomorphisms of /. This set &k (/) is an
0O-order in K[G], the «associated order» of I in K[G], and contains
O[G] (of course, if L/K is at most tamely ramified then o x5,(/) = O[G]).
It is most natural to consider the structure of each ideal I as an
A gi6)(I)-module, and not just as an O[G]-module. In the wildly ramified
case therefore there are three distinct problems which one should
consider. Firstly, for any given ideal I one should give an explicit
description of the associated order &k ¢;(f). Next, if such a description
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is available, one should describe the structure of 7 as an .oy (1)-
module, and in particular determine whether 7 is free over, ie. is
isomorphic to, ofg¢;(I). Lastly, in those cases in which I is isomorphic
to o/ k6)(I), one should give an explicit generator of I over & g(I).
Except in very special cases little appears to be known concerning these
problems, and there are no general patterns of behaviour yet apparent.
Ferton has dealt in complete generality with the case of extensions of
degree p (c.f. [9]), Taylor has dealt with the ideal I = @, for a certain
class of Lubin-Tate extensions (cf. [7], Chapter X, § 3), and very recently
‘Byott has dealt with certain non-cyclic Kummer extensions of degree
p>. Other than this however, the only case which has so far been
considered, by Bergé in [1], is that in which K/Q, is unramified, G
has a cyclic inertia subgroup, and 7 = @,. In this case @, is not always
isomorphic to &/ (0;). This last fact is already somewhat surprising
since the conditions imposed on K and on G by Berge are merely the
abstraction of conditions satisfied by all absolutely abelian extensions
(i.e. K= Q,), and for these a classical result of Leopoldt[15] implies
that @, 1is isomorphic to ﬂ@p[c]((ﬁL), and that an explicit
generator for (0, over MQPIG]((QL) can be given (in terms of Gauss
sums). In her more general setting Bergé does not consider the problem
of giving explicit generators for those cases in which (), is isomorphic
to A k6)(O1)-

Henceforth we shall assume, unless explicitly stated to the contrary,
that K/Q, is unramified. Under this restriction we introduced in [3] a
new approach to the problem of determining, at least in certain cases,
the structure of @[I']-lattices for any finite abelian group I'. In this
paper we shall combine the approach of [3] with an arithmetical
factorisability result of Frohlich [13] and so consider afresh the problem
of determining whether any given ideal I is isomorphic to its associated
order &/, (I). This is the first systematic analysis of the consequences
of factorisability considerations in an arithmetical setting.

Our approach provides no new method for explicitly describing
associated orders, or for giving explicit generators for those ideals which
are free. Its advantage is that, for any given abelian G, and for any
given ideal I, if /g () is explicitly known then the question of
whether I is isomorphic to ks (I) is reduced to a matter of explicit
(and occasionally straightforward) computation. By these means we shall
prove that, for any given abstract structure of G (and of the inertial
subgroup of G), the question of whether an ideal 7 is isomorphic to
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A x1e1(1) 18 dependent only upon the L-valuation of I together with the
abstract structure of the (-order /g4 (I). This last type of result
(stated precisely in §2) suggests interesting « comparison results » in the
number field case, similar, for example, to those previously obtained
by Wilson [23]. Our techniques, being essentially computational, are also
well suited to deriving explicit results. For example, if G has a cyclic
inertia subgroup and I = (O, then, given Bergeé’s explicit description of
& gi1(0r), the necessary computations are effected without great
difficulty, and so we give a new proof of the freeness results of [1] § 4.
Moreover, even in cases in which we cannot explicitly describe .of g, (1),
we can use the techniques of [1] § 2.2 to obtain new and explicit results
in the case of non-cyclic inertia subgroups.

Since our approach is more general than that of Bergé we are
therefore now able to set her results in a wider context. In addition,
even though we cannot at present completely solve the problems in this
more general setting, our explicit results suggest interesting patterns of
behaviour which hitherto have not been apparent. For example they
suggest that, at least for the class of extensions under consideration,
the fractional ideal (#, plays an especially significant role in these
matters (this is made more precise in § 2).

This paper is arranged as follows. In § 1 we briefly recall the notions
and results which we shall subsequently make heavy use of, and in
terms of which some of our results will be stated. In §2 our main
results are stated. In §3 we deal with the cyclic case, and in §4 with
the non-cyclic case. In §5 we shall prove the « comparison» result
mentioned above.

Acknowledgement. The author is very grateful to the referee for the
painstaking way in which he/she criticised the first version of this paper.

Basic Notations. In addition to those already introduced we shall
make use of the following notations.

The cardinality of I" is written ord (I'). For any subgroup A < T

we shall write e, for the idempotent (ord (A))™" Y, & of Q,[A]. If X
SeA

is an O[I']-lattice then X* denotes the sublattice of elements which are
invariant under the action of each element of A, i.e. X = {x € X : x=xe¢,}.
The lattice X has associated order &g r(X) in K[I'}. The (unique)
maximal O-order in K[I'] is .#(0,T). We let X*©D denote the maximal
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sublattice of X which admits an action of .#(0,T'). Thus X = X#@D
if and only if &k (X) = #(0O,T). There is a natural identification
K[T'ley, = K[T'/A] which restricts to give identifications
M(O0,1)ey = M(O0,T'/A) and O[T']Je, = O[T'/A], and with respect to this
identification we shall regard each X* as an ([I"/A]-lattice. For any
commutative ring R the group of multiplicative units is denoted R*.

1. SOME PRELIMINARIES

Before stating our main results it will be useful to briefly recall
some of the notions and techniques that we shall make heavy use of,
and in terms of which some of our results are stated. This then is the
aim of the present section.

Let I" denote a finite abelian group. We shall first recall the notion
of factorisability and the associated relation of I'-factor-equivalence
defined on the set of ([I']-lattices. The notion of factorisability was
first studied by Nelson [16] in a representation theoretic setting in the
context of arbitrary finite groups. However since our groups are abelian
we may adopt a much more elementary approach. There are by now
a number of different treatments, and indeed notions, of factor-
equivalence in the literature (see for example [12], [13], [3], [4], [5] or
[19]) but we shall here only deal with that which is most convenient
for our present purposes. Thus, for example, the notion of factor-
equivalence we define here coincides with the relation A defined in [12]
(1.13) and [3], and with the relation A defined in[4] § 1.

We fix an algebraic closure Q¢ of the field Q,. We let I'" denote
the group of multiplicative characters Hom (I',(Q%)*), with S(I'") the
set of subgroups of I''. For each subgroup A < T we let 4(A) denote
the group {#el':0(A)=1}. Thus S = {¥(A):A<TI}. To each
injective homomorphism

(1.1) n:X  Y®K
of O[TI']-lattices X and Y which satisfies
NY®K=Y®K

one associates a function f, = fyx, on S(I'") which is defined by

fo&@) = [Y*:(mX)*]y, all ALST
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where here [:], is the ¢-module index as defined for (-lattices which
span the same K-space (cf. Frohlich’s article in[6]). Note that if X
and Y span the same K[I']-space, then we shall always take the
embedding n in (1.1) as that induced by the identity map id on the
ambient K[I'}-space and, for brevity, we shall then write fyy in place
of fyxia-

A division of T' is an equivalence class of characters with characters
6 and 0" belonging to the same division if and only if they generate
the same cyclic subgroup. To each division D of I'" there is thus
associated a unique cyclic subgroup of I'" which we shall denote by D
(i.e. D is the subgroup of I'" which is generated by any element of
D). One now defines the value of f, at each division D of I'" by
means of the Mobius p-function :

(1.2) fo(D) = T fo(Cyert@ie
c<bh
where here the product is taken over all (cyclic) subgroups C < D. By
Moébius inversion (1.2) is equivalent to

(1.3) (@) fo(H) = [] f-(D), for all cyclic H < TI''
DcH
where here the product is taken over all divisions D contained in H.
It is useful to introduce an associated function, the factorisable quotient
function fn, which measures the extent to which (1.3) (a) is valid for
general subgroups H < T''. Thus f, is defined at each subgroup H < I'f
by

(1.4) foH) = (fL,(H) ™ [ fulD).

DcH
Equation (1.3) (a) is thus equivalent to
(1.3)(b) f,(H)= 0, for all cyclic subgroups H < TI'".

If f(H) =0 for all subgroups H <T', ie. if the function f, is
identically trivial, then one says that the function f, is factorisable.

Set 4 = #(0,T). Any embedding m as in (1.1) gives rise to a
corresponding embedding

nmax: XM” (S YV” ®@K
which satisfies
nmaxXJ{ ®0K= YJ{ ®@K
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and it is not difficult to verify that the function f ., is always

factorisable. Furthermore, for each subgroup A < I" one has

o )
fn(g(A))fnmax(g(A)) - [XAI (XI)A](D

so that the function f,f n. is in fact independent of the particular

choice of the embedding m as in (1.1). Following Frohlich we set

Fyvx = fofomax and refer to this function as the defect function of Y

and X. Note that, if n and n’ are any two embeddings as in (1.1)
then one has

fy is factorisable <> . x is factorisable < f- is factorisable.

DerINITION 1.5, — Two O[I']—lattices X and Y will be said to be
I'-factor-equivalent, written X Ay Y, if there exists an injective homomor-
phism m as in (1.1) such that the function fy x, is factorisable.

Remark. — For an interpretation of the condition X A Y in terms
of relations between certain natural (@[I']-sublattices of X and Y
see [3] § 1.

It is not difficult to check that A is an equivalence relation on
the set of (@[I']-lattices. This relation is weaker than the relation of
O[I']-isomorphism, which we shall henceforth write as =, ;. Indeed if
X=yr Y then the function £y x is identically trivial and so X Ar Y.
Also A behaves very well functorially, for example under extension
or restriction of scalars, or induction of modules from subgroups. A
further functorial property which we shall later use is that

(1.6) XArY = X*Ar, Y*  for all subgroups A < T,
a property which follows straight from the definitions.
By explicit example the relation A is seen to be far from trivial :
LemMma 1.7 (Nelson, [16]). — #(0,T) Ar O[T'] if and only if T is
cyclic.

Fortunately however it seems that factorisable functions are relatively
abundant in arithmetic. In particular, in the context of this paper one
has the following beautiful result :

Tueorem 1 (Frohlich, [13]). — If F/E is any abelian extension of

local fields then
Op A caw i) Os[Gal (F/E)].
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Remarks. — (i) This result, although not explicitly stated in [13],
follows by the same argument used to prove Theorem 7 (additive)
of [13].

(ii)) Theorem 1 is especially interesting if F/E is wildly ramified

since then O is not isomorphic to Oz[Gal (F/E)].
(iii) For other interesting arithmetical examples of factorisable

functions, in particular concerning the Galois module structures
of unit groups, see [13] and [19].

CoroLLARY 1.8. — Let F/E be an abelian extension of local fields.
If Op admits an action of M (Og, Gal (F/E)) then Gal (F/E) is cyclic.

Proof. — Set H= Gal(F/E), and M4 = M (Oz,H). If Op admits
an action of #, i.e. if MOy < Op, then Op =y A (this is a standard

property of maximal orders — for example see [17] (17.3), or [11]
Theorem 10). Hence Oy A4 # and so, by Theorem 1, .# A, Oz H].
The result now follows as a consequence of Lemma (1.7). O

This corollary gives some indication of how the notion of factor-
equivalence may be of considerable arithmetical usefulness. Indeed whilst
questions concerning =,; are often quite subtle, (given the result of
Theorem 1) questions concerning A ; are of an essentially computational
nature and as such are often much more approachable. In particular
therefore one can often much more easily prove that two lattices are
not isomorphic by demonstrating that they are not factor-equivalent
rather than by any more direct method. Of course it would be of much
more interest to be able to deduce the relation =, by using

factorisability considerations. This was the main aim in [3], in which
we introduced another equivalence relation on the set of (@[I']-lattices
which when combined with factorisability considerations allowed us
(under certain conditions) to characterise triviality of the defect function.
A deep theorem of Frohlich ([11], Theorem 4) on the defect function
then led to a result of the required form. To state this result we must
introduce some notation. We shall call a subgroup A < I' cocyclic if
the quotient groupe I'/A is cyclic.

DeriNiTION 1.9. — Two O[I']-lattices X and Y are said to be I'-o-
equivalent, written X or Y, if for each cocyclic subgroup A < T one has
A ki (X)) = A e (Y?).
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Now if A is a subgroup of T of order coprime to p then for any
O[T )-lattice X one has X* = e, X and so

dK(r](X)A = ep A gir|(X) = A giriar(eaX) = dK[I‘/A](XA)-

Thus for example if I' is cyclic then XorY if and only if
A girim(XY) = o grja(Y*) for all p-primary subgroups A < T'.

This relation of I'-o-equivalence is in fact strictly stronger than that
introduced in §2 of [3]. However it is obviously weaker than =,
and so the argument of [3] §2 still proves the following result.

THEOREM 2. — Let X be an O[I')-lattice such that
iX ®o K =g K[I],
and set oA = o giri(X). Then X =, if and only if both X or o/ and
jx,d(rt) =0.
CoroLrArYy 1.10. — If Ie€ F, then I =y ki6)(I) if and only if
both I og o xig\(I) and 7%,([0](1),@[01(GT) = ?z,mL(GT)-

Proof. — By Theorem 2 one has
I = g6 gio1(I) <> 1 0 A g61(1) and }I,MK[GW)(GU =0,

and, by Theorem 1,
jf,dxlgm (GT)= jz.oL(GT) : j@L,le](GT) : }0[01,dK[G,(1)(GT)
= F1,0,(G")- }@[G],MK[(;](I)(GT)
= 71,0L(Gf) : ?w,{[mm,@w](Gf)_l- O

The result of Corollary (1.10) motivated our present investigation.
Indeed, by using techniques of Bergé dealing with cyclic extensions (to
be recalled in § 3.1) one can in principle completely analyse the question
of G-o-equivalence, and also obtain much explicit information on the
validity or otherwise of the equality TMK[G](,),@[G](G*) = TI‘QL(GT).

Note that in the context of Theorem 2 the relation of I'-o-equivalence
is of most interest when comparing an O[I']-lattice X to its associated
order o gr;(X). In this case an easy exercise shows that

(1.11) O[T/A] € A gria(X?®) € Lgria) (g (X)) E H(O,T/A)
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for each subgroup A < I'. For a more thorough analysis in the
arithmetical setting of Corollary (1.10) we now introduce, for any given
Galois extension F/E of local fields, and any given integers i and j, .
an O[Gal(F/E)]-lattice &/(F/E,i,j) which is defined by

#(F/E,i,j) = { € E[Gal (F/E)]: M(9F) S {p}},

where here (and in the sequel) we write gy for the (unique) maximal
ideal of Oy. The connection with matters of o-equivalence is made clear
by the next lemma.

For any local field F we shall write v, for the valuation of F which
is normalised such that vg(m) = 1 for any generator ® of . For any
subset Y = F* we let vy(Y) denote the infimum of the set {vz(y):ye Y}.
Thus if I€.#5 then I = . For any abelian group I' we write Trp

for the trace element ord (I')er = ) yeZ,[I']. In particular if H < G
yell

then Try is the field theoretic trace map Try, z: L — LY. Thus if Ie .#,
then both eyl and I” are elements of .

LemMma 1.12. — Let H be a subgroup of G of order p‘r with p k' r.
For any ideal I € ¥, one has

&/K[G](I)H = JZi(LH/K, vea(eq(I)), ULH(IH))
= p' A (L¥/K, v u(Try(l)), v,a(I")).

Remark. — Recall that, for any given subgroup H < G, the natural
identification K[G]ey = K[G/H] restricts to give an identification
M(0,G)ey = M(0,G/H), and the first equality of the lemma is to be
interpreted in this fashion.

Proof. — Since Try = p'r.ey the second equality of Lemma (1.12) is
clear. As for the first equality, if A € K[G] then

erE dK[G](I)H <> erE MK[G](I)
< heg(DET
< Meg(D)) E !
(where here X denotes Aey regarded as an element of K[G/H])

< ke A (LE/K, v u(eq(D)), vou(IF)). O
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In our case one can even give explicit formulae for v #(Try(l)) and
va(I®) which are dependent only upon v,(I), H and the inertia
subgroup G.., of G. To be more specific we first note that, since K/Q,
is unramified (and p is odd), the complete ramification filtration of G
is determined by the abstract structure of G.,,. To state this result we
let {G?},., (respectively {G};~,) denote the ramification filtration of
G using the upper (respectively lower) numbering. In particular therefore
G® = Gy = Gran. For any abelian p-group P and any integer i > 0,
we shall also write P(i) for the subgroup of P formed by the elements
which are p’-th powers in P.

LemMA 1.13. — The group G is equal to the Sylow p-subgroup of
Gyam . Moreover, for each integer i > 1, G¥ = GV(i—1).

Proof. — The first assertion is standard. Moreover, if G is either
cyclic or elementary abelian then (since the field K is absolutely
unramified, and p is odd) the second assertion is a consequence of
Propositions (4.2) and (4.3) of [10]. From these special cases the general
result follows by using Herbrand’s Theorem and the fact that, for each
integer i > 1, the quotient G/G"* " is an elementary abelian p-group
(cf. [18] Chapitre IV). O

Let p™ denote exponent of G. Lemma (1.13) implies that
G™ > G™*Y = 1. For each integer i = 1, ..., n, we let t; denote the
i-th jump number of the lower ramification filtration and we set t, = 0.
Converting between the upper and lower ramification numbering (cf.
[18] Chapitre IV, § 3), one has

(1.14) ti — ti., = ord (G/G™)

for each integer i = 1, ..., n,. Also for any subgroup H < G one has
(cf. [18] Chapitre III, Proposition 7, and Chapitre IV, Propositions 2
and 4)

(1.15) (@) vea(Try(D))

1
= [m (UL(I)+ Y (ord (Gyn H)— 1))]

i=0

1
= [m <UL(I)+OI'd (G(O)f'\H)_l

i=ny

+ Y (ti—t;-1) (ord (G‘“mH)—l))],
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and

(I
(1.15) (b) v u(I") = [E&%éﬁ]

where here, for any real number x, we write [X] for the greatest integer
not exceeding x, and [x] for the least integer not less than

x (e.[x]=—[—x]).

As a final remark we note that the totally ramified case is naturally
of most interest to us. To be more specific here we let L, denote the
inertial subfield LCram of L (i.e. L, is the maximal unramified extension
of K which is contained in L).

Lemma 1.16. — For any ideal I€ ¥, one has an isomorphism

(1.17) O, ®0 1 =0, 16101,[G] B, 16

ram]

(where on the left of (1.17) the ideal I is regarded as an O[G]-lattice,
and on the right as an (OLO[Gmm]-lattice). Thus

(1.18) @LO ¢ A gic1(l) = @LO[G] ®@LO[Gram1 MLO[Graml(I) >
and

(1.19) 1=y A xie)(I) < I =

‘L, [Gram]l MLO[Gram](I) :

Proof. — This can be proved by the arguments of [2] §2. (It is
important here that G be abelian.) O

2. STATEMENT OF THE MAIN RESULTS

Unless explicitly stated to the contrary, in this section the extension
L/K is assumed to be totally ramified. The degree of L/K is p¥R with
p X R. We need only deal with wildly ramified extensions and so shall
assume that N > 1.

It is convenient to introduce some additional notation. If Je .#,
then we shall write Frg(I) (respectively 1 Fri()) if I is (respectively is
not) free over (i.e. isomorphic to) &/ (/). More generally we shall
write Frg(#,) (respectively T1Frg(#;)) if Fry(l) for some Ie.f,
(respectively if 71 Frg(]) for all 1€ .#,). '
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By use of the approach described in §1 we shall in this paper
obtain explicit conditions on the abstract structure of G which are
implied by, and in certain cases imply, Frg(#,). In particular, we shall
see that Fry(#,) is a severe restriction on the possible structures for
G. In the cyclic case we shall obtain a complete characterisation of
Fri(#.). In the non-cyclic case our results are still partial. As an
underlying general philosophy however, our results can all be interpreted
as providing strong evidence for an affirmative answer to the following.

Open Question 2.1. — Is Frg(0,) implied by Fri(.#,)?

In a special case (2.1) is easily shown to have an affirmative answer
as a consequence of well known results:

ProrosiTioNn 2.2. — If there exists an ideal Ie ¥, such that
I =46,0(G] then ¥r(0.). Furthermore, such an ideal exists if and only

if G is an elementary abelian p-group. In this case o x,(0,) is generated
as an O-lattice by the set {G} v {p”'Trg}, and O, is generated over
A x11(0L) by any uniformising parameter.

Proof. — For any ideal Ie .#, one has

I =46,0[G]
< [ is a projective (O[G]-module ([20] Corollary 6.4)
<> [ is a cohomologically trivial G-module (c.f. [18] Chapitre IX)
< H°G,, 1) = 1 ([22] Theorem 2)
< Trg, (1) = I°0.

Using the formulae (1.15) this last condition is seen to be equivalent
to Gy=G1=>Gp=1 and v, (I)=1 modulo p" (cf. [21] Theorem 2.1).
But since K/Q, is unramified (1.13) and (1.14) together imply that
G = 1 if and only if G is elementary abelian. Thus, if such an ideal
I exists then ord (G) = p" so that I =, ¢ .. In this case, if me L then
it is not difficult to check that g, = (O[G])n if and only if v, (%) = 1.
But then Trg(p,) = (p.)° = @« and thus, since L/K is totally ramified,
one has

O0,=0+ p,=(px'Trg+0[G])n

as was required.



FACTORISABILITY AND WILD EXTENSIONS 405

In case G is cyclic we can prove a result directly analogous to
Proposition (2.2). In this case note that, since all questions of G-factor-
equivalence are trivially satisfed (cf. (1.3) (b)), Corollary (1.10) implies
that we need only check conditions for G-o-equivalence. In § 3, by an
analysis of this question using techniques from [1] §2.2 we shall prove

THEOREM 3. — If G is cyclic then the following conditions are
equivalent :

(i) Frg(£L);
(i) Frg(0,);
(i) N=1, or N=2and R<p’ or N>2 and R < p(p—1).

Remarks. — (i) The equivalence (ii) <> (iii) is due originally to Bergé
([1], Corollary to Theorem 3), although the proof given here is very
different from hers.

(ii) It is not true that Frg(0,) implies Frg(l) for all 7e .#,.
If G is not cyclic our results do not give a complete characterisation
of Frx(#.). However the explicit results we can prove may all be

interpreted as providing evidence for an affirmative answer to the
following

Open Question 2.3. — If G is not cyclic are the following conditions
equivalent :

(@) Fre(SL);

(i) Frg(0,);

(iii) G is an elementary abelian p-group ?
(Recall that the implication (iii) = (ii) has already been proved in
Proposition (2.2)).

For example, in §4.1 we shall derive an upper bound on R from
the assumption Fryi(#;). To state this we assume that the Sylow
p-subgroup Syl,(G) of G has structure invariants

n n n
pt,pE, ..., pF

for an integer s (> 2) and integers n, > n, > --- > n,. For brevity we
shall often refer to such a group as being of type (p"1,p",...,p").

THEOREM 4. — If G is not cyclic and Fry(#,) then R < p*(p°"'— 1)L,
In particular, if s = 3 and Frg(F,) then R < p so that 0, og o x(1(0,).
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Remark. — In fact one can prove that O og o x6(0,) if and only
if R < p. However no such simple criterion exists for the general ideal
le 7,.

An affirmative answer to (2.3) certainly requires a proof of the
implication Frg(#;) =R =1 in case Syl,(G) non-cyclic. However to
improve the upper bounds of Theorem 4 by our approach would seem
to require a technique for explicity describing associated orders in the
case that Syl,(G) is not cyclic. At the moment, even in case that
Syl,(G) is of type (p,p), we have not been able to develop such a
technique. We do however have some results in this direction. Moreover
these results seem to fit a common pattern which itself suggests further
evidence for the implication Frg(#,) = R = 1. We shall discuss this in
a little more detail in §4.3.

Theorem 4 indicates that Frgx(#,) imposes strong restrictions on R.
In a similar fashion the assumption Frg(¢,) imposes strong restrictions
on the abstract structure of Syl,(G). Specifically in § 4.2 we shall prove.

THEOREM 5. — If O, AN A ki6(OL) then n, = ng, ie. Syl,(G) is
« homogenous ».

This result gives some evidence for the implication (ii) = (iii) of
(2.3). In this context it also naturally raises the question of whether
Frg(O0;) is inherited by sub-extensions, i.e. of whether
Fri(0,) = Frg(0,) for all fields L’ such that K< L' & L. Indeed if
this is the case then (since s > 1 and n, > 1 implies that Syl,(G) has
a non-homogeneous quotient) the conditions s > 1 and Frg(0,) together
imply (via Theorem 5) that n, = 1, as is required for an affirmative
answer to (2.3). Note that the equivalence (ii) <> (iii) of Theorem 3
implies that Frg(0.) is inherited by subextensions in the cyclic case (a
fact first noted in [1] § 4). More generally, one at least knows that the
condition O} 0 & k6)(0,) is inherited by subextensions (cf. the remark
following the statement of Theorem 4).

Apart from the results of Theorems 3, 4 and 5 we have one further
piece of evidence which suggests that the ideal @, plays a distinguished
role with respect to questions of freeness over associated orders. There
is naturally a certain amount of interest in ideals /e .4, which are
« self-dual », i.e. which are O[G]l-isomorphic to the dual lattice defined
with respect to the trace form of the extension L/K. It is of some
interest therefore to question whether the self-duality of an ideal I has
any implications concerning the validity of Fryi(/). In general there is
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no strong implication — for example, if ord (G) is odd then the different
of L/K has a square root whose inverse A, is necessarily self-dual
and yet Theorems 3, 4 and 5 indicate that in general —1Frg(A; k).
However by the methods of this paper one can completely characterise
those extensions L/K for which @ is self-dual, and as a result verify
that the self-duality of @, does indeed imply Fr (@,) (this is true even
for the case p = 2). This last result gives a partial answer to a question
of Ph. Cassou-Nogues and M. J. Taylor [7] (page 148) (their question is
raised without any ramification hypothesis on K/Q,) but, since it is
not central to our exposition, we shall not prove it here.

Even though we cannot in general describe .&k;;(I) in case G not
cyclic, the techniques of Bergé allow us to explicitly describe the lattices
A gio)(D for each cocyclic subgroup H < G. Using these descriptions
we can prove that, for any given abstract structure of G (and of the
inertia group G..), the validity or otherwise of Frg(/) is dependent
only upon the value v, (I) together with the abstract structure of the
0-order o/, (I). This type of result suggests interesting « comparison »
results in the number field case similar, for example, to those obtained
by Wilson (c.f. [23]). To state our result precisely it seems worth while
relaxing the condition that L/K is totally ramified.

THEOREM 6. — Let K and K’ be finite unramified extensions of Q,,
and let T denote the compositum field KK'. Let L/K and L'/K’ be (not
necessarily totally ramified) abelian extensions of groups G and G’
respectively. Assume that there exists an isomorphism ¥ :G = G’ which
restricts to give an isomorphism of inertia groups ¥ :G.m = Gram-
Extending Y by X-linearity one obtains an isomorphism of X-algebras
VY :X[G] = 2[G’']. If i is any integer such that W restricts to give an
isomorphism of Ox-orders

V: 0z Qo A gio(91) = Ox S A [Gl(p1)
then Fry(pt') if and only if Fry (plr).

Remark. — If one restricts to the case i=0(.e p:=0,
and @i = O, ) then one can in fact prove the conclusion of Theorem
6 without assuming a priori that W restricts to give an isomorphism
Gram = Gram - For this however one must use Noether’s criterion together

with the fact that 0, og o ,(0,) if and only if R < p.
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We end this section by remarking on those extensions not considered
here. Firstly, our techniques apply equally well in the case that K is
an unramified extension of @Q,. However, we do not here consider this
case since calculations tend to be more complicated (this is essentially
because there are more ramification filtrations to consider, i.e. if p = 2
then knowledge of the abstract structure of G,.,, does not specify the
complete filtration). In this case one can obtain explicit results similar
to those given above, but there are some differences apparent. For
example, there are non-homogeneous extensions with Frg(0,), and also
the condition O}, o & g(61(0,) is not in general inherited by subextensions.
For an example of a calculation in this case (in fact involving the ideal
Apx) see the appendix to [8]. Whatever the residue characteristic
however, if we allow ramification in the extension K/Q, then the results
are very different. In particular, in this more general context the answer
to (2.1) is negative — for example there are local Galois extensions
F/E of degree p such that Fry(#;) and yet —1Frg(Op) (c.f. [9]).

3. THE CYCLIC CASE

In the section we shall prove Theorem 3, and for this we must first
recall the available techniques for describing the lattices &/ (L/K,i,j) in
the case that G is cyclic. Throughout this section then L/K is a totally
ramified cyclic extension.

3.1. Description of the associated orders.

In this subsection we shall analyse the lattices /(L/K,i,j). The
results quoted here are either standard facts of ramification theory (for
which see for example [18] Chapitre 1V) or else taken from [1] §2.2,
and so no proofs will be given.

In deciding questions of G-o-equivalence we are only interested in
the associated orders of the lattices /(L/K,i,j) and hence, without
any loss of generality, we may assume that i < j. (Indeed, even if i > j
one has i— tp"R <j for any sufficiently large integer ¢, and
A (L/K,i—tp"R,j) = p'/(L/K,i,j) has the same associated order as
S (L/K,i,j).) With this assumption &/(L/K,i,j) € &/ (L/K,j,j) which
is an (@-order in K[G] and so in contained is #(0,G). We shall
therefore first give an explicit description of #(0,G).
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We must introduce some notation. Let C denote the subgroup of
G of order R. Let Il denote any uniformising parameter for L. The
map defined on G by g IT¢/IT induces an isomorphism 0, (independent
of the choice of IT) between C and a subgroup of the roots of unity
of the residue field of K. In particular therefore K contains a primitive
R-th root of unity. Hence, if x is any element of C', then the
corresponding idempotent e, = 1/R Z x(c™")c belongs to O[C]. The-

ceC
refore any (O[G]-lattice X decomposes as a direct sum
X=@ex.
xeC‘L

To give an (-basis of X one need therefore only give an (-basis for
each isotypic component e, X. This is easy in the case X = #(0,G).
For this we need some more notation. For each integer i with 0 < i < N,
we let G; denote the (unique) subgroup of G of order p'. We also let
e; denote the corresponding idempotent eg, € Q,[G;]. We let g, denote

a generator of Gy(=Syl,(G)). When passing to subextensions we shall
identify C with its image in each quotient group G/G;. For each integer
i with 0 <i < N we set L, = L%. Furthermore, for each integer i > 0
we define an integer

_ e, i iz 1
" {1, if i=0.

Lemma 3.1. — For each character y € C' the lattice e, M (0,G) has
an (-basis given by the set
{exei(g*_ l)ji (0<iS<N,0<j;<my_;}.
To give a similar description of the lattices e,.«/(L/K,i,j) we must be
more precise about the character group C'. Thus we let y,,x denote
the (unique) element of C' which induces by passage to the residue

field the isomorphism 0,. Then y;x is a generator of C', and hence
to each character x € C' one can associate integers

urkig €{1,2, ..., R}

(written u;, if the extension L/K is clear from context) which are
defined for each integer i = 0,1, ..., N by

(3.2) X = A
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It is not difficult to prove

LemMA 3.3. — Let  be an element of C'. For any (non-zero) element
x € L one has

vr(ex) = vi(x),

with equality here if, and only if, x = x1¢’. In particular, for each
integer i = 1,2, ..., N and for each (non-zero) element x € L, one has

3.4 vz, (e,e;X) = — ug g, modulo (R).

By Lemma (1.13) the complete ramification filtration of G is known.
By substituting this into the expression (1.15) (a) one obtains

iy o | L[, _R@-D
(3.5) ULs(es(sOL))_[ps <k p—1 tp 1)]

for each integer k and each integer s such that 0 < s < N. In the
special case of the lattices «/(L/K,i,0) the result of Lemma (3.3)
together with the formula (3.5) proves that

Re'-1 _

(3.6)i. e,ese€ A (L/K,i,0) < i> — p’us, .

Next we examine the effect of action by elements of
(g« — 1) A(0,G) on the valuations of elements of L. Well,

g2+ € GP\G?® (Lemma (1.13)), i.e. g4« € Gg)\Gr+1y ((1.14)), and thus, by

a standard property of the lower filtration, for any (non-zero) element
x € L one has

(3.7 v((gx—Dx) = vr(x) + R

with equality here if and only if v,(x) # 0 modulo (p).
Finally we specialise to the case &/(L/K,0,0) = &(0.). Using
(3.5) and (3.7) one sees that (gu—1) #(0,G) & o g6)(0,). Lemma

(3.1) therefore implies that to give an explicit description of each
e, ki1(0y) it suffices to determine which elements of the set
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belong to o x(1(0;). Using the equivalence (3.6),., this is not difficult.
To record the final result we define for each non-negative integer j an
integer

R(p'-1)
(3.8) U, = [—&}
T LPe-D
ProposiTiON 3.9 (Bergé). — Let y be an element of C'. The lattice

e, gi1(0L) has an O-basis given by the set

{e,e;: 0<i<N,u;,>U;} U {pe,e;: 0<i<N,u;, <U;}

U {eei(gx— 1)1 0<i<N,1<j;<my_,}.

3.2. The proof of Theorem 3.

In this subsection we assume the notations of Theorem 3 and of
§3.1. Since G is cyclic, in order to prove Theorem 3 by means of
Corollary (1.10) we need only check questions of G-o-equivalence.

We shall first deal quickly with the case N = 1.

LemMa 3.10. — If N = 1 then Frx(I) for all I .#,.

Proof. — Fix Ie ¥, and set &/ = o 5(I). Corollary (1.10) implies
that 7 = ;% if and only if

(3.11) A k16167 (I%) = A gi6/6,1(A 1)

(recall also the remarks following Definition (1.9)). But G/G, = C has
order coprime to p so that O[C] = #(0,C) and the equality (3.11) is
clear. O

Henceforth we restrict to the case N > 2. We shall first prove the
implication (i) = (iii) of Theorem 3.

Set H=Gy_,, F= Ly_, and T' = G/H (a group of order pR).
We shall now show that if either R > p* , orif N > 3 and R > p(p—1),
then for any ideal /e #, one has

(3.12) A ki (I") Z A kil ki (D)

so that I is not G-o-equivalent to /s (I). To prove this we shall
first re-interpret these rather curious restrictions on N and R.
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LemMA 3.13. — Let N = 2. Then

(3.14),  v((pD)™) — R < vplea(p1)) < vs((p1)") — p
for all integers 1 if and only if either R > p*, or N = 3 and R > p(p—1).

Proof. — Explicitly one has vz((p3)") = [i/p" '], and (by (3.5))

019 orento) = | (1= 2 1) |
p p

Now if R > p?, or if N> 3 and R > p(p—1), then it is not difficult
to deduce (3.14), by using these explicit expressions. On the other hand,
if R<p(p—1), or if N=2 and R < p*, then 1 = 0 does not satisfy
the second inequality of (3.14),. |

We fix an integer 1, and set I = g} . For brevity we set 1x = vgz(ey(I))
and 1* = vp(I¥). We want to compare o xr;(I") with o g0 (A 6:(D"),
i.e. (by (1.12)) to compare & (F/K,1*,1*) with o xr( (F/K,1%,1%)).
We assume now that either R > p*, or that N > 3 and R > p(p—1),
so that the inequalities (3.14) are all satisfied. We let e denote the
idempotent er € K[I']. Note that for each integer j the formula (3.5)
implies

(3.16); j— R<vple(pr)) <j—R+p—-1<j-p.

Because of the right hand inequalities. of (3.14) and (3.16) there exists
an integer x such that

(3.17) maximum of {vz(e(p)),1x} < px < 1*.

We choose such an integer x and set § = y ;A e C' (the character ¥z«
was defined in § 3.1). Our aim is to prove that for any such character
0 one has a strict inclusion

(B.18)  epd (F/K,1*,1*) G eod sury (4 (F/ K, 1x,1%)).

Well, by combining Lemma (3.3) together with (3.17) one sees that
epe ¢ L (F/K,1*,1%), i.e. that ey of (F/K,1*,1*) = ¢,0[I'], and also that

(3.19) e ¢ eyl (F/K,15,1%).

But on the other hand, from the left hand inequalities of (3.16) and
(3.14) one has

ve(pe(@i)) = pR + ve(e(p)) 2 pR +1x — R>1* + (p—2)R > i*
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so that pe,/(0,T) S egof (F/K,1%,1*). Now since 1x < 1* the lattice
el (F/K,1%,1*) is a mutliplicatively closed sublattice  of
eg sl (F/K,1*,1*) = ¢0[I']. A typical element of ey.of (F/K,1%,1*) can
therefore be written in the form

i=p—2
o= Y aeyx—1)' + paege
i=0
{a,:i=0,...,p—2}u{a} = 0,

where here vy« is some generator of Syl,(T").

Now of € o (F/K,1*,1x), and o® = aje, modulo pey#(0,T), so that
ajeqe L (F/K,1x,1¥). Because of (3.19) we must therefore have
pla,. Hence one has

ege-a = (ap+pa)ege € peg M(O,T) < egd (F/K,1%,i*).
Since a is an arbitrary element of ey (F/K,1«,i*) we have proved that
ege € eg. g (L (F/K,1%,i*)).

But ege ¢ e/ (F/K,1*,1*) and hence we have proved (3.18). This then
completes the proof of the implication (i) = (iii) of Theorem 3.

Since the implication (ii) = (i) of Theorem 3 is trivial it only remains
for us to prove the implication (iii) = (ii). We shall first deal with the
special case N = 2. In this case one knows that 0, o o ,(0,) if and
only if

(3.20) A kin(Or) = A k(A k161 (0L)°1)

where here we again set ' = G/G, and F = L,. Proposition (3.9) gives
an explicit description of & k(0r) and we shall use this to check the
validity of (3.20).

LemMa 3.21. — If N = 2 then O 05 o 6)(OF) if and only if R < p*.

Proof. — The necessity of the condition R < p* has already been
proved above. We shall show here that if R < p? the (3.20) is valid.
Well, taking into account the inclusions (1.11) one sees that (3.20) is
satisfied if there is no character 8 € C' such that

(3.22) €€ € JfK(l"](v‘%(vF/Ks — U, O\ ki1 (OF)
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where here we write e = er € K[I'] (recall that U, = [R/p] so that, by
(3.5), vr(es,(OL)) = — U;). We assume therefore that there exists a
character 0 e C' such that epe ¢ of g1y (Or), ie. such that up g6 < U,
(c.f. Proposition (3.9), and (3.2) for the definition of the ug ;o). We
must show that eye ¢ o g (A (F/K, — U,,0)). Now ege ¢ o (F/K, —U,,0)
while pey#(0,T') « o (F/K, —U,,0) and from this, by using the same
type of analysis as used to prove (3.18), it is not difficult to verify that

(3.23) eye ¢ AL (F/K, —U,,0)) <> e oL (F/K, — U,,0)

< — U, > = upkop

where the last equivalence here is a consequence of (3.6)-y,, . Now
(3.2) implies that pug k1,6 = Up/k0e modulo (R). But pup k.9 < pU; < R
and hence pup .9 = Upxoe- Thus the inequality (3.23) is certainly
satisfied if U, < p, i.e. if R < p% O

At this stage, to complete the proof of Theorem 3 we need only
prove that if R < p(p—1) (and N = 3) then O, 05 A x(0). Thus we
shall henceforth assume that R < p(p—1).

The analysis in this case uses the same basic idea as used in Lemma
(3.21). In this new case however we have need of a preliminary lemma.
For any character 0 € C' we define an integer t(L/K,0) = maximum

of {i:0<i<N,{ee;:0<j<i} E Agi)(O1)}-

LemMma 324, — Let R < p(p—1). Fix a character 0 e C', and set
t=1t(L/K,0). If t < N then ege,eegd(L/K, —U,,0) for each integer
m=1.

Proof. — Assume that ¢t < N. By Proposition (3.9) one knows that
t satisfies both .u,q > U, and u,.,4 < U,,,. It follows that

i1 < pUi S U+ R<uy + R,
and hence (since pu;.,y = u, modulo (R)) that pu,,,¢ = u,5. Thus
(3.25) Ug 2 P

On the other hand, (3.6)-y, . implies that ee, € .o/ (L/K, —U,,0) if,
and only if,

(3.26) P'uy > R =1D/(p—1) + U,.
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But the inequality (3.26) is a consequence of (3.25) together with the
fact that U, < [R/(p—1)], and the assumption that R < p(p—1). O

Now to prove 00 og o g(0,) it suffices to prove that
(3.27), MK[G/GiJ((OLi) = JZ/K[G/G,q(JZf(Li/K, -U;,0))

for all integers i = 1,2, ..., N. We fix an integer i with 0 <i < N,
and set F= L; with T = G/G;, so that I" has order p" ‘R. We now
let y« denote a generator of the group Syl,(I'). For any character
0 e C' one has

(yx — Degtl (O,T) < egl ir1(O)
= "Q{K[l']ee(ee 52V(F/K UHO)) S e M (0,T)

(cf. Proposition (3.9) for the first inclusion and (1.11) for the second).
Given the explicit description of ey.#(0,I") in Lemma (3.1) we need
therefore only prove that

j=N-1
(3.28) «Q/K[rlee(eeﬁf(F/K, —U,0) n ( @0 (DeeerJ) < ey kr)(Or) .
j=

j=N—i
Let = ) bjeeerj be an element of the left hand side of (3.28). Set
j=0
t=1t(F/K,0). If t=N—i then ek (Or) = eg#(0,T') and the
inclusion (3.28) is obvious. On the other hand, if t < N — i then,
setting

j=t
= Z bjeeel*j
j=0

one has 8 € e/ gr)(OF) and so B — & € . gy, (€. (F/K, — U;,0)). But
by Lemma (3.24) one knows that eger,€ey.o/ (F/K, —U;,0)and therefore
B— 5= (B—)eer, e et (F/K, — Up0) € eqst sir1(05).

Thus B = (B—238) + d€eg kr)(0r) as was required to prove (3.28).

This then completes the proof of Theorem 3. 0
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4. THE NON-CYCLIC CASE

In this section we shall prove Theorems 4 and 5 (in §§ 4.1 and 4.2
respectively). In this non-cyclic case our results are only partial since
we do not have good descriptions of the associated orders &k c;(J).
Indeed the two results we prove here both essentially result merely
from a first analysis of the situation in the ‘smallest possible’ non-cyclic
case, i.e. that in which Syl,(G) is of type (p,p). In § 4.3 we shall briefly
discuss a possible way to improve our results.

4.1. A proof of Theorem 4.

We first note that Frg(f,) = Frg(#,) for any subextension L'.
Indeed, if K& L' & L with H= Gal(L/L"), and if Frg(/) for some
Ie g, then ey g6(I) is an O-order and eyl = () ey ki6)(I) . Without
loss of generality therefore, in proving Theorem 4 we may pass to any
subextension L’ such that |L:L’| is a power of p. Taking this into
account we shall assume in this subsection that Syl,(G) is an elementary
abelian group of order p°.

The result of Theorem 4 is an immediate consequence of the
following result.

ProrosiTioN 4.1. — There exists an ideal Ie #; such that
Iog o i6y(I) if and only if R < p*(p*"'=1)"".

Remark. — If s > 2 the condition here is that R < p. If s = 2 the
condition is that R < p + 1.

We first note that if R < p then O, 04 o k6(0,). Indeed if R < p
then Proposition (3.9) and Lemma (3.1) together imply that
A giem((O)") = M(0,G/H) for any cocyclic subgroup H < G, and
so G-o-equivalence follows trivially from the inclusions (1.11). (In fact
one can also prove that O, o; o k((0,) implies R < p). On the other
hand, if s =2 and R=p + 1 then it is not difficult to prove that
971 0 6 ke (PF) -



FACTORISABILITY AND WILD EXTENSIONS 417

We need therefore only prove that I og o/ x,(I) == R < p*(p°~'—1)7'.
The analysis of G-o-equivalence we shall give here follows the same
pattern as that used in order to prove Theorem 3.

Let H denote any subgroup of Syl,(G) of index p. Set F = L" with
I' = G/H = Gal(F/K), a cyclic group of order pR. Set e = er € K[I'].
Let/ = p! and then define integers * and i1 by I? = pY and
Try(I) = . By Lemma (1.13) the ramification filtration of G is

G=G9=GY>G® =1, and so the formulae (1.15) specialise to
give

4.2) 1+ = L:“] and 1+ =1+R+ IiI%(z—l—R)].

We set of' = of (F/K,1xs—pR,1*), ie. o' = p* A y(D)¥. We shall
prove that

A g(I7) = A gr(L') = R<p*(p> '=1)7".
For this we shall first show that if both

“43)(@ *—R<vge(I))<K<1*—R+p—1<1*

and

(4.3) (b) ve(e(Try(I))) > vp(e(I))
then

(4~4) »Q/K[r]( H) % MK[I‘](J%,)-

We shall then show that the condition R > p*(p*~'—1)""' is sufficient
to ensure that the inequalities of (4.3) are satisfied.

We assume for the moment then that (4.3) is satisfied, and deduce
(4.4). We set F, = F'1. Using the notation of §3.1 we let 6 denote
the character of C which is defined by the condition
up g0 = —vp (e(I")) modulo (R). For this character Lemma (3.3) and

(4.3) (@) together imply that
vr(ese(I™)) = vp(e(I™)) < 1*

so that ege ¢ of ;r(I¥). We will now show that epe € o gyry(/') which
thus establishes (4.4).
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We first note that pe,.#(0,T) = pe,O[T'] + pOeye = of'. Indeed,
1x > 1* so that pO[I'] « &/'. Also, by assumption one has

vr, (e(Tra(D))) > ve, (e(IM)),

and so Lemma (3.3) together with the first inequality of (4.3) (a) implies

vr(pese(9 %)) = vp(eoe(Try(D))) = pop, (ese(Try(1)))
2 p(og,(eI")+R) = 1* + (p— DR > 1*

so that pese e .o/’. Now
1+ — pR<1*— R

(an easy consequence of (4.2)), from which we deduce that ey¢ .o/’
and also that /' is a multiplicatively closed sublattice of
eod (L/K,1*1*) = eool ir)(I") S eot (0,T). Thus if y« is a generator
of Syl,(I') and

i=p—2

a= Y ag(yx—1) + aeee o’

i=0
{ai:izo’la"',p_z}u{a] < @a

then o e o/’. But of = afey + a’epe modulo pey# (0,I') and hence
abey + aPeqe € /' . Hence aPege € of xiry(I™) so that p|a®,ie. pla. Hence
aleq € o/’ and therefore pla,. Now o is an arbitrary element of .o/’
and our argument has shown that

ege.o = (a,+ a)ege € pegM (O, 1") < o' .

Thus ege € o (/") as was required.

It therefore suffices to prove that the conditions (4.3) are satisfied
whenever R is ‘sufficiently large’. Using (3.5) it is easy to see that
(4.3) (a) is satisfied for any R > p. As for (4.3) (b) the explicit formulae
of (3.5) and (4.2) give

vp (e(Try(D))) = B <1 +R+[psl_l (-1 —R):|—R+p— 1)]

op, (e(I")) = B([f]—m p—lﬂ.

and
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Hence condition (4.3) (b) is satisfied if and only if

O P e | (ER ]

which 1is satisfied if

1 1
[p ' P!

which is satisfied if

1 R 1
1+ R+ F"l‘ps_1>F+p,

which is satisfied if

R - R/p™">p,
which is satisfied if and only if

R > pS(ps—l__l)—l.

4.2. A proof of Theorem 5.

In this subsection we prove Theorem 5. For this we shall first make
a reduction to the case of p-groups.

If O, Ag Ak (Or) then, by (1.6), for any subgroup H < G one
has

(4.5)u (O Ao A ki61(On)".
But (0,)¥ = O,r and, if p ¥ ord (H), then

'SZ{K[G]((OL)H = eHMK[G]((QL) = MK[G/H](eH((DL))
= &{K[G/H](((OL)H) = Jzfmo/m(@L H).

In order to prove Theorem 5 we need therefore only consider the case

of G a p-group (i.e. for the reduction use (4.5)c with C the subgroup
of G of order R). In this section we shall therefore assume that R = 1.
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In general of course for a subgroup H < G one has
A x16)(0)" = of (L¥/K,i(H),j(H)) for suitable integers i(H) and j(H)
(cf. Lemma (1.12)). In proving Theorem 5 we shall choose a particular
subgroup H, < G, compute explicitly the integers i(H,) and j(H,), and
then show that (4.5)y, implies n, = n,. Of the subextensions. available
to us Proposition (2.2) gives us explicit information on the maximal
elementary abelian extension of K which is contained in L. Thus we
choose H,= G®, and set F = L¥ . This field F is an elementary
abelian extension of K of degree p*. We set I' = G/H, = Gal (F/K).

We assume now that (4.5)y, is satisfied, i.e. that Op Ar A g161(0 ),
or equivalently (Theorem 1) that

(4.6) O[GT Ar o ki) (OL)™
To compute with expression (4.6) we must first describe the lattices

A 6:(0,)" for each subgroup H such that H, < H < G.

Lemma 4.7. — If H is any subgroup of G such that Hi< H< G
then
ext(0,G), if ord(G/H)=p

p" N A k161(OL)" = { Oeq, if H=G
p' ‘A (F/K,—x,0), if H=H,,
where in case H = H, we have wused the identification
exM(0,G) = M (0,G/H), and x is an explicitly computable non-negative
integer which satisfies x = 0 < n, = n,.
Assuming for the moment the result of Lemma (4.7) one has
4.8) 1Pl if ord(G/H)=p
[ L ki) (O)7: O[GT)e = § i, f H=G
s{)%l_l)pSA(HOaK)’ lf H: H07
with
A(H09K) = [‘M(F/K’ _K,O) : @[r]](9
Now there are (p°—1)/(p—1) subgroups H such that H, < H < G and
ord (G/H) = p, and so the relation (4.6) is equivalent to the equality
[MK[G](@L)HO L O[G)7),
_(p=1
= ([ kia(O)° : @[G]le)l (”_')- l—[ [ k161 (O™ : O[G]™]o,

Hg<H<G
ord(G/H)=p
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which upon substituting (4.8) becomes
4.9) [(F/K,—%,0): O[Ty = 9k-

But on the other hand, from Proposition (2.2) one knows that
(4.10) [ k(O : O[Tl = k-

Now k >0 so that &/ (F/K, —x,0) S «(F/K,0,0) = o xi,(Of), and

hence (4.9) and (4.10) together imply «/(F/K, —,0) = & xr(OF) . But
this is clearly absurd if x > 0.

It therefore suffices for us to prove Lemma 4.7.

Proof of Lemma 4.7. — We may assume that G is not cyclic so
that s > 1. From Lemma 1.13 one knows that, for each integer i > 1,
the upper ramification subgroup G is equal to G’(i—1) and so has
structure invariants

pﬁli(n1+1~i), p52i("2+ = 8gi(ng+1—1)

-5 P
where, for each integer i > 1 and j=1,2,...5,

s = (1 om+ 1= i>0;

it 0, otherwise.
In particular then G™Y > G™1*Y = 1. We define an integer d by

pd = ord (G(nl)),
so that 1 <d < s and

(4.11) s =d < n, = n,.

If G® < H then combining (1.14) and (1.15) (a) gives

(4 12) ULH(TIH((DL)) _ [Ordl(H) (2 . ord(H) + (n1 - 1) ord (G) - t"l - 1)]
-1

From (1.14) one obtains

i=ny
Pl <, +1 z ord (G/G")
(4.13)
P+ Y ord (G/GP) < 2pV.

i=0

It
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In particular therefore, if ord (G/H) = p equation (4.12) gives

-1, if d>1;
4.14) v a(Trg(0)) =2 + (n,—1)p + {_ 2 i d=1.
Furthermore, in this case one checks that
A(LP/K,1,0) = #(L"/K,0,0) = #(0,G/H),

and this together with (4.14) proves the first assertion of Lemma 4.7.
The statement for the case H = G follows by a similar calculation. As
for the case H = G, the expression (4.12) gives

1,1

@.15) wmwwm—mﬂw=2+fjhﬂ
_fo, if s=d
(4.16) ‘{< 0, if s>d,

where here the last equality is a consequence of (4.13). But this proves
the final assertion of Lemma 4.7, with the integer — k equal to the
right hand side of equality (4.15). (The condition k = 0 <>n; = n, then
follows from combining (4.11) and (4.16)).

4.3. On possible further progress.

It will be clear that our results in the non-cyclic case are restricted
precisely because we have no general technique for explicitly describing
the orders /() if G is not cyclic. In fact, even for the case Syl,(G)
is of type (p,p) we have not been able to overcome this difficulty except
in special cases. In this subsection we assume (without further comment)
that Syl,(G) is of type (p,p) and briefly describe the implications of
possible results in this case for the general problem of Open Question
(2.3).

If H is any non-trivial subgroup of Syl,(G) then G/H is cyclic and
we can use the techniques of §3.1 to explicitly describe the lattice
A gio)()¥ for any given I € .#,. Furthermore, in all examples for which
we have managed to completely describe &7k s,(/) one has

(4.17) Axa(D) = 0[G] + Y, gD

1<H<G
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Explicitly we know this in the following cases :
~— r=1and I = g} with j =0 and 1 (cf. Proposition (2.2));
—p=3,r=1and I = g} withj=0,1,2,5, and 6;
—p=3,r=2and I = g}, withj=0and j=1.

We believe that (4.17) may well be valid for all Te.#, but we
cannot prove this. The validity of (4.17) has interesting implications
concerning Open Question (2.3). In fact by the same kind of analysis
as used in §§4.1 and 4.2 one can prove that if an ideal I € .#, satisfies
(4.17) then Frg(I) if and only if R = 1 and either I = O, or I = gp,.
In particular therefore if (4.17) is valid for all /€ #, then (since any
non-cyclic abelian p-group has a quotient of type (p,p)) the conclusion
of Theorem 4 is immediately strengthened to give R = 1. It also seems
likely that any technique which would settle the question of the general
validity of (4.17) would provide methods giving a sharpening of the
conclusion of Theorem 5. We hope to return to this general question
in a subsequent paper.

5. A COMPARISON RESULT

In this section we shall give a proof of Theorem 6, the notation of
which we shall continue to use. Throughout we identify G and G’,
and hence also the inertia subgroups- G, and G,, by means of the
given isomorphism ¥.

Equivalence (1.19) implies that both
Fri(p;) < Fry(p;) and  Fre(pr) < Fry(prn).

Also, under the assumptions of Theorem 6, equation (1.18) gives an
equality

(5.1) O ®@LO»‘2{L0[G(0)1(S@D = 0, ®@L;ML;,[G(0)1(SOiL') )

where here we write A for the compositum field L,L;. Therefore we
need only deal with the totally ramified extensions L/L, and L'/Lj.
For notational convenience we shall henceforth assume that the extensions
L/K and L'/K' are totally ramified, i.e. that G = G, = G{, so that
K=1L,and K' = L.
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Now Corollary (1.10) implies that

(5.2)
Fri(p1) < 910c Zxie(91) and de[G](pi),d‘K[G](Gf) = fpi,aL(GT)

and similarly upon replacing L/K by L'/K’. But by direct computation
O ®0Kf;o‘L,aL(GT) = 04 ®0K’fpi',0L’(GT) )

and also from (5.1) one has

: — N +
O ®0deK[G](plL),0K[G](GT) = 0Op ®0K’fwK'[G](p',_'),0K‘[G](G )

so that

i Y = i t i = i t
de[Gl(p'l_),tVK[G](G ) = fp'L,(UL(G ) = de’[G](p'Lr),ﬁK’[G](G ) = prr,@L'(G ).
In order to prove Theorem 6 we need therefore only demonstrate that

1 9 JZ"'K[G](SOD < Py oA gie(Pr)-

By symmetry we need only prove one direction of this double implication.
Henceforth we shall assume that g} o; o/ (91) and so aim to prove
that @} og o 6(9t). To be specific, if H < G is cocyclic and

I' = G/H we now assume the equality

(5.3) A k(9D = A ke (Z kie)(0D")
and deduce from it the equality
54 Ao (P)") = A (A w6 (@1)").

Now as a consequence of (5.1) one has
(5.5) 04 ®0de[r1(dx[cl(592)il) = 0y ®(9,{lﬂ1{'[r1(ﬂx’[o](pil)”).

In order to similarly compare the left hand sides of (5.3) and (5.4) we
shall need a lemma concerning cyclic extensions.

Let F/E (respectively F'/E’) be a totally ramified cyclic extension
of degree p™r(p tr) with E (respectively E’) a finite unramified extension
of Q,. Set A = Gal(F/E), I = Syl,(A) and let Q denote the subgroup
of A which has order r. By fixing an isomorphism A — Gal (F'/E’) we
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shall henceforth identify these groups. As in § 3.1 therefore, to each
character 6 € Q' one can associate integers upgoe and up gz 4, €ach
belonging to the set {j: 1<j<r}. 4 priori it need not be the case that
Upig.00 = Upr g0 fOr all characters 8 € Q'. Thus we use a prime ' to
denote the induced permutation of Q' which is given by

Upr 500" = UF|E.06 for all 6e Q.

For any Og[A]-lattice (respectively g [A]-lattice) X one has a decom-
position

X= & eeX= (O] €9Xe,

oeqf peql

where here each X, is an Og[II]-(respectively Oy (II]-)lattice spanning
E[IT] (respectively E'[IT]).

The key to our proof is the observation that, for any character
0 e Q' and any ideal I € .#, the abstract structure of the lattice of g, (D)o
depends only upon the valuation vx(/) and the integer upz,4. TO be
more precise we let E denote the compositum field EE’. Also if X
(respectively X') is an Og[Al-lattice (respectively Oz [A]-lattice) then we
shall write X )( X" to denote the equality Oz ®¢, X = 0z ®,,X". In
the sequel we shall use without mention the fact that scalar extension
is a faithfully flat functor, i.e. that if X spans the E[A]-vector space V
then (in £ ®;V) one has V n (O ®o,X) = X.

LEMMA 5.6. — For any integer x and any character 0 € Q' there is
an equality

A a1 (9F)e X A gria 0% or -

Before proving Lemma 5.6 we demonstrate that it is sufficient to
prove (5.4).

Set F=L” and F' = L'", with E = K and E' = K'. We identify
Gal (F/E) and Gal (F'/E’) by means of the isomorphism induced by
the given isomorphism ¥ :G — G'. Lemma (5.6) implies an equality of
sets

(5.7) AOA® oy kri(91)")e: 0 € CT}
= {@A®@dex'[r]((80£’)ﬂ)e :0eC'}.
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On the other hand, by taking (5.3) together with the equality (5.5) and
the middle inclusion of (1.11), one deduces that, for any character
0eCt,

(5:8)y Op ®op A gy ((901) e E Or ®x Jzfmr}((SOi)‘H)e-

By combining Lemma 5.6 together with the inclusions (5.8),r one
deduces that

(5-9) A (91) e E A i ((01) e

for each character 8 e C'.

Let now T denote the set in (5.7) (say on the left hand side). We
partially order 7 by set theoretic inclusion. As a consequence of the
inclusions (5.9), the permutation 8 — 8’ induces an increasing permutation
of T. But there can be no strictly increasing permutation of a finite
partially ordered set and so one must have equality in each (5.9)y, and
hence in each (5.8)y. Thus, one has

On ®oy S xr(P1)) = Or @y S wn(91)")

and by combining this with (5.5) and (5.3) one obtains the required
equality (5.4).

It thus suffices to prove Lemma 5.6.

Proof of Lemma 5.6. — Set I = p% and I' = p} . Fix a character

0e Q. Let 8« denote any generator of IT. Using (3.5) and (3.7) it is
not difficult to prove that

Bx—1)eg M (Og, A) L peg M(Og,A) < eg.o gipy (1),
and similarly that

Ox— Deg M (Ogr,A) U pegr M (O, A) < eqrol gria(I').

Given the explicit descriptions of e # (Og,A) and ey M (O, A) afforded
by Lemma 3.1 it therefore suffices to prove that

( { @EeeeAi) N JZ{E[A](I)X< G:)O @EreereAi> ) MEI[A](I’) )
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For each non-negative integer i such that i < m we set F, = F%, so
that |F: F;| = p'. We shall also write e; for the idempotent ex, € K[A}]
and v; for the valuation of the field F;. As usual we shall identify Q
with its image in each of the quotient groups A/A,;. For each pair of
integers (x,,%,) we set Z,(x;,x,) = & (Fn-i/E,x{,%,). We similarly
define lattices /j(x,,,) with respect to the extension F'/E’.

LemMma 5.10. — For each integer x and for each character 9 Q,
one has

(5.11) ( ® @Eeee,) N M,,(K,K)X( ® @E:eele,) N (K, K)
i=0 i=0
and

(5.12) < ® (OEeee,) N &im(K,K-Fr)X( ® @E,eelei> N (K, K+r).
i=0 i=0

Remark. — Note that the assertion (5.11) is sufficient to prove
Lemma 5.6. However in order to prove this we shall argue by an
induction on m, and for this we shall need the assertion (5.12) in order
to help with our inductive step.

Proof. — We shall first prove the claim (5.12). To prove this we
argue by induction on m. For m = 0 the result is obvious. We assume
that the result of Lemma 5.10 is valid for the integer m — 1. We now
fix a character 0 € Q'. For each integer x we let xz ;, denote the least
integer such that kg, = x and Kpgo = — Upgee modulo(r). For
brevity we shall often write k, in place of ky, when the extension
F/E is clear from context. For each integer j > 1 we then set k; = [kqp /]
and x; . = [(x,+r)p~’1. Choosing an element

o= aeqe, € ® Ogege;,
i=0 i=0
we first claim that
(5.13) o€ (K, k+r)=pla,.

To prove this we note that p.#(0z, A) < o, (x,x+r) (c.f. (3.1), (3.5)
and (3.7)), and also, as a consequence of Lemma 3.3, that

ae A, (k,ktr) < ae A, (K, Kot7r).
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Suppose now that o€ of,(k,,x,+r) and yet that pta,. Well
e, ¢ o ,(x,, Ko+ 1) and hence p‘|x, where t is the least integer such that
1<t<m and pJta,. Since p‘'|x, one has pfo = pf + pf*! and
hence if BeeyE[A] then

Be (Ko, Kot1) < B((05)") € (90r)** and Pe (ko trKxtr).
We set £ = A/A,. Now

(5.14) a((pr)") E (pr)"

j=m-—t
= (a,t+ae, + Z at+jeee):j€=9¢m—t(‘(t,'(t,+)-
i=1
On the other hand
(5.15) ae A (kotr,K,t+T)

= o — ey € A (Kot r,K0+7)
j=m—t

= ey T+ Z at+jeee):jedm~t(vt(et(50;0+r))"(t,+)'
j=1

But from (3.5) one has
| 1 1
et = Hssrrr(20) 1)
p p—1
1 p'—1
ceT [?(r_r<p—1) ' pt_l)] S

so that (5.15) implies
j=m-—t

(5.16) aey + Y a1 jeoes; € H m-(Kis Ky, 4).

j=1

Combining (5.14) and (5.16) we therefore obtain a.eq € o, (K, %, +).
But

K+ > K, = — Ug,goe modulo (r)
and so (by Lemma 3.3) this contradicts our initial assumption that
p X a,. This proves (5.13).

Set & = o — ayey regarded as an element of E[A/A,]. From (5.13)
one has

ae Ak, Kk+tr) < o — apey € A (K, Ko+ 1)

< Qe ﬂm—l(vl(el(so';o))a‘ﬁ,»«)-
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Set k" = v,(e,(9¥))r,/5,0- Now, using (3.5), one easily checks that

v,(e1(pF)) < ¥ 4 < vi(e(pF) + 7,
and hence (by Lemma 3.3) that

"dm—l(Kth)s lf KT > K1,+ 5

5.17 + a i
(5.17) aed, (xx r)‘bae{&/m_l(,a,.(wr), otherwise.

But for any character 0 € Q' the integer Up, 506 18 uniquely specified

by
Ur 1E00 = P~ ' Upp0e modulo (r)

and hence (given A) the choice in (5.17) is determined completely by
the values of x and wupp.e. By using a similar analysis of
A (x,x+7r) the claim (5.12) therefore follows by our inductive hypothesis
atm— 1.

We can now prove the assertion (5.11). Indeed,
o€ A p(K,K) < o — a8 € A (Ko, Xg) <> Q€ Ay 1(v1(e1(9F))K1)-

But
v1(e(P¥)) < K; S vie(pP) +r

and so the required claim follows by an induction on m just as in the
argument used to prove the claim (5.12) (i.e. via choices of the form

(5.17)).

This completes the proof of Lemma 5.10 and hence also the proof
of Theorem 6. O
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