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0. Introduction.

In this paper, we shall generalize the result obtained in our previous
paper [H3] for Q to totally real fields F. Namely we will give a p-adic
interpolation of the standard L-function ^(s,f,g) of GL(2) x GL(2)
over F regarding all ingredients s and cusp forms f and g as variables.
Although the idea of dealing with this problem is the same as the one
employed in [H3], we encountered new difficulties arising from the fact
that the number of variables of our p-adic L-function grows very
rapidly according, to the degree of F. In fact, our p-adic L-function
has at least as many as 2[F:Q] + 1 independent variables. The reason
for this many number of variables is that the p-adic nearly ordinary
Hecke algebra h"ord defined in [H2] is an algebra finite and torsion-free
over Zp[[Zi, .. .,Xr]] for r ^ [F:Q] + 1 and our p-adic L-function is
a p-adic analytic function on the spectrum of the product of two copies
of this big algebra. The p-adic continuation of such L-functions along
the cyclotomic line (hence of one variable) has already been obtained
in a series of works of Panchishkin[Pl] and [P2] by a method totally
different from ours. Thus the main point of interest in our work is the
continuation including the non-abelian variables on the spectrum of the
Hecke algebra. Our method of interpolation is a p-adic adaptation of
Shimura's way [Shi] of showing the algebraicity for these special values,
which we call the p-adic Rankin-Selberg convolution method. In fact,
Shimura went much further and showed algebraicity for ^(m,f,g) in
[Sh7] and [Sh8] for each pair of forms f and g of mixed weight (i.e.
the weight of f is greater than that of g for a part of infinite places
of F and for the other part, the weight of f is less than that of g).
In this paper, we will show the algebraicity for p-adic L-functions only
when the weight of f is larger than that of g at every infinite place.
Thus the evaluation of our p-adic L-function when f and g are of
mixed weight is still an open question. This paper is written with an
important application to the Iwasawa theory for CM fields in mind
which I intend to discuss in subsequent joint articles with J. Tilouine
(cf. [HT1-3]). In fact, it seems that the solution of the many variable
main conjecture for CM fields might not be so far away and its proof
should be based on deformation theory of Galois representations
established by Mazur and the theory developed here.

Now let us introduce some technical notation to state our result in
a precise form. In fact, we shall use the notation introduced in our
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previous papers [HI] and [H2] and here we briefly recall them. We fix
a rational prime p, algebraic closures Q and Qp and field embeddings
h '• Q -> Q^_and ^ : Q -> C. Let I be the set of all field embeddings
of F into Q. We may regard / as the set of infinite places of F via
?oo and then the weight of modular forms is a pair of elements (fe,w)
in the free module Z[/] generated by embeddings in /. We identify
F^= F®^R with R1 and embed F into R7 via the diagonal map:
^^(^Lez. Then the identity component G^+ of GL^F^) naturally
acts on ^ = ^l for the Poincare half plane ^f. We write C^+ for
the stabilizer in G^+ of the center point Zo = (^/^T, . . . ,^/rT) in ^.
Then for each open compact subgroup 5' of GL^F^), we denote by
M^(5';C) the space of holomorphic modular forms of weight (fc,w)
with respect to S . Namely M^(£/;C) is the space of func-
tions f : GLg^)-> C satisfying the holomorphy condition on GL^F^)
including cusps and the automorphic condition :

f(ocxM) = f(x)/^(i^, zo)"'' for a e GL^F) and u e 5'C^ + ,

where 7,,,̂  ^, z\ = (ad-fcc)-"(cz+^ for ^ ^ e <7^(Foo) and

ze^ . We write S^(5';C) for the subspace of M^(5';C) consisting of
cusp forms. Here we used the convention that c8 = ]~[ c^ for

a e Z

<^ == (c^^eC1 and s = ^ s<,a e C[7] and we refer to [HI], § 2 for the
06 I

exact definition of these spaces where the space S^(5';C) was written
as S^^j(5;Af2CF);C). Actually we fix a pair of weight (n,u) such that
n ^ 0 (this means n^ ^ 0 for all c) and v ^ 0 and put fe = n + It
and w = ^ - v for r = ^ cr. To have a non-trivial modular form of

CT

weight (fe,w), we need to assume that n + 2v = mt for an integer
m e Z. In fact, each irreducible automorphic representation n spanned
by forms in S^(5';C) has non-unitary central character which is equal
to | | A m up to finite order characters for the adelic absolute value | ^.
The twist ^ = n ® | ^ ' 2 is called the unitarization of n. Let us now
define the L-function ^(5,f,g). Let feS^(5';C) and ge S^(S';C) be
commun eigenforms of all Hecke operators outside the level of S and
S ' . Let K and n' be the irreducible automorphic representations spanned
by f and g. Finally let f and g° be the primitive forms associated with
7i" and K'\ Write TT" = ® <, TT^ = ® 71^, and < = 7i(r|q,r|;) or
^^^ph ^q" = ^(^p^q) or cr(^q,^), whenever possible, for principal
series representations 7c(aq,Pq) and special representations cr(aq,pq). Here
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we used the convention adopted in [H5], §2 to write down these
representations and, for example 7t(r|q,r|q) or a(r|^,r|q) is the unique
infinite dimensional irreducible subquotient of the induced representation

of the character : ( a , ) i—^ r|q(a)r|q(d) \ad\m. Let r be the integer ring

of F and let cbq be a prime element in the q-adic completion Xq of r
at each prime ideal q . We may assume that riqTiq'^x) = | X q " 1 (resp.
^q"1^) = |x|q~1) if n^ (resp. n^) is special. Then we define the Euler
factors D^(X), if neither K^ nor n'^ is super cuspidal, by

D,(X) = (l-^Cq^CqWCl-^^q^^qWCl-^Cq^^qW
x (l-^(q)Ti;(q)A-),

where

T1q(?) =

^(q) =

r|q(o)q) if r|q is unramified

0 if r|q is ramified

r|q((0q) if r|q is unramified and n^ is principal

0 if either r|q is ramified or Tiq is special

and we define ^q(q) and ^(q) in exactly the same manner for n ' ^ . If
either TT^ or 71̂  is super cuspidal, we simply put D^{X) = 1. Then

(o.i) ^(s.f.g^n^c^r1"5)"1

and
^(s,f,g)='[lD^(q)-l-s)-l.

^P

Thus up to finitely many Euler factors, ^(s,f,g) coincides with the
standard L-function L^s^^n^). Therefore, in general, our p-adic
interpolation only yields a possibly meromorphic p-adic L-function for
the primitive complex ^-function L(s,7t"x 71'"). We hope to discuss the
problem of ^-adic holomorphy for primitive L-functions on a future
occasion.

Now let us introduce the notion of p-adic Hecke algebras. Let r be
the integer ring of F and fix an ideal N prime to p in r . Then we
consider the open compact subgroups:

-W) = ^1 °\^U\a=\ mod^, d=l modJvp", c=OmodNp^
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where U is the standard maximal open compact subgroup of
GL^FA.). To consider the Hecke algebras, we fix a finite extension
K / Q p in Qp containing F° for all a e / and write (9 for its p-adic
integer ring. Then we write h^A^;^) (a= 1, . . . , oo) for the Hecke
algebra for the space S^^p^C) with coefficients in (9 and
h^W";^) for its nearly ordinary part. See § 3 in the text for the
detailed definition of these algebras. Especially h^(./Vp°°;^) is the
natural projective limit of ^k,w(Np^(9) with respect to a (and hence is
a large compact ring) and is known to be independent of the choice
of (/c,w). Thus we write ^•^(N',(9) for h^^p00;^). In h"0^;^),
we have a natural Hecke operator T(y) (yeF^.) corresponding to the

double coset action of S^)^' . ] S(p^) (in fact, we need to modify

the usual Hecke operator to obtain the right definition of T(y); for its
precise definition, see §3). The central action of F^ on S^^p^C)
gives a group homomorphism : F^ -> h" '^(N; (9Y , which actually factors
through the compact quotient:

Z(^)=^/FX^(pGO)F^^

where F^+ is the identity component of F^ and 5^(p00) =
F| S^) n F^- We will identify Z(N) with the Galois group of the
a

strict ray class field modulo Np^ over F . Similarly, the map MI-^T(M)
for uex^ for Xp = r ®zZp is actually a group homomorphism. Thus
we have a continuous group homomorphism:

G = G(N) = Z(N) x r; -^ ^^(N^Y .

Let ^[[G]] be the continuous group algebra of G. Then by the above
homomorphism, ^•^(N,(9) becomes naturally an algebra over ^P[[G]].
We now fix a decomposition G = W x Gior for the maximal finite
subgroup Gfor of G and W ^ Z; (2[F: Q]^r^[F: Q]+ 1). Then the
continuous group algebra A = ^[[W]] is non-canonically isomorphic
to the r-variable power series ring over ( 9 . Then it is seen in [H2],
Th. 2.4 that

(0.2) ^•^(N,0) is finite and torsion-free over A.

Let L be the quotient field of A and we fix an algebraic closure L of
L. We take a pair of primitive (in the sense of Th. 3.4 in the text)
A-algebra homomorphisms ^: h" ̂ (N; 0) -> L and <p : h" ̂ (J; (9) -^ L.
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Let K (resp. M) be a finite extension of L containing the image of ^
(resp. (p). Let I (resp. J) be the integral closure of A in K (resp. M).
Extending scalar if necessary, we may assume that Qp n I = (9 and
Qp n J = ( 9 . Our p-adic L-function is a p-adic meromorphic function
on the space (̂1) x ^(J), where

•̂(1) == Hom,,^(I,Q^) = Spec(I)(Q^).

In fact, it is an element 2 of the quotient field of I®(pJ, where
I ®(pJ is the m-adic completion of I ®^J for the unique maximal ideal
m. We consider it as a function on ^(f) x J'(J) by

2(P,Q) = P ® 0(^) for (P,<g) e ̂ (1) x ^-(J)

whenever it is well defined. Any point P : I -> (9 in J*(I) is called
arithmetic, if for a small neighborhood of 1 in W, P coincides with
the character Z(N) x r; 9 (z,a) h-> ̂ (z^a'e ^x for a pair of weight
(n,r) with n ^ 0, u ^ 0 and n + 2y = mt, where J^ : Z(N) -> Zp is
the cyclotomic character given by the Galois action on Upoo. Here we
used the convention that a" = n^- we write ^^L ^C^) and v(p)

0

for the corresponding m, n and y for each arithmetic point P . Then

G9(z,a) \-> P(\(z,a))J\r(z)~ma~v

is a finite order character of Z(N) x Xp . We write this character as
(\|/p, v(/p) for characters \|/p and \|/p of Z(N) and r^ , respectively.
Similarly, we define a pair of finite order characters (ZQ,XQ) of Z(N)
and r^ for cp and an arithmetic point Q of ^(J). These characters can
be computed explicitly (see §3). Let j^(I) be the set of arithmetic point
of I. For each arithmetic points (P,g)ej^(I) x j^(J), it is known
that P(HT(}Q)) and Q((p(T(y))) are algebraic and hence can be considered
as complex numbers via i^ (see § 3). Moreover there exists a (unique)
common eigenforms fp (resp. go) in S^^d^C) for

k = n(P) + I t , w = t - v(P) (resp. k=n(Q)-}-2t,\v=t-v(Q))

and for suitable a such that

(0.3) fp|TOO==P(MTOO))fp and gQ|T(^)=e((p(T(^)))gQ (see § 3).

By near ordinarity, the automorphic representation attached to fp and
gp are never super cuspidal at places over p. Our p-adic L-function Q)

interpolates the special values ^( 1 +—'=————. fp,g^ ) for the complex
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conjugate form g^ of go. We write K" (resp. n " ' ) for the unitarization
of the automorphic representation spanned by fp (resp. g^) and use the
notation introduced above (0.1). Especially ^p , ^p , r|p, r|p are meaningful
for primes p over p . We also write W(fp) (resp W(^o)) for the prime
to p-part of the root number of the standard L-function of n" (resp. TI'")
(see (4.10c) for its precise definition). Finally we fix a finite idele d
whose ideal is the absolute different b of F and put D = \d\^1 - Then
our result can be stated as

THEOREM I. — There exists a unique element Q) in the quotient field
ofl®ffS satisfying the following interpolation property : Let (P,Q) be a
pair of arithmetic points in c^(I) x ^(3) satisfying the following two
conditions :

(0.4a) t ^ n(P) - n(g), n(Q) - n(P) + 2t ^ (m(P)-m(Q))t and
v(Q)^v(P),

(0.4b) %Q and <Pp are both induced by finite order Hecke characters
of F ^ I F " unramified outside p ,

for which we use the same symbol, and put
(^(p (~)\ = r\l+m(Q)-m(P)'j{-n(P)-n(Q)+2v(P)-2v(Q)-4t}

^{2v(P)-2v(Q)-n(Q)-3t}^n(Q)-n(P)}

x r,(n(Q)^-v(Q)-v(P)+2t)r,(v(Q)-v(P)+t),

JV (J\^m^2')+l^/r'(o \

W(P^Q} = z^z'^p^'pS-1) Jr^^r^w'^
^ p^^^lnri-^IG^p-1^-1)^^-1^-!)

lii W(dp)\^(dp)\GW-1^-1)

where G'(ap) is the local Gauss sum which will be defined in § 4 and

r,(s) = f[ r(5j, {s} == ^5,eC for s = ^ 5,aeC[/].
a e I a o e I

Then Q) is finite at (P,Q) and we have
/ m(Q)-m(P) ^

^p l+——————'fp, g^
\ •" yw^w^^c^^pr^cp,^)-

(^,B))

where fp is the primitive form associated with n" ® \|/p, (f^>,fp) fs the self
Peter sson inner product of f°p and S(P) and E(P,Q) are Euler factors at
p which will be defined in Lemma 5.3 below.
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We can even determine the denominator of Q) in the following
sense : For any element H in I which annihilates the congruence module
of K (see § 5 for definition), (77® 1)̂  is integral, i.e. is contained in
I®(pJ, The value H(P) of H may be regarded a p-adic analogue of
self Petersson inner product (f°p,fp) (see for example [H7]). Since
(77001)1) is an element of I®(pJ, which is a finite extension of
(^[[WxW]], formally it has 2r variables. However, from the fact that
^,(s,fp® ̂ , g^OO ̂  ~ ̂  = ^(s,fp, g^) for idele class characters ^ unramified
outside p, we see that the number of independent variables of 2 is in
fact equal to 2[F: Q] + 1 if the Leopoldt conjecture is true for77.

The root number W{P,Q) and the constant C(P,Q) look complicated
but in fact are compatible with the e-factor at p predicted by the
standard conjectures proposed by Coates and Perrin-Riou [Co] (see
also [P2]) if one admits the existence of the motives Af(fp) and M(go)
attached to fp and go, which is certainly verifiable in view of the
method of Blasius and Rogawski [BR] of constructing Galois represen-
tations of fp and go (1). Another method of construction of such Galois
representations by Taylor[T] combined with a result of Carayol tells
us that the Galois representation of M(fp) (x) M(go)v satisfies the
hypothesis I(p) in [Co], §6, where M(go)^ is the dual of M(go). In
fact, the p-adic Hodge-Tate type of the motive M(fp) at CT e I is equal
to its Hodge type at <j (considered to be an infinite place) given by
(n^+ l+i^,i;J for the weight (n,v) of fp (e.g. [H5], Prop. 2.3, [H8],
Remark 5.2). Hence the weight of M(fp) is given by m(P) + 1. Therefore,
up to finitely many Euler factors outside p, we have

(*) ^(l+^^^fp, g^) = L(0,M(fp)(g)M(gQ)v).

Under the condition (0.4 a), the motive M(fp) (x) M(go)v is critical in
the sense of Deligne [D]. To see the compatibility of our result with
the standard conjecture, we may assume that v|/ = v|/p is trivial by
replacing fp by fp ® \|/ and go by g^ (x) ^-1 (this is tantamount to
changing point P and Q). Since these conjectures only deal with
cyclotomic twists, by assuming that N = J = 1, we can get to the
point much faster, getting rid of the innocuous contribution outside p .
Moreover under this assumption, the above equality (*) is exact. For
0 This remark and the following explanation is added under the request of the referee

of the paper. Although this might be clear from the Langlands functoriality and our
expression of the L-function, it might help the reader to understand the constant from
the motivic side.



HARUZO HIDA 319

the moment, we suppose that ^ is also trivial. Then, we can take

c^M^^M^D = Q(P,g) ]-[ G(Xp)
with P

^l+m(Q)-m(P)Q^g^ ^ ^i){-^(P)+2u(Q)+n(Q)+t}^_^{n(P)+3t}^{2t}^o yo ^

as Deligne's motivic period of (M(fp) ® A^g^ . The computation to
obtain this expression is standard and in fact can be found is many
places, for example, [P2], 1, 4, 5.3-4, [H3], Remark 4.6 and [H8],
Remarks 5.2 and 8.2. In [Shi] and in [P2], v(P\ (resp. v(Q\) is

^ — ^ / 7 _ 7 \

written as -CT-^ (resp. ̂ ——), and m(P) == k, and m(0) = I,. When

5CQ is non-trivial, we find another point Q' such that n(Q') = n(g),
V ( Q ' ) = ^(0) and ^Q/ is trivial. Then go= g^ S) ^ ' ~ 1 . Thus

M(fp) (x) Mtg^ = M(fp) (g) A^)^),

where for a motive M, M(/') denotes the twist by the Artin motive
attached to /7. Thus we may define

c^fp)®^^)^)) = 0(P,e)n^(XpXp)
p

because fl ̂ (XpXp2) ^(Xp-i) = n ^(XpXp) mod Q^)' . Since ^ = ̂ ,
p p

this explains the factor G(^-i v|/p-i) in ^(P,fi) and powers of 2ni in
C(P,g). We now concentrate on the following factor which really
depends on the cyclotomic twist:

(**) E'^Q) = ̂ Qjn^^^^^"1^-1^^^-1^-1),
Pip \^'w\

which is identical with the factor defined in [Co], §6, in view of the
Hodge-Tate type of the motive given as above and the Langlands
functoriality property of the e-factor shown in [J] for L(5,7i"x ̂ lu) in
the case of non-supercuspidal local representations (see Lemma 5.3 for
the exact form of E(P,Q) and also (4.10 c) in the text). For example,
if M(fp) and M(g^) have good reduction modulo p , i.e. all the
characters involved: ^, ^;, r|p and r|; are unramified for all p|p, we
have

E'(P Q) = n (l-apPp-^Kl-apP^p))
plp(l-ap-lPp(P)^(p)-l)(l-ap-lp,(p)^(p)-l)'
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By our convention of the parameterization of the representation,
the Langlands parameters of n' (resp. 71): a? (p) ~1 ̂  (p) ~1

=^(p)- l^r(p)- l+m(Q)/2 (which is in fact written as ^(©) in Lemma5.3)
and Op(p)-\yr(p)-1 == ̂ p(p)^(p)- ̂ ^ (resp. Pp(p) == ̂ (p)^?)^2

and Pp(p) = ^(p)-^?)^^2) are eigenvalues of the Frobenius element
acting on the ?-adic realization of M{^^ (resp. M(fp)). Thus we see
from the Hodge-Tate type of these motives that this expression coincides
with the formula of the modification factor in [Co], Lemma 7. It is
easy to check that the expression of (**) in Lemma 5.3 in the general
p-ramified case gives again the modification factor in [Co], § 6. We will
not give the details of the argument since the detailed comparison of
e-factors and the Euler factors at p between motivic side and automorphic
side is given in [HT2], § 8 under the assumption that both ^ and (p
have complex multiplication. This assumption on 'k and (p is not at all
restrictive because locally at p, the local representation is of this type
and these factors only depends on local representations. Especially, the
restriction of our p-adic L-function to the cyclotomic line passing
through a given point (P,g) supplies a p-adic L-function attached
to the motive M(fp) 00 A^go^ described in [Co], Conjectue A for
general motives ; in particular, the restriction gives Panchishkin's p-adic
L-function [PI], [P2]. Anyway, noting that

S ^ / I | / /_ i\'2y(P)+2u(Q)+2n(P)+2^(Q)
u A-QooAQoo ^Poo^PooV 1^

is independent of P and Q, we could have written the evaluation
formula in the theorem as, when N = J = 1,

w.w-w^-^^^
&^'{^9(S/)

where

^P)^^—WW
pi>n'̂ )<?«NO

and for M(P,Q) = M(fp) ® M^Y ,

A(0,M(P,0)) = r^(n(Q) + v(Q) - v(P) + 2t)
x r^v(Q) - v(P) + t)L(0,M(P,Q)).

We hope this explanation clarifies the nature of the constants in the
theorem. When ^(s,fp,g^) is primitive (i.e., when the conductor of
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v|/p^Q is divisible by N J ) , we can get a simple expression as above.
However, if not, especially when local representation of either of n and
n' is super cuspidal at c\\NJ, the lack of a simple expression of the
local e-factor at q causes a little trouble (cf. [H3], Lemma 5.2 (ii)), which
is one of the reasons that prevent us from taking this formulation in
the theorem besides the fact that the theorem is formulated keeping
our later application in [HT2] in mind.

Now we give a brief outline of the paper. In § 1, we summarize
results on Fourier expansion and define the adelic ^-expansion for
complex modular forms. In § 2, we discuss the stability of spaces of
modular forms with integral ^-expansion coefficients under various
Hecke operators. This result will be used to prove in § 3 the duality
theorem between Hecke algebras and their spaces of modular forms.
This duality is a key to our convolution method. In § 4, we give an
exposition of the adelization of the classical Rankin-Selberg method
employed in [Shi], which is a little different from Jacquefs way [J].
In § 5, we restate Theorem I as Theorem 5.2 and deduce it from a
crude but more general result (Theorem 5.1), which in turn will be
proven in § 10. In § 6, we give an exposition of the computation of
^-expansion of Eisenstein series according to Shimura [Sh5] and in §8,
this computation will be incorporated into a definition of p-adic
Eisenstein measure which is more adelic than original Katz's definition [K].
In § 7, we summarize definitions and properties of various operators
acting on spaces of p-adic and complex modular forms, which are
necessary to carry out the computation. In § 9, we discuss the p-adic
Rankin-Selberg convolution method in detail.

Notation. - We summarize here adelic notation we will use. The
integer ring of F is denoted by r . We denote by F^ (resp. A) the adele
ring of F(resp. Q). We write F^ (resp. Ay) for the finite part of
FA (resp. A). Similarly F^ denotes the infinite part of F^. Any element
x e FA (resp. x e F^) is a sum Xf + x^ (resp. a product XyXoo) for
Xf^F^ and x^e^oo- For any x e F ^ and a prime ideal q of r , x^ is
the q-component of x . For infinite place ae7, we write x^ for the
a-component of x e FA . Then we denote by Op: F ^ / F -> Cx the standard

additive character such that e^(x^) = exppTcf^x^) - Abusing a little
\ CT /

this notation, for any element x and any subset X of F^ or F^ and
an ideal N of r , we write x^ and Xpj for the projection of x and X
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to Y [ F ^ , where F^ is the q-adic completion of F . We also write r for
q|N

the product f] Xq of the q-adic completions tq over all prime ideals q.
q

We extend these conventions to any algebraic group defined over Q of
F we shall use. Especially, we write G for Res^qG'Z^) and G^ is the
infinite component of G'(A) and G^+ is the connected component of
Goo. Similarly F^+ is the connected component with identity of F^.
We also write G(A)+ (resp. F^) for G(A^)G^+ (resp. F^F^+). We use
the notation introduced in [HI] and [H2] throughout the paper with
only brief explanation.

1. Fourier expansion of Hilbert modular forms.

Let F be a totally real field and N and M be integral ideals of F .
We write G^ = Res^Q((7L(2)/^). Let U= GL^(x). We begin with
studying the ^-expansion of Hilbert modular forms on G'(A) = GL^F^)
with respect to the various open compact subgroups given by

UO(N)= { ( a bd)eu{c EM}9

vlw = { ( a 2)E ̂ w= 1 mod Nx}'
U(N) = {f^ ^e V,(N)\a = 1 mod^rl,^c a ) j

^/WM) = ^^ ^)e^(^V) |^6Mr and a = d = 1 mod MNx\-

Let ^(7V) = U(N) n FA an(^ decompose
h(N)

FA = U Fx a.Up(N)F^ with fl.eFA/.
!=1

Let (n,y)eZ[I]2 be a pair of weights with n + 2u == mi for t = ^ a.
<T

We consider the space of modular forms M^(U(N);C) of weight (fe,w)
for k = n + 2r and w = r - v (cf. [HI], §2). We can also decompose

h(N) / _ ^ ^

G(A) = [j G(Q)t,U(N)G^ for ^ = (^ ^
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where (7^ is the identity component of G(R). We define several
discrete subgroups by

E = { s e v x \ E » 0 } , r^JV) = {eg^ e=lmod^},

£'(AQ = ^nr^AQ, and for a fractional ideal a,

TO a) = ̂  ^ e (^ a^ ̂ p-fcc e E, a = rf mod Ne E/E(N)\,

where ^ » 0 means that ̂  > 0 for all a e l . Then we see

tiE- U(N)tYlG^^ n <7L2(F) = r(N; a.) for a, = a,r.

For any congruence subgroup F of the form r(N;a,), we consider the
space Af^(T) of modular forms /: S -^ C satisfying the following
conditions: (i)/|^y(z) = f(j(z))j^,z)-1 = f(z) for all yeF and
00/lt,»a for all ae GL,(F) n (?<„+ has the following type of Fourier
expansion:

/k.a(z)=fl(0,/|,,,oc)+ ^ a(^,/lk,«,a)e^(^),
Oi«SeF

where fl(^,/|,,,a)eC and e^(^z) = exp (2ni ^ ^%) and actually i;
oe /

runs over totally positive elements in a Z-lattice in F . For each
feM^(U(N);C), we define f.(z) e M^(T(N; a,)) by

f,00=7t,.(«oo,zo)f(t,«co), (f^o ^J) = y".{.(z)\

where ^ = (^7, . . . , yTJ) ̂  S = ̂ l and y« e GL^F,) with
"oo ( z o ) - z . (Hereafter, we always write z=x+iy for xeF^, and
y e F ^ + . ) Then, as seen in [HI], (2.6 a), (2.8), this correspondence
induces an isomorphism:

ll(N)

M^(U(N);C) = M^(E- U(N) ;C) ̂  ® M,^(r(Ar;a,)).
1=1

Each element / of M^(r(N; a)) has the following Fourier expansion :

/(z) = a(0,/) + ^ a^,f)e^z) for the different b.
0«^eab 1

Now we compute a(e^,/) for s e E . By an easy computation, to have
a non-trivial /, we need to suppose that

(1.1 a) e*-21" = ^/a(E)'» = 1 /or a» £ e E ( N ) .
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We then have /(ez) = £""7(2) for £e£'(AQ and

(l.lb) a(^f) = e"^,/) for all e e E ( N ) ,

and fl(0,/) = 0 unless w e Z •( for t = ^ a.
oe 7

Now take feM^(?7(W);C) and consider the Fourier expansion of the
corresponding element f; e Mfc,^,(^(A^; a;)):

^z)=y^f(t^ x00)) = a(0,f,) + E a(i;,f,)e^z).
\ \ u A / / 0«i;6ab-l

We fix throughout the paper a finite idele d such that dx = b is the
absolute different of F . Let 0 be the composite of all F° in Q for all
a e l . Let r<i> be the integer ring of <3>. We write ^ for the integer
ring or a valuation ring of a finite extension Ky of 0. We then assume

(1.2) 7n -T, a^ is principal for every integral ideal a ofF and for
any a e7.

We choose a generator {q^eY^ of q^ for each prime ideal q of r
and define {a^e-T for each fractional ideal a of F as in [H2], §1.
Then {c^} is a generator of c^i^. For each y e F ^ + , writing y =
^-1 du with M e Up(N)F^_+ , we define a Junction FA+ 3 ̂  ̂  a(j,0 e C
and F ] i + 3 y ^ ^(y,f)eQp (if a (^ , fOeQ for all i) by

(1.3 a) ^f)=a(W{y-v}^v\a^ and
^f)=a(Wy,u^^^)-l

if y = ̂ a^du and ue Up(N)F^+ and y e x F ^ + ,
and otherwise a(y,f) = 0 and sip(y,f) = 0,

where J^ : Z(l) -> Q^ is the cyclotomic character such that
^(y) = V p ^ y / A 1 for y e F ^ . We then have, by choosing a, so that
^i,p = ^;,oo = 1 ,

(1.3b) ^p(y,f) = ^y,f){yv}(yp)-u for all ^eFA+ .

If y = ^ar1^ = ^ a ^ d u ' , then 0 « s = ^~1^ = u ' - ' u e U^N) and
hence e e £'(-^) and

a(^,f^/l; = aW,W = a^W^- = ̂ (^f,)^.

Thus a(^,f) (resp. a^(^,f)) only depends on the cosets of y modulo
^(A0(resp. U^Np^) = {ue U^N)\Up==l}). Similarly we define a
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function F^ ^ y^^(y,f) eC (if v=[v]t with [r]eZ) by

ao(.y,f) = fl(0,f,)|a,|l-"" if ^ = ̂ ,-1^ (ue U.(N)F^ ̂  eF?),

which is a function on CW) = F^/F: U,(N)F^. Define a function
fn on

^^^"((S ij-^6^ and xeFA}

by the Fourier series

fnl l ' x 1 I = lvl.^a-(W nii,i-i"AV0 l ) ) = ̂ ^w^y^
+ E ̂ ywwy^y^-^^y^^x)}.

s,»o
Then for all f , we have

fo(^°° ^))=^Lo,f.)+ ^ a^,f,)e^z)l
v v / / ^ 0«^eab-l J

-^fr T))-
We see easily from the above expansion that f, is left-invariant under
-B(Q)+ and therefore fo coincides with the restriction of f to B(A}
Namely we have

THEOREM 1.1. - Each teM^(U(N);C) has the Fourier expansion
oj the joilowing type :

W u)^ ^lA{ao(^,f)lj'lA"'1

+ E ^ aWmW}(^r''e^y^e^x)},
<l«t,eF

where F^ 3yi-> &o(y,f) is a function invariant under Ff Up(N)F\ (ie
it factors through Cl^N)) and vanishes identically unless weZ"t, and
FA+ sy^ a(y,f) is a function vanishing outside rF^+ and depending only
on the coset of y^U^N). Moreover, formally replacing e^y)e^x) by
V and (^) B by (^^)-B, we have the q-expansion :

f=^00- lLo^f)+ ^ ^yd,f)q^},
[- 0«S6FX J

where a^(y,f) = ao(j',f)J^(^-1)"".
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We call the above expansion as the ^-expansion of the p-adic
modular form corresponding to f (if a(^,f)eQ). Especially if one
specializes y to a,71, we can recover the ^-expansion of the p-adic
modular form f, out of the above expansion. To see this, first write
the expansion

^(30-^(^,0 + ^ a,(^ri,f)^4
I 0«^6FX J

as

^(yrl{^(yd^{yr} + E ^W^y^Y^d,)-^}
0«^e Fx

and then replace ^T-1 by [ |̂  and (^p^)-^ by (^oor'e^Je^
(^x). In this way, one recovers the Fourier expansion of f . A simple
computation yields :

(1.4) ^(d)-l{(q)g(q)= Wg.

Here the above formula implies that the formal ^-expansion
^'(^"^(^g^) corresponds to the complex modular form \d\^fg. We
can formulate the Fourier expansion for modular forms with respect to

the group U(N,M) similarly to Theorem 1.1. Since for a = (m °) ,

a(7(MAOa-1 == U(N,M) and

M^(U(MN);C)3f ̂  f a(x) = f(xa) eM^(U(N,M);C)

gives an isomorphism: M^(U(MN),C) ^M^(U(N,M);C), it is a
mere interpretation of Theorem 1.1 and hence we leave it to the readers.

Now we consider the space N^ ̂ (S',C) of nearly holomorphic modular
forms of weight (fe,w) (in Shimura's sense) with respect to each open
compact subgroup^/. The space N^^(5';C) for 0 ^ meZ[/] consists
of functions f:G(A)->C satisfying the following properties (cf. [Shi],
[Sh2]):

NH.l. f(axu) = jk^u^z.y'Kx) for u e SC^^ and a e G(Q);
NH.2. For each xeG'(Ay), we define f^(z) = jk,w(Uao,Zo)f(xu^) for

u^ mth M^(zo) = ze^f7 .
Then f,(z) = a(0,fj(4^) + ^ a(^)(4ny)e^z) for a polynomial

0«^eL(x)

a(^,f^)(F) in variable (I^oe/ of degree less than m^ in Yy for each a,
where L(x) is a lattice of F depending on x.
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We write f, for f^. and define

(1.5) if y e r F ^ ^ and y = ^a.-1 du with ueU,,(N)F^+,

a(^f)(r) = {y-"}^|a,JAa(^f,)(y),
a^,f)(F) = ypv^-lWa^,{i)(Y),

and otherwise
Si(y,f) = a^(y,f) = 0.

Similarly we define a function F^ ^y>-> ciy(y,f)(Y) eC[Y] by

^ ao(j/,f)(r) = |a,|Afl(0,f,)(y) if v e Z . t and y = ̂ l du

(ueUp(N)F^^,^eF^). Then the Fourier expansion of t ^ ( y x

\\0 1;
given by, for V = (47r^)-1, /

is

(1.6) \y\A{^(yd,f)(Y)y^"+^ a^yd,f)(Y)
^»0

{(W}(W'eF(iS,y^eF(^x)}.

Moreover, formally replacing e^y)e^x) by q^, (^)-" by W,y,)-"
and 43ij'̂  by y ^ , we have its ^-expansion:

f=^-l(y)L,(yd,{)((y,)-l)y,IJ+ E a,(i^,f)((^)-^4,
l- 0«S 6 F x J

where &^(y,f)(Y) = aio(y,f)(Y).

Let S be a subgroup of Uy(N) containing U(N). For any subring
A of C containing V, we define

M,,,((7;̂ ) = {feM^(U;C)\^(y,{)eA,si(y,{)eA},

m^(U;A) ={feM^(U;C)\a(y,f)eA}

N*,».m((7;^) = {fe^k,u,.m(U;C)\a(y,f)(Y)eA[Y],^(y,{)(Y)eA[Y]}.

Now we introduce differential operators on S :

" (̂̂ i) «- ^^^-
For each 0 < reZ[/] and fceZ[7], we further put

(1.7 a) 8^{n(8^-,-....6^)l
I o e J J
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anrf

^ = J n ^ 4 -
I CT 6 / -J

TTien we see (c/. [Sh2], (1.8))

(1.7 b) 8H/|*,,»x)=(8V)|*+2r.«,+rX /or x 6 G'L2(Fco)+,

and thus, defining 5^f by a(y,6',f)(Y) = {;^<'+'"}^-r|a,lAfl(^5rtf,)W
and a,,(y,8);f)(r) = |fl,|Aa(0,8),f,-)(y) if y = ^a,-1^, we have

(1.8) 8iif(x) =7*+2r,»+r(xao,zo)-18^f(x)det(xao)-°'7(xoo,zo)*).

Note that U^Np^/UW) £ (r/^p°•r)>< x (v/Np^Y via the correspon-

dence : (a ^\^(,d-\a~ld)e(v/Np'tvy x (t/Np^r . Thus we can

consider, for each pair of characters <[y, <)/' of (r/A^'t)" with values in
the subring A of C, a subspace of '^k,ul.m(V(Np'l)•,A) given by

(1.9) M^U^Np^'^A) = ̂ ^(U^Np^'^A)
nM,,„((7(7v•pa);^)

and
^k,u,^U,(Np^'^;A)

={feNt,„,„(£/?° l);^)|f|<z,a>=v^;(z)<^/'(fl)f},

where f|<z,a>(x) = f(xu) for M e U^NF") corresponding to (z,a) in
(ic/Np^y x (r/Arp^)". Note that ^^^(U^Np^'^A) is reduced
to 0 unless v)/ factors through (r /Np^vY / E .

PROPOSITION 1.2. - Suppose that A contains Q. TTien 8^ sends
^k,w,m(U;A) into 'Nk+2r,w+r.m+r(U;A). Moreover if ky > 2m^ for all CT,
feNA^,n,([/o(-?vp°'),v|/',<)/;^) can be expressed uniquely

f= ^ y,,^r with freM,.^.,(U,(Np^',^;A).
O^r^m

This follows from [Shi], Lemma 4.10 applied to each f,.

2. Stability of integral forms under the Hecke operators.

Let 0 be the composite of F° in Q for all <je7. Let r^, be the
integer ring of 0. Let 5 be a subgroup of Uo(N) containing U(N). In
this section, N is an integral ideal of r and may have common factors
with p. Hereafter we suppose that ^ is the valuation ring corresponding
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to the fixed embedding i p : O -> Qp. Thus we may assume that {y"} = 1
whenever yx is prime to p . We then define, for any iT-algebra A in C,

M^(S;A) = {fGM^GS;C) ao(^f)e^ and a(^,f)e^},
m^(^) = {feM,,,(^;C)|a(y,f)e^}.

We can prove the following lemma in exactly the same way as in [HI],
Cor. 4.5 using Shimura's Galois action on modular forms [Shi], Th. 1.5 :

LEMMA 2.1. — Suppose that Uo(N) =) S => U(N). Let a be a non-
negative integer. Then for S(p'1) = S n U(p^) (O^ae Z) and for any finite
extension K/<S> in C, \ve have

M^(S(p^K) ̂  M^O^O) ® K.
<D

By this lemma, for any automorphism CT e Aut (C/0) and for each
feM^(5';C), there exists FeM^^C) such that

(2.1) a^.F) = a^.f)0 and ao^.F) = ao(^f)0 for all y .

We now study the effect of Hecke operators T(oj) on the coefficients
a and a? for a prime element OT in iq. Decomposing the double coset

U(N^X3 °\U(N) into a disjoint union |j U(N), we define
\ / l'Y ?'

f\T(TQ)(x) = ^f(xy,). The operator ToOn) is defined by {OT'^r^) (see
i

[HI], §3). We write down the formulas only for a ,̂ because one can
recover the corresponding ones for a by (1.3 b). A simple computation
using the following explicit decomposition:

U(N^ ;W)= U (- ;W)u(; °}UW if ^NU(N)^ ^U(N)= [J ; ;
^^ 1/ u mod TO ^^ 1

and
/__m n\ /»-rW -,

U(N)(^ °}U(N)= U /

V " 1 / umodt,1"

yields, for feM^(U{N);C),

^u 1/ u mod TO ^^ ^y ^ l"/

d
/ m n\ /n7" »^\

W» 1 ° J^W= U ro, ^ )U(N)([H2], (1.6)) if q|^,
\ \ J L f m \ \J i f\ / umod vs "l \ /

(2.2 a) When CT is a prime element of x^ for prime q outside N ,

a,o',f|r,(TO))
= a,(^,f){ro-''}TO;+^-(q){q-2D}a,(^-l,f <q»{roc}ro;^

ao,,(^f|r,,(CT))
= JW"ao,̂ ro,f) + J^(TO)- ̂ '^(q)^ ""'ao,^^ - \f\ <q»
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(2.2 b) If CT is a prime element of tq for prime q dividing N ,
a^flTo^))

= ap(^w,f){CT-mu}1iJr,ao(^f|^o(CTm)) = ao.p^CT^f),
and

ao,,(^f To(Tn)) = ̂ W^^y^f).

When q is prime to N , we write usually T(q) and To(q) for T(CT) and
To(TO) because these operators do not depend on the choice of CT.

Now we consider the action of T(a,b) = ^(XH^ °) U(N)

( r\\
for a, & e XN • Note that x = a ) normalizes f7(AQ and

( i — i r\\ /
x = ^ /. . ) • We compute the Fourier expansion of f| T(a, 1) as

above and we have

(2.2c) For a, & e r ^ x , a^,f| T(^l)) = a^a,f)^
ao,^(^f T(a,l))= ao,^(^a,f)a;,
a,(};,f T(^)) = a^^-Vlfc)^;-
and ao,p(^f T(fl,&)) = ao^b-^flfa)^;".

Let us now define the Hecke algebra H^GS^) (resp. h^(S;i^))
by the V-subalgebra of Endc(M,^(5';C)) (resp. Endc(S,,,(^C))) gene-
rated by ro(nys for n outside N , T^YS for q dividing N and T(a,bys
for a, fc e r^ . Put

H^(5';.4) = H,,,^;^) ®^A and h,,,(^;^) = h,,,^;^) ®^ A

for each ^-algebra ^4 in C. We also define a topological group G by

G = G(AQ = Z(AO x r; for Z(N) x F^/F- U^Np^F^ .
Then (z,a)eG acts on M^(^;C) via <z,a> = T^-^lXz). Thus the
Hecke algebra becomes an algebra over the group algebra A [G].

THEOREM 2.2. - Let S be a subgroup of Uo(N) containing U(N).
(i) For any finite extension K/KQ and an V-subalgebra A of K, \ve

have a natural isomorphism : Mh^(S',K) ^ Mf,^(S;A) (x) K.
A

(ii) Let A be an integrally closed domain containing "T. Suppose
that A is finite flat over either of ̂  or Z p . Then Mh^(S;A) is
stable under To(n) for all n outside N , ^(zn7") for each prime
element TO of tq for prime q outside N and T(a,b) for all
a, b e r ^ x .
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(iii) Let A be as in (ii) and define a pairing

( , ) : m,^A) x H^(S;A) -^ A by (f,h) = a(l,f h) e A .

Then \ve have the following natural isomorphisms under this pairing :

Hom^(m^(S;A),A) ̂  H^(S;A), Hom^ (H^(S,A\A) ̂  m^(S,A).

Proof. — We can prove the second assertion for T(n) for all n
outside N and T(a,a) = <^> in exactly the same manner as in the
proof or [HI], Th.4.11. As for the assertion for ToO^) and T(a,b)
follows from the assertion for T(a,d) by (2.2 a, b, c). The first assertion
follows from the third assertion by the argument given in [HI], §7 in
the proof of Theorem 4.10. We now prove the third assertion. First
assume that A is a field. For each prime ideal q , we fix a prime
element i^q. Then each y e r n F^ can be written uniquely that y =
a^xa^u with ueUp{N), a e r^x . Write n for (?] TQ^^X and define

q q^N

(2.3) T(y) = T(a, l)T(n) n U^^) ^ H,,,(^; A),
q|N|

T^y) = rGO^""} = ^,l)^o(n) n ^(^e(q)) eH^{S;A).
q\N

Then by (2.2 a, b, c), we know (f,ToOO) = a(^f). Thus if (f,h) = 0 for
all heHk,w(S;A), then a(^,f) = 0 for all y and hence f = 0. On the
other hand, if (f,^) = 0 for all feMk,^S;A), then

0 == (f\T,(y),h) = (fl^To(^) = a(^,f|^) for all ^ and f.

Thus f\h = 0 for all f and hence h = 0 as an operator. This shows
the pairing is non-degenerate at the both side. Since A is a field and
Mk,u,(S',A) is of finite dimension, the pairing is perfect. The general
case where A is no longer a field can be handled in exactly the same
way as in the proof of [HI], Th. 5.1.

3. A duality theorem for /?-adic Hilbert modular forms.

We now fix a valuation ring (9 (in Qp) finite flat over Zp containing
tp{i^). We also fix an integral ideal N prime to p and take a subgroup
S of U,(N) containing V,(N) as in [HI], § 2. We put S(p^ = S n U(p^
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and consider the limits

M^Wp^A) = limM^^);^),
a

m^S^A) =limm»,,(5(ptl);^),
a i

S^Wp"); A) = lim S^C^M)
a

on which the Hecke algebras

H,,,Wp00);^) = limH^O^M),
a

h*,.Wp°°);^) =limh,,«,(5(p°');^)
a

naturally acts. Here implicitly we think that A is either (9, its quotient
field ^, 0, Q, Qp or its p-adic completion Q. For the operator r(y)
in § 2; we define a new operator

TOO = lim T ;̂" in H^(S(p^A).
a

Using the ^-expansion coefficients ap(j,f) and ao,p(j,f) defined in (1.3 b),
we introduce a p-adic norm by

||f||^ = Sup^(|a^(^f)|^|ao.p(^f)|^) = Sup^(|a(^f)|^|ao(^f)|^),
f „ = Sup, (| a^,f) ^) = Sup, ( I a(^,f) | ^ .

Here we know from (1.3b) that |ap(j,f)|p = |a(^,f)|p and
|ao,p(j,f)lp = ao(^,f)|p. We denote the completion of M^ or S^ (resp.
m^^) under the norm || \\p (resp. | \p) by M^^ or S^(resp. m^^,).
For each feMJfc^(5f(pco);^) and for a p-adically complete ring A (e.g.
^=^,7C or Q), we can regard the function y\->3ip(y,f) (resp. ao,p(^,f))
as a continuous functions on

^ = r n ^A/ U^) = lim r n FA/ ̂ (p") (resp. Z = lim Cl^p-)),
^x a

where on each ̂  = r n F^/Up^) (resp. Cl^^01)) for finite a, we give
the discrete topology. Let 77 be the semigroup of all integral ideals of
F . Then we see easily that

(3.1 a) ^ ^ Xp x 77 as a topological space,
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because ̂  = J^o x ^/^O^) and ^o = 77 and
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^/^(^-(r/jW.

More precisely, we have an exact sequence of topological semigroups

(3.1 b) 1 -> r; -> ^ -^ I I -. 1,

where the first inclusion is induced from the natural inclusion of Xp
into F^f and the second projection comes from the natural association
of ideals with ideles. Anyway, writing ^(X;A) for the space of
continuous functions with values in A on any topological space X, we
know that M^S^^A) (resp. m^(5V°);.4) and S^S^p^A)) can
be embedded into the space ^(fuZ\A) (resp. ̂ (^;A)). We now define
a pairing

(,): H,,,(5(p00);^) x m^O^);^) ^ (9 by (h,f) = ap(l,f|h).

For any ^-module M, we denote by M* the ^-dual module Hom^ (M,^).
Then we can deduce from Theorem 2.2 the following key duality result
in exactly the same manner as in [H3], § 1 :

THEOREM 3.1. — The above pairing induces isomorphims :

H^CS'O?00);^)* ^ m^Wp00);^) and riu.^.S^);^)* ^ H^(5V0);^)

W5^°°);<P)* ^ S^GS^); ̂ ) and S*,^^00);^)* ^ h,,^^);^).

As already seen in [H2], Th. 2.3, there exists a canonical algebra
isomorphism

(3.2) h,,.(5(p°°); (9) ̂  h2^(5(p°°); (9)

for all pair of weight (n,v) with n > 0, y ^ 0 and n + I v e Z - t , which
takes TGQ to T(^) for all /^rn^. This shows that S^(5'(p00);^)
is independent of (k,w) (whenever n^-lt) as a subspace of ^(^uZ;^),
which hereafter we denote by 5(5') or S(AQ if 5' ^ V^(N) for A^ prime
to p . Similarly, we write h(5';(P) (and h(N;0) if 5'= ^i(^) for N prime
to p) for the Hecke algebra in (3.2). We write M(5') for the completion

of \ S Mk^S^^K^^^^uZ^) under || ||p inside ^(^uZ;^),
I A,u; J

because we do not know whether this space coincides with M/, ^(5'(p00); (9)
or not. We simply write M(N) for M^) when 5' = Vi(AQ. We can
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extend the operator T(a,l) for a e X p on ^(^uZ;A) as follows: Any
function fe^^uZ;^) is a pair of functions (f,fo) with f \ ^ -> A
and /o : ̂  -)>^ • Then we define

/|T(a,l)(x)=/(ax) and /olT(a,l)(z) =/o(^).

Then the natural injection M(5') -> ^(^uZ;<P) is equivariant under the
action of T(^,l) by (2.2 c). On the other hand, we can extend the
character:

Il(Np) = {aeIl\a-^Np=x}3n ̂  <n> eH^(^00);^)

to a continuous character of Z(N) = limCl^^p"). Write [n+2u] for
a

m if n + 2 u = m ^ C T with m e Z . Then, <n> acts on Mk^(S(p<')•,(())
a

via the multiplication of J^n)^2^ if n is trivial in Cl^A^"). Since
<^> for ^eF" is the identity operator in H^(5'(p00)^). the operator
<b> for b e x p with b ^ l m o d p " acts on M^(5'(p01);^) via the
multiplication of fc"""2". Namely, for feM^^,(5'(pa);^), we see

a(^f|<&» = a(^fc-"-2uf|&) = fc-^aO/.f).

We now define T(a,b) by <fc>T(afc~1,!). Then we have

ap(^,f|T(a,&))= apC^fc-^fKb)) for a , & e r ; .

Since a(^,f) = a(^,f) if feM^^^p01);^) and f c = l m o d p 0 1 , if
a = b = 1 modp",

a,(^f|T(a,fc)) = a.^fKfc)^-^- = a^fXaft-1)-1^-"-2-.

It is then easy to prove (by using the above action of t p ) that

{E M^(p-);^)ln<^uZ;^) ^ {® M,,,(^(p°°);^)ln^(^uZ;^).
Lu' J l*^ J

Namely the transition from Fourier expansion to ^-expansion is injective
on © M^CS(r);^) = Z M^(p°°);70.

^w k,w

We now identify Go = lim U^Np^/^N^U^))^ x with a subgroup
a

of G = G(N) = Z(AT) x r; by the map:

(S l)-(b-\a^).
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Thus (z,a)(=G acts on S^U^Np^^) via the operator
<z , a> = T^ '^ lXz) . Defining a new action by
<z,a>^ = ^(zY^^^z.a), we know that this new action factors
through the finite quotient Cl^Np^ x ( x / p ^ ) " of G. For each pair of
characters v|/: Cl^Np^ -> ^ x and \|/: (x/p^ -> ̂  , we define

S^W.vl/,^) = {f6S,,,(£/?a);^)|f|<z,a>„,,

= vl/^m^f for (z,^)eG(AO},

where we understand v|/(n) = \|/(n) for an idele n with n^ = Uoo = 1
and n = m-. Summing up what we have shown, we get

COROLLARY 3.2. - In ^(J^), the closure S(S) of S^^S^);^) is
independent of the weight (n,v) if n ^ 0 and v ^ 0 and the group
G(N) = Z(N) x r^ flcr5 on S(51) continuously such that on
Sk^Np"^'^; ( P ) , ( z , a ) acts via the multiplication of^(z)^f(a)^(z)[rl+2v}au.

Since h(S',(!)) is a compact ring, we can decompose

h(5;^) = h1101'^^;^) © h55^) as an algebra direct sum

so that T(p) is a unit in h"0^^;^) and is topologically nilpotent in
h55^;^) (see [H2]). The idempotent e of the nearly ordinary part
h"01^;^) in h(S,(P) has a simple expression:

e = lim T(p)71'
ra—»oo

after projected down to h^(5'0?00);^). Let S"-0^^) = 8(5')^ (resp.
§n.ord^ ^ S(^)|^) be the nearly ordinary part of S(S) (resp. S(AQ).
For any ideal a of ^ = ^[[G]], we define

S^AOEa] = {feS^W^g = 0 for all g e a } .

We also write S^^AOl?] instead of S^^Ker (P)] for any
(^-algebra holomorphism P : ̂ [[G]] -> ( 9 .

COROLLARY 3.3. - Let Pn,v,^,Y be the algebra holomorphism of (9[[G}}
into (9 corresponding to the character :

G9(z,a) ^ vK^^^OO^21^^',

where (vl/.vl/') is a character modulo N p " . Then we have

S^WlP^^] = S^Np^^^)

under the identification : ^a , ) h-> (b~\aplbp)eG on v^p x ^ p -
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Proof. - By [H2] Th. 2.4, denoting the localization P = Pn,^^' of
hn.ord^^ ^ h^N;^)?, we have natural isomorphism

h—^N; ̂ p/Ph11-01^; 6Qp ^ h;̂ ,̂ v|/, v|/; ̂ )

for the quotient field K, where h^^^Vp01,^ ,v|/;^) is the nearly ordinary
part of the Hecke algebra over K in End^S^A^.vl/.vl/; K)). Actually,
in [H2], Th. 2.4, this fact is proven only when \|/ is the identity
character but the argument given there can be applied to the general
case. This implies the kernel Ker of the natural map

p : h^N; ̂ /Ph^N'^) ̂  h^W^'^O)

is annihilated by an element X outside P . Since ^[[G]]/P ^ (P, P is a
prime ideal of height dim(^[G]]) - 1. Thus for the unique maximal
ideal m of ^[[G]] containing P, there exists a positive integer m such
that P + A"^[[G]] =3 m^^. Thus Ker is annihilated by p7". Since p
is surjective and the image of p is ^P-free, by dualizing p, we have an
isomorphism

P* : SCT^oCA^),^^) ^ h^^p",^,^)*

^ (r-^M^/Ph"-0^;^)* ^S^AOtP^^].

The last isomorphism follows from [H3], Prop. 7.3.

We now fix a decomposition G(N) = W x G^r(N) so that W is
Zp-torsion free and G^(N) is a finite group. Then W ^ Z^ for
r == [F:Q] + 1 + 8, where 8 is the defect of the Leopoldt conjecture
for F (i.e. 0 ^ 8 < [ F : Q] and 8 = 0 if and only if the Leopoldt
conjecture holds for F). Thus continuous group algebra A = ^[[W]] is
isomorphic to the r-variable power series ring over ( 9 . Write \JL
(resp. Ztor(AO) for the torsion part of Xp (resp. Z(AT)) and decompose
Z(AQ = W x Ztor(AQ and ^ = W x ^ so that W = ^ x W ' . Then
GtorW = ZtorW x H . Let L be the quotient field of A. We fix an
algebraic closure L of L and the embedding of Qp into L. Let X :
h^^N;^) -^ L be an A-linear map. Since h110'^;^) is finite over
A([H2], Th. 2.4), the image of 'k is contained in the integral closure I
of A in a finite extension K of L. Let J'(I) be the p-adic space
Hom^-^g(I,Q^) and s/(l) be the subset of (̂1) consisting of ^-algebra
homomorphisms which coincides with Pn,u,^,^ on A for some n ^ 0,
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v ^ 0 and v|/ and \|/. Then, by [H2], Th. 2.4, the composite ^p = P o ^
for Pej^(I) induces an ^-linear map, for a suitable a > 0,

Xp : K^A^Qp) -> Qp for k = n(P) + 2 ^ and w == t - v(P)

and hence by the duality (Th. 3.1 and Cor. 3.3), we have a unique
p-adic form fpeS^^Np^Qp) such that a?(j,fp) = MT(j)) for all
integral ^. Thus any ^e HoniA (h11-01'^^;^),!) gives rise to a family of
modular forms parametrized by ^(1). We thus call each A-linear form
X as above an I-adic form. Especially, if X is an A-algebra homomorphism,
each specialization fp is a common eigenform and is classical i.e. an
element in S^W^^^Q) coming from S^\Np^^\^C). Since
n, v, \|/ and ^f' are determined by P, we write them as n(^), v(P), \|/p
and \[/p. When X is an algebra homomorphism, we can compute \|/p
and \|/p explicitly as follows : Let v|/o (resp. \|/o) be the restriction of 'k
to Ztor(AO (resp. u). Then these maps are characters of Z^N) and n
with values in Q x • Then

v|/p = epvl/oco-1^2^ and v|/p(0 = £pv|/o(0 ̂ -^(^ e u),

where 8p(resp.e?) is the restriction of PPn^id^d to l^(resp. W)
and © is the Teichmuller character. We define an equivalence relation
« w » on the set of all A-algebra homomorphisms:
(jHomA-aig^^A^),!.) by k w K ' if and only if MT(q))= ^(T(q))
N

for almost all prime ideals q outside N p . Any element ^ in equivalence
class with minimal level C is called primitive and C is called the
conductor of X . Then in exactly the same manner as in [HI], Th. 3.6,
we can prove

THEOREM 3.4. - Let ^ -.^-^(N^) -> L be an A-algebra homomor-
phism. Then the primitive homomorphism equivalent to ^ is unique and
its conductor C is a divisor of N. If \ itself is primitive, then for all
Pej^(I), the conductor of Xp in the sense of [HI], (3.10 a,b) is divisible
by N . If the conductor of \p is divisible by every prime factor ofp, then
' k p itself is primitive.

4. Adelized Rankin-Selberg convolution.

We explain here how to obtain an integral expression over
G(Q)+\G(A)+/^FA<^OO+ of the standard L-function ^0?,f,g) in (0.1)
for the algebraic group G x G (6'=Res^/QGL(2)) for a suitable open
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compact subgroup U of G'(A^). This was done in the Hilbert modular
case by Shimura[Shl] in a way near to the original method of Rankin
and in a more representation theoretic way by Jacquet [J]. However,
to get a formulation optimal to our p-adic interpolation, we give a
detailed exposition on this subject. Our approach is more adelic
than[Shl] but not as representation theoretic as [J]. Let B be a linear
algebraic subgroup of G = Res^Q(GL(2)^) such that

B(A)==\(a b)\ae(FS)A)x and he(F®^)l.10 1 Q Q

We put 5(A)+ = {fce^(A)|det(^)»0} and fi(Q)+ = B(Q) n B(A)^ .

Let N be an integral ideal prime to p . We simply write V for
V^(N) and put V(p^) = Fn U(p^. For each pair of weight (n,i;)eZ[7]

with n + 2v G Zr( ^= ^ a )), we put w = t - r and fe = n + It and
\ o e Z /

consider the space M^fTO^C) of modular forms defined in [HI],
§2. Note that the group G acts on M^(V(p^;C). In fact,
uo(Npr)/(V(pr))xx is canonically isomorphic to Z / Z , x (r/p^)" via the
correspondence :

(s ,0)-^-^^-1^>
where Z^ and Z are defined by the following exact sequences :

1 ^ z, ̂  ZW ^ Cl^^^ ̂  1, 1 ̂  Z ̂  Z(7\0 -^ Cl^(l) -^ 1.

Especially Z{N) acts via <z>^ as in [HI], (3.9) and the action of

(r/j/r)" is given by the right translation by \ ] for aeXp . We

write this action of (z,a)eG on feJVI^jCrO^C) as: fh-^f |<z,a>^, .
Let ^ be a subalgebra of either Qp or C. We then define, for each
pair of characters v)/7 : ( r / p ' x y -> A x and v)/: Cl^(A^a) -^ Ax ,

M,,,^01,^,^^) = {feM^FO^^IfKz.aX,^ v|/(z)^(a)f},

^J^"'^^^) = {^^.(^(P');^)! ̂ ^ == ^(^)^(^}.

As seen in § 2, we have the Hecke operators T(n) for integral ideal
prime to p, T(y) for y e X p ^ F p and T(a,fc) for (a,fc)er; x r; acting
on M^(Np^'^A).
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Now let (n,v) be as above and take another pair (v,i)) of weights.
Write n + 2v = k — 2w = mt and v + 2u = \xt with integers m and |LI.
Define k = n + 2r, w = r — u and K = v + 2^, G) == r — D . Write m
for Np" and let feS^^(m,/^;C) and ge SK,o>(m,v)/,\|/;C). Define
f*(x) = fp(x) for fp = fp as in (2.1) for complex conjugation p. Then

(4.1)

^ff?) ^l)^^ ^ a(^,f){(^)u}(^)-ue^^)e^(-^),
\\ / / 0«^eF

sffi) ^'l"^^ S a(^d,g){(^)u}(^,)-ue^^)e^x).
\ \ / / 0«^eF

Write j(u^,z) == (c^z^+^^^GC7 for ^ = ̂  ^ j e ( ? ^ . Then, these

functions satisfy the following automorphic property:

f*(yxM) = ^(^*(M)f*(x)7(^^o)~'pdet(^)";

and
g(yx^) = ̂ {u^WgWj^^.r^et^r

for y e GL^(F) and M e (Yo^)'^oo+? where we define y * and ^* as

follows : The function /* : G(A) -> C is given by 5C*(x) = 5Cm(^m) o1' 0

for x = ( , ) according as x e B(A)Uo(m)G^+ or not, where ^

denotes the restriction of ^ to (-Fm)" = ( PI ^p j ^ ^or m = N p " ' . Similarly,
\ p|m /

the function /* : G'(A) -> C is given by 5C*(x) = ')C\dpap1) or 0 for x
as above according as x e B(A)Uo{r^)G^+ or not.

Then we define the unitarization of f and g by

(4.2 a) TO = l^l-^^^P^^.Zo^ldet^ir
and
g"(x) = \D\-^-lg(x)j(x^,z,Y\det(xM2.

Then, for any yeG'(Q) and u e Uo(m)C^+ ,

(4.2 b)
r(yxu) = ̂ (^^^^^^^(^^.(zo^^ldet (^)|k/2 sgn (dot (1^),

g"(yx^) = ^(^^*(^)g^/(x)J(y,x,(^o))K|det(^)|K/2sgn(det(^n,
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where sgn(x) = x / \ x \ for x e R " . We then have

(4.3 a) rff3; x))^ ^ ^(^,f)(^oo)A/2e^^oo)e^(-^),
\\ / / 0«^eF

^ffi) i}}= ^ ^'^^g)(^oo)K/2e^O•^oo)e^(-^),
\ \ / / 0«^€F

where

(4.3 b) a(^,f)= ^^(^-^-^^r^a^f)
and

^g) = ^Q^-^-^^r^a^g) (see [HI], (4.1)).

We now write <I>(f,g)(x) for

(4.4 a) TOg^M^o^o)"'"'!-

Then we have for y^GL^F) and ueUo(m)C^+

(4.4 b) 0)(f,g)(yxM)
= X^*X*r^)<I)ftg)(x)J(Y,x^(z,))K-fc|J(y,x^(z,))A-K|.

We now assume the following condition:

(4.5) There is a finite order idele character Q: Cl^(m) -> Cx such
that /'v^ = 6 on ̂ .

By (2.2 c), we have for u e r^ ,

a(yu,f) = a(^,f|T(u,l)) = ̂ (^"^(^t).

Thus the function a(y,g)a(^,f)9(y) is invariant under the multiplication
of units in r^ .

We now explain how we normalize the Haar measures. We take
the multiplicative Haar measure d\\.^ on F^ such that the volume of
r" is equal to 1. We take the Lebesgue measure d^ on Fy, = R1 and
define the multiplicative measure d[i^(y) by \y^\ d\x^(y). Then we take
the product measure d x y = d^(y) d[i^(y) on F ^ . As the additive
measure on F^ , we take the measure d[if having volume 1 on r and
define dx = d[if(x) d\i^(x).



HARUZO HIDA 34 \

We now consider the following integral for the idele character 9 in
(4.5), which is absolutely convergent if Re (s) is sufficiently large :

Z(^g ,6)=f f ^^((y ^dxQ^y^d-y
J F ^ I F + J F ^ I F W0 v/

= D(l+2s>'Q(d)-l | ^(^f)a(^g)e^(2^)^+-)/29(^)|^|lrf^,
JF^

where D = \d\^1 is the absolute discriminant of F/Q and to obtain the
equality, we have used the classical fact that (e.g. [W] p. 91,

Prop.7) e^(Ti-^x)Ac = ^ / D or 0 according as ^ = n or not Let
JF^IF

C(9) be the conductor of 9 and we use the same letter 9 for the ideal
character associated with 9; namely, if a is prime to C(9), then
9(a) = 9(a) for ae^ with a^e) = o^ = 1 and a = ar, and if a is not
prime to C(9), then we agree to put 9(a) = 0. Then we have, if Re(s)
is sufficiently large,

(4.6) Z(s,f,g,9)

= ^1+2^29^)-1(4T^)—<-)^^^ + J + jW,f,g,9),

where
^(5,f,g,9) = ^ a(a,f)^(a,g)9(a)^^(a)-s.

r ^ a ^ O

We shall compute the integral in a little different way: First of
all, we note that on B(A)+ the function ^* and \|/* are constant with
value 1. We write C^ for the stabilizer in G^ of the point
z^= (^T, . . . . y^T) in ^ = F^ + y^LF^ identifying F^ with
R . We also define a function r| : (7 (A) -> C and 9: G(A) -> C

by r}(x)=\y^ and 9(x) = 9(^) if x = ^ ^ ̂  or aeF^ and

Me£/(m)C^+ for ideal m = Np" divisible by C(9) and otherwise
r|(x) = 9(x) = 0. Under the assumption (4.5), we know that
^gX^Oc^X^x) is invariant under £/o(m)C^+ from the right and
invariant under B(Q)^ from the left. Thus we can write

Z(5,f,g,9) == ^(f,g)M(X*vht)(x)9(x)r|(x)s+l^(x),
JB(Q)+\B(A)+
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where d[ia( ( y x } ) = \y\A1 dxd^y is the (left invariant) Haar measure

on 2?(A). Let U be an open compact subgroup of G'(A^). Let d[i^ be
the Haar measure on the compact group Coo +/Zoo (f01' the center Zoo
of G^+) with volume 1. Then we define a measure n^ on B(A)+UC^+
such that

(p(x)^^(x) == n)(bu)d[io(u)d[iB(b)
JB(A)+UC^+IZ^ JB(A)+ Juc^+iz^

for all functions (p on 2?(A)+£/Coo+, where ^o ls Ae product measure
on £/Coo+/Zoo of the Haar measure on the compact group U with
volume 1 and the measure d^ on Coo+/Zoo- This measure induces a
measure on G'(Q)+\G'(A)+/(7Coo+. In fact, by taking a fundamental
domain 0> of G(Q)+ in 5(A)+^7Coo+/^Coo+, we define

f /(x)^(x)= [/(x)rf^).
JG(Q)+\G(A)+/[/COO+ J<^

This is possible because of G(A)+ = G'(Q)+ • B(A)+ • U ' Coo+. The
measure we have constructed depends on the choice of U in the
following sense : If one takes an open compact subgroup U' of U, then
for any right (7-invariant function /,

f f(x)d^(x) = [U:U'} f fWd^x),
JG(Q)+\G(A)+/E/'COO+ JG(Q)+\G(A+/[/COO+

because rfp,o fo1' ^7 ls ^^o f01" ^ multiplied the index [U;U'}. Let
£'((7) == ^n £/Coo+ and (p be a function on B(Q)+\G+(A)/UC^+ such
that (p is supported by B(A)+UCao+ = B(Af)UG^+. Then we have

^ (p(yx)^(x)
jG(Q)+\G(A)+/[7Coo+ Ye^(^)5(Q)+\G(Q)+

f f
(p(x)^^(x) = (p(x)^(x).

J^([7)B(Q)+\B(A)+£7Coo+/^Coo+ JB(Q)+\B(A)+

By applying this argument to U = Uo(m) and E(U) = r " , we thus
have, writing d[iu as ^m?

(4.7) Z(s,f,g,9) = 7)-2-(m+,)/2 j fKg^idet^lA7"^^2

J^o
x E X^(^)^(^^)7(^oo,^)K-'l7(^oo^o)'-KI 8^(x),

i
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where X, = X,(m) = G(Q)+ \G(A)^ / U,(m)F^ C^ +, F^ = [ j F" a.rx F^
1=1

and we used the Eisenstein series <f(x) = <^-*(;x,x~l^-\9;s+ 1) defined
by:

(4.8 a) <^(x,x,9;s)

E X*(Y^)e(yx)rl(Yx)s|;•(Y,x»(z,))-*|7•(Y,x„(zo))*.

We normalize this Eisenstein series in the following way :

(4.8 b) E^u,^,Q;s) = ̂ -^(m)^ ̂  r^Wa^X^s),
t= l

(4.8 c) £,(u,x,6;s) = L^x-'e2)^,^^).

Moreover we choose a finite idele m such that mv = m and put

•c(m) = ( 01s (J'^/) • Then we define another Eisenstein series by

(4.8 d) G,(u,x,e;s)=e-l(^n)^-^(my-lx(det(u))£,(uT(m),•)c-l,e;s),

whose Fourier coefficients are much easier to compute (see § 6).

We now want to modify the above integral in terms of the newly
defined Eisenstein series. In fact, we first define the Petersson inner
product for h eM^(nt,x',X;C) and feS^(m,%',^;C) by

(f,h), = f Kx)h(;c) | det (x) \ ̂  d^(x).

We define h|i eM^m,^'"1,^''1;^ for T = x(m) by

hiTOO^^denx^hOc^w)).

Then we see easily that (/i,g)n, = ^F;<tO«r'"(/i|T,g|-r),n. We put

^-^-^x,^-^-\Q;s)
= det(x)\^mwE^^(x^-l^-l,Q•,s)j(x^z,rk\Kx^z,)k-K\,

(4.8 e) G,,^.^x,^,Q;s)

=9-l(m)^-^(mr-l+<•l-m)/2E,_,,,_«>(x,x-lv|/-l,e;s)|T(w).
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Then we finally have

(4.9) L,(25+2,xWZ(5,f,g,9)

=^/Q(m)-lD-<5+w+^/2(fp,gE,-^_,(x,x-lv^-l,e;5+l)),

= D-^^^^Q^^F^m)-5-1-^^'2

x (/p|T,(g|T)G,-,,,-,(x,^,9;5+l)),.

For our later use, we introduce here the standard L-function for a
primitive form f:L(s,f) = ^(a.OMa)"', where a(a,f) is the Fourier

a

coefficient of the unitarization of f. Suppose that f is a primitive form
of conductor N , of weight (fe,w) and with central character v|/ ant let
n be the unitary automorphic representation of G'(A) generated by the
right translation of f". Choose a finite idele n such that N == nr and

nriN1 = 1 and define T = r(n) e G(A^) by T = I ~ ). Then it is well

known that f"|T(n) = ^(f)(f")P for a constant W(f) with absolute
value 1. We now want to relate W(f) with the root number of the
functional equation of L(s,f). We consider the integral

,̂0 = = f HY3; °)) ly 11^ =2)^(5)^0,
JFA/^ Vv 1 / /

where G,(5) = (27^)W2)+ST^+ (fe/2)) (^Zcr). For e = ^ ~l\

we have e^ ^=(-1)^^^ u^. since e e C ^ ^ , we see

thatf^ ^^^(-^^(^r^^^^^ ^y This shows that

^(^((^ P))^^-!)--^^1 ?)).

Therefore we see

^(f)^(5,P) = ^(-^^-^^[^(-^f).

This implies that

(4.10 a) (?j5)L(5,f) = rkW(f)\d2n^G^-s)L(-s,fp),

because v|/^(-l) = (-I)*. Namely the root number of the functional
equation is given by F^(f). By an easy computation, we have

(4.10b) f T=^(f) nl^^,
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where mt = k — 2w. Let T = ®7iq be the automorphic representation
q

generated by the right translations of f. As is well known, the constant
term of functional equation i~^Wd) can be decomposed into the product
of local factors (e.g. [H3], (5.4-5)). We assume that Tip for prime factors
p of p is either principal or special. For each quasi-character
^ : F^ -> Cx , we define

8(y=^^r)G(^- l)/|^dT^r)G(^- l)|(G(^- l)= ^ ^-\u)e^(u/^d)),
u mod ro1'

where ep (x) = exp (-27u[Tr^ /q (x)}p) for the p-fractional part [y]p of
y e Q p , CT is a prime element if Fp, p^ is the conductor of £, and dr?
is the different of Fp for ^eFp . We understand that e(^) == ^(d)/\^(d)\
if £, is unramified. Then we can decompose

(4.10 c) W(f)= ^(f)n^p(O,
p i p

where

^,(f)=e(^)e(^) if either 7tp=(r(^) with ramified ^ or 7i:(^,^),
^(f)=-£(^)£(^)(^(in)/|^(^)| if n,=a(W with unramified ^.

By abusing a little the language, for any form f which spans the same
automorphic representation as f , we write W(!)\ and W(f1) for W{t)
and W(f), respectively.

5. Statement of the main result and proof of Theorem I.

We fix two ideals N and J prime to p in r and let L be the least
common multiple of N and J, i.e. L ^ N n J . We consider two
primitive A-algebra homomorphisms X : h" '^(N; (9) -> I and
(p : h11-01'^./;^) ̂  J, where I (resp. J) is the integral closure of A in a
finite extension K (resp. M) of the quotient fiels L of A. By extending
scalar if necessary, we may assume

(5.1) I n Q ^ = J n Q ^ = ^ .

We now introduce the congruence module for 'k [H6], § 6. Let
(\|/,\|/) be the restriction of K to GtorWKi.e., \|/: ZtorW -> ^ x and
^ : H _ ^ x ) . we can decompose h11-01'̂ ;^) ® K = H^f,^) © 5 so
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that 7/(\|/,v|/) is the maximal quotient of h11-01'̂ ;^) (x) K on
^

which Gfor acts via (v|/,v|/). Let h(\[/,v|/) be the image of h"0^^;^) in
^(v)/,^). Then ?i factors through h^vj/7). Combining ?i ® id :
h(v|/,v|Q ® I -^ I (x) I with the multiplication : I ® I -̂  I, we have an I-

A A A

algebra homomorphism \: h(v|/,\|/) ® I -> I. It is known (cf. [H2],

Th. 2.4) that \ induces an I-algebra decomposition :

h(\|/,v|/) (x) K ^ K ® B
A

with a complementary direct summand B so that X- induces the projection
into the first direct summand K. Let h(K) (resp. h(B)) be the projection
of R = h(\|/,\|/) ® I in K(resp.B). Then, the congruence module is
defined by A

(5.2) ^;I) = (h(K) © h(B))/7^h(K) (x) h(B),
R

which is a torsion cyclic I-module (i.e. ^(X;I) ^ I/a with a non-trivial
ideal a ; see [H6], Lemma 5.2).

Let fp (resp. g^) be the common eigenform corresponding to
Pe^(I)(resp. gej^(J)) belonging to ?i(resp.(p) as explained in §3.
To describe these modular forms explicitly, we write £ for the set of
all prime factors of p in r . For each E-tuple a = (a(p))p^ of integers
a(p), we write ?"=]"[ P^ • Let Oc,/7) (resp. v|/,v|/) be the restriction

p e £

of (p(resp.X) to G^(J) (resp. G^(AQ); i.e., z, v)/: Z^(J) ̂  ^ x and
X', ̂  : |LI -> ( 9 " . Then as seen in § 3, for sufficiently large oc,

f^S^(Np^^Q) and g,e S^^Jp-.^.^Q)

where K == n(g) + 2r, co = t - v(Q), m(Q)t = n(Q) + 2v(Q) and
k = n(P) + 2 ^ , w = r - v(P), m(P)t = n(P) + lv(P) and

^p= £p^co-m(p) and ^pK,w) = 8p(w)^(0^-u<p) for ^,

X^^^"^^ and ^(^w) -^WO;-^ for ^ G H .

We define the unitarization f^eS^^^p^vl/p.vl/piQ) by

r(x) = D-^^-1 f(x)j(x^,z,r\det (x)\^'\
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Let CTp be the prime element in tp for p e £ and let n (resp. j) be a
finite idele such that nr = TV (resp. y'r = J) and nq = 1 (resp. 7q=l ) outside
A^ (resp. 7). Define an idele mn01 so that (mu^ == 1 for q outside TVp,
(n^\ = n? for prime q dividing N and (mo01)? = CT^ for p e £. We
then define ^(nvs^) by

^^'(^ "o1)6^-
Let ^ be a finite order character of Cl (TV?"). For each modular form
f in M^Np^'^Q) (i.e. fOcz)^^)!^7"^) for mt=k-2w), we
define

fiT^Kx) = ̂ -^(xmx^n^EM^U^Np^1-^-1^).

As we will see in §7, for each finite order character 9 of Cl(p6), we
can define the twisting operator fi->f |9 by a(^,f[9) = 9(^r)a(^,f). Here
we understand 9 (a) = 0 if a is not prime to p . This operator sends
M^U^Np^'^Q) into M^^oW^^^Q). We can define
a similar but different operator f h - > f ( x ) 9 by a(^,f®9)= 9(^)a(^,f),
where 9(jy) is the value at >y of the idele character 9. This operator
sends M^(U,(Np^^Q) into M^^M^25),^;1^2^). See
§ 7 for details about these operators.

Let I ® J be the profinite completion of I (So J (i.e. the m-adic
(9

completion of I (x) J for the unique maximal ideal m of I®J). Under
(5.1), I ® J is an integral domain. For each pair of points (P,Q) in

(9

(̂1) x ^(J), regarding P and Q as ^-algebra homomorphisms of I
and J into Qp, we have an ^P-algebra homomorphism
P (x) Q : I ® J ̂ Qp' Thus for any 0 e I ® J, we can regard ^> as a

(9 (9

p-adic analytic function on ^f(I) x ^(J) with values in Qp by
0)(P,g) = P ® 0(0). Even if 0 = ^/^ is an element in the quotient
field of I ® J, we can think of 0 as a p-adic meromorphic function

(9

on J'(I) x ^(J) whose value is given by 0)(F,g) = ^(P,g)/^(P,6)
whenever we can choose a denominator ^ ' so that ^(P,^) + 0. We
first state our result in a crude form and later elaborate it and will
eventually reach the expression in Theorem I.

THEOREM 5.1. — There exists a unique element Q) in the quotient
field of I (§) J satisfying the following interpolation property : Let (P,Q)

o
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be a pair of arithmetic points in j3/(I) x j^(J) satisfying the following
two conditions :

(5.3 a) t^n(P)-n(^),
n(Q)-n(P) + 2t^(m(P)-m(Q))t and v(Q) ̂  v(P),

(5.3 b) There exists a finite order idele class character Q unramified
outside p such that Q coincides with 7Q\|/p-i on Xp .

Then Q) is finite at (P,Q), and we have, for sufficiently large a,

(5.3 c) (XQ)oo(-l)eoo(-l)^(^e)e(d2/•T^a)-l

x ^Fi^Np^r^^Fi^w
^(2-m(P)+m(e),x^l^p)2)fm(e)^m(p\fp,g„e-l')

= C(P,g)
((f^T^^fp),

where the subscript Lp indicates that we have taken out Euler factors at
primes dividing Lp from the Hecke L'function : L^/Q1^?), ( , \ is the
Petersson inner product of level Np"- (defined in §4), ga = gelO"1 T^CT")
and

C(P,Q)
^ \ r ) | l+m(Q)-(P)^{-n(P)-ra(Q)+2u(P)-2u(Q)-4(} {2v(P)-2v(Q)~ n(Q)-3t}.{n(Q)-n(P)}

x r^n(Q)+v(Q)-v(P)+2t)r,(v(Q)-v(P)-^t).

Moreover, for any Hel which annihilates ^(X;I), (H®1)^ is integral
(i.e. (H® l )^eI®J) .

(Q

This theorem will be proven in § 10. We now deduce from this
theorem the following result which is a restatement of Theorem I :

THEOREM 5.2. — In addition to (5.3 a), suppose that

(5.4) \|/p and ^Q are both induced by finite order Hecke characters
°f F ^ I F " unramified outside p, for which we use the same
symbol, and put, with the notation o/(4.10c),

AT ( T\(m(Q)12)+l } J / ' ( a \
W(P 0} - y y ' \I/ xl/ ( \\^Fl^J^_____w ̂^^,V) - XQoo7QooVpa)Vp<»( i) ^ (NY^^wa )

x i-r^^^l11^^^^^1^"1^^?"1^"1)
pU ^'^^(d^CW,-1^-1)
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m(g)-m(P)
Then we have

/r> I t \ ' \ x ^ / • •»^* / r n^p( I4-———5———»fp,g&•̂ - /
2{P,Q) - W(P,Q)C(P,Q)S(PrlE(P,Q)

(̂ )s

/or all pairs of arithmetic points (P,Q) satisfying (5.3 a) and (5.4), where
fp is the primitive form (in the sense explained below) of conductor Np6

associated with f^00\| /p, and S(P) and E{P,Q) are Euler factors at p
which will be defined in Lemma 5.3 below.

We shall deduce Th. 5.2 from Th. 5.1 in the rest of this section.
Q)(p^(y\

Namely we compute ————————'—————,—— which is equal top L^-m^+m^),^1^) 4

(5.5) Oc^U- 1)9 J- ̂ (dW^^N^r^'^^W)

x C(P,6)2)('m(g)^m(p).fp,g,,9-l^/((^)^|T(nI^a)J^

We put 9 = vl/p'^Q as a character of F ^ / F " . We reduce our
computation to an easier case through several steps : Even if we replace
a by p ^ a (i.e. P(p)^a(p) for all peS) , the value (5.5) will not
change because of the formula (5.3 c). This can be checked without
using the expression (5.3 c) as follows : We write CT" for nm^/n. Then
by an easy computation, we can verify

fWn^)\(^ ^= Im^ir^lTQz^).

This combined with the well known formula :

(fp,g\[UxU']), = ^(detMXfl^x^Lg)? (see (7.2 b))

for U = U^Np") and U ' = U^(N^) shows

(5.6 a) (^iT^Tn^.f^^lT)!^^2^^^)^^2^)-^

= (WnrnWW-^) = a^mP-^f^m^-^^lT^m-),^.

Meanwhile, we have seen in §4, writing gp for gQ\Q~l\'T(i^), that

^.fp.gp.e-^COO [ a(^f)^(^gp)e^(2^)^+K)/29-l(^)|y|^l^
Jn,
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with a function C(5) of s independent of P. Since we know

gQie-^TO'tn")!^^ ^ == ^-"ir^ie-1!^^)

and hence from (4.3 b), a(^,gp) = ^G^-^gJiCT01-13!^2. Similarly, we
have

aC^-^fp) = a^CT^^fp)^^-^!^^-"!^^2^1^^^?).

Then we see from the above integral expression that

(5.6b) ^m^^^-^

=9(^-P)|CTP-o'|^,(^IP-a,f^tf-a>•'^w(6)^w(/>),f„g„e-lY

This combined with (5.6 a) and (7.2 c) shows the desired assertion. The
above proof of the independence from p of the value :

^/QW)-TO<p>'29(TOol)|roct A

x^^^.f^p.e-^ri^n^),^

is purely formal and by defining the quantity ((fp^lTOiTiy^fp)^ by
(5.6 a) even if fp is not of level N p ^ , our formula (5.3 c) still holds.
Thus we can choose a as we want. Namely we may assume

(5.6 c) g Q ® X Q | 6 ~ 1 is of exact level Jp".

The reason for the above assumption is as follows : We know that for
any finite order Hecke character^,

a(yJWa(y,g^^~1) = a(y,f)a{y^)

and hence

^»(e)^,,^,.^.^»(e)^,^^^^,^,y

On the other hand, for g = golO"1 , we have

fe|TaI^a))®r l(x)=r l(det(TOCTa)^2)(^®^)[T(/ma).

We see easily from definition that g^Q'^^gQ®^'1. Thus replacing
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ge l^y 8 = g Q ® X Q (and fp by fpOOXe), we may assume that
geM^G/p^id,^2). Then (5.5) is equal to

(5.7) ^^PT^OCQU- 1)M- lWp~\dW\j^\^ C(P,Q)

^^^^^x^gie-iTO^e-1)

((f^iT^^fp),
where

((fpP|T(nT^a),f^=a,(^a-5',^)^<a-5/)u|<^a-5^<p)/2((f?P|T(n^

for S ' such that fp is of level N p 6 ' .

We now want to compute glO'^TO'TO") but begin with a general
setting. Let r( be a unitary (finite order) character of F ^ / F " . For any
automorphic representation n of G'(A) with central character r|, we
consider its space V= V^ in L2(G'(Q)\G(A),r|), which is the space of
square integrable functions / on G(Q)\G(A) with f(gz) = r\(z)f(g).
Suppose that for each infinite place a e /, Ky is the discrete series
representation ad^i,^) with

^(a) = lal^^^2 and ^(a) = \a\(n--l)l2(a/\a\r^

where n = n(Q). We consider a generalization to non-unitary represen-
tations: For the modulus character a(x) = \x\^, we also consider the
representation space r(7i®a5) for seC consisting of functions
/® a^x) = a^det (x))/(x) for/e V(n), where n is a unitary automorphic
representation. The representation n ® a5 realized on F(7i®a5) is also
called an automorphic representation. Let K be an automorphic
representation in general sense with central character T| (which may not
be unitary and r^a"7" up to finite order characters for a weight (k,\v)
with k — 2 w = = m 0 . Let m be an ideal of r . For any pair (^,^) of finite
order character of (r/mT , regarding them as characters of r^ , we
consider the subspace V(^^') = F(7r;^,^;m) consisting of functions
/ e V(n) satisfying the following conditions :

(i) / is the lowest weight vector of weight ky at each infinite place
CT (i.e. / corresponds to a holomorphic modular form of weight
(/c,w));

(ii)/(V^ b}} = ̂ a^\dm)f(x) for all (a ^eU^m).
\ v6 a / / v0 u /
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Since the central character of n is given by T| , F(^,^) is trivial unless
^' = T| on r ' . Let C(n) be the conductor of n in the sense of [C].
Then F(7c;id,^; C(n)) is one dimensional and spanned by a unique
element f with a(r,f) = 1. This form f is called the primitive form
associated with the representation TC. We can formulate the subspaces
F(^,^) locally. Namely, let us write 7 1 = ® ^ for local representation

q

TCq at each place q and take a representation space V(n^) for Tiq. Then
one can define r(7^;^,^;m<,) as a subspace of V(n^) consisting of

vectors v satisfying n^ ^jv = ^(a)^(d)v for all (^ b} e U,(m\

when q is finite and of lowest weight vectors of weight ky when
q = o re / i s infinite. Then F(7iq;^q,^;mJ is one dimensional for almost
all q and, fixing a generator v^ for such places, we can naturally identify
V(n;S,^',m) = (g) r(7Cq;^,^;mq) as modules over the (complex) Hecke

q

algebra with respect to Uo(m).

Now we specialize the above argument. Let n = n(Q) =
® ^q(.Q)(^{=^l(.Q)=® 7tq((?)) be the irreducible automorphic represen-

q q

tation of GL^F^) on the function space V(n) (resp. V(n')) which is
generated by all the right translations of §Q (resp. g^geOO/olO"1). Let
g° = go be the primitive form associated with V^n"). We want to
express the spectial value :

L^(2-m(P)+m(e),^l^p)/)[m(g)^m(p).fp®x^g|9-l|TO•^^

by means of ^(s.f^gy). By the strong multiplicity one theorem
([C], [M]), 71 and n' are irreducible and from the construction of the
twisting operator given in § 7, we see n1 ^= n (x) v)/. In fact, we can
define an isomorphism of function spaces (but not as G'(A)-module):
V(n) ̂  V(K') by sending f(x) e V(n) to

/® v|/(x) = v|/(det (x))f(x) e V(K') .

Write C(\|/) = p6 and C(n') = J p ^ . Then, this map sends V(K\^^',J^)
isomorphically to ^(^(pvl/.q/vl/;./?^ if r ^ e, and V(n';id^^;Jp^)
is one dimensional and spanned by the primitive form h associated
with V(n'). Write simply ^ and ^ for /Q and /Q. By definition,
g ^ g o O O X e belongs to V^id^12^?^ and g' belongs to
y(7l /;id,/7 /29~2;Jpr) for some r (see §7). It is known that TCp for pe l
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is either principal or special and the special representation occurs only
when He, == 0 for all the embeddings a : F -> Q -> Q p which induce the
place p (see [HI], Lemma 12.2, [H5], Prop. 2.1 and Cor. 2.2). Write
Tip = 7i(^p,^p) (resp. o(^p,^p) with ^p= ^a?"1) when Tip is principal
(resp. special) for p e S. Here, we follow the convention explained
below [H5], Prop. 2.1 to describe principal series representations and
special ones. Writing C(^p\|/p) = p7^ and C(i;p\)/p) = p70^, we now
define subsets of £ as follows :

Z , = { p e Z | Y ( p ) = 0 but /(p)>0}
£ 2 = {p6£ | / (p)=0 but y(p)>0}
£3 = {p e £|y(p)=Y /(p)==0 and TC? is principal}
£4 = {p e£|Y(p)=Y'(p)=0 and Tip is special}

S = £ - £1 u £2 ̂  ̂ 3^ ^4 •

By [H5], Cor. 2.2, we may assume that ^p (resp. ^p) coincides with
7p~1 on x^ (resp. OoOp) and that gQ\T(xSy) = ^p(TCTp)gQ tor the Hecke
operator T(tnp) defined in (2.2 a). Hereafter we suppress the subscript
« p » (resp. « P » and « Q ») of ^p (resp. v|/p and ^e) if no confusions
are likely. ThenTtp = n ( ^ ' ^ ' ^ ' ) or CT(^vl/',^\|/') according as Tip = 7t(^,^)
or a(^,^) because 9 = ^ - l X y • ^e define an operator [^p] (see §7.B
for details) by

ap(^flW) = T^p-ua^^p-l,f)(oa(^f|[mp])=a(^p-l,f){p-u}).

Similarly as above, let n(P) = (x) n^(P) be the automorphic representation
q

spanned by fp and write its p-component as 7t(rip,r|p) or a(r|p,r|p) for
peS so that fp[T(CTp) = n(^p)fp (then rip\|/p is unramified at peS).
Writting C(r|p\|/p) == p^^, we define

Zi(P)= {peS[5(p)>0}
^2^) = {peS|5(p)=0 and 7i;p(P) is principal}
5:3(P) = {pel: |8(p)=0 and 7ip(P) is special}.

Then Theorem 5.2 is a direct consequence of Theorem 5.1 and the
following result:

LEMMA 5.3. — (i) We have P(p) = y(p) + /(p) except "when p e ̂ 4
and in this exceptional case, \ve have P(p) = 1 (where p^ = C(7ip)).

(ii) We have a(p)=P(p) if peS, a (p )=P(p)+ l if pe^u^ul.,
and a(p) = 2 if p e ^3.



354 p-ADIC ^-FUNCTIONS OF GL(2) x GL(2)

(iii) Define operators Ay for each p e £ acting on

(̂7i'; id, Xa^p2;./?')
by

Ay = Id if peE, ^p = Id - ^p(rop)[TOp] i/ pe'L^u!.,,

A, = Id - ^(TO,)[TO,J t/ p€£,,

and

^=Id-v|/p(^Dp)(^CT,)+^'(TO,))[TOJ+^'^2(ro,)[TOJ2 t/- peS,,

w/iere we /iaue written simply 1, for ^p. Then we have gIG'^h A forA= n-v̂p .
pel

(iv) FVrte m /or m{Q) and define operators By for each p e S acting
on V(nrf;id^Ql^p2 ^p^/or the unitarization n" of the contragredient of
n' by

^ p = I d if peS ,

B,=U- ^lp-(m/2)-lrlv^p-l(1^p)[^]o if Pe^ul^,

^=Id- l^plp-^-^-^p-^^tTnJo y PCS,,
and
^ = Id - ^|,-<'"/2>-lv|/p(^D,)-l^-l(^)+^-l(^))[1^J„

+ iCTplp-^^'^Onp-W],, if pe^.

TTien we have {g|9-1 TO'CT01)}" = Coh^l^/or B = \\ £„, w/iere
p e E

Co = ^(h)^"!^'"^'2 n (-^(tnp))!^!^^'1
peZluE4x n (-^^(TOp))!®?!?'"^2"1 n ^'^(wp)!^^^2

pe2:2 P e ^ 3

anrf f|[TO;]o(x) = tfxt^ OX\ for fe V(7^";id,XQl<^/p-2;./?").

(v) Define an Euler factor Ey(P,Q) at each pel; as follows :

(l-^Ti-'WXI-^'ri-1^))
'/ pe2:3,(I-^^TI^ITO ^(l-^ ' - 'TiWIrolp)

^-^^^.^( î, ^ -s-
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^-W^T-S ^ P^,(l-i;-1^)!^)

(i-^'n-^CT))
^rr1^) (/' peZa ,(l-^'-^^lrolp)

^-W^TI-W^) i/ peS,

where we have written vs for TO?. TTien we have

L^(2-m(P)+m(Q), Xa^p)

, ^^(e)-w(P)
'fp®XQ,g|9 - l |TO"(o^)^ - lx D

^ C/D ^\^ ^ I_L m(Q)-m(P) \= CiE(P,Q)2p[ 1+ ———.———>fp,gia >

w/iere £(P,6) = ^\ E,(P,Q) and
P £ £

Ci = ^'(gJW^./o^L/iA,'/-.J(p)2 ,.a\| •| -m(Q)/2

x n
p€2;

^'l|/'2(^)^^«p))|<p)|,G(^-l^-l)G(^,-lv^/;-l)
1^'(^)1

(vi) Write f0 ybr t/ie primitive form of the unitarization of
n(P) ® ^t'p and C(7i(P)®^'p) = TVp8 and define for s = # (Ls(P))

^(^-(-l)5 n (l-TI-^'^lCTp.Xl-TI-^^tB,))
p££2(P)

x ]-[ ri'Ti-^co^lro^l,.
peS^(P)

Then we have

((f^)" T(nTOa),f?)„
^l^riWvM- l)^'(fp)5(^)(r,r)6

x n G(Ti'-1^-) n 11n>(dp)
p/^) ' • • 'pUlnnWI

Proo/. - The assertions (i) and (ii) follows from (iii) by [H5],
Cor. 2.2 and its proof. Thus we prove (iii). What we need to show is
that

a«,g 9-1) = a«,h|^) for all n > 0,
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since the computation and the definition of Ay is purely local and
^J^glQ"1) and a(j,h) are transformed in exactly the same way if we
replace y by yu for u e x^ (see (2.4)). We only give the explanation of
the formula in the most complicated case where p e ̂ 3 since the other
cases can be treated similarly. Note that the eigenvalue of T(p) for h
is given by ^^"'(p) + ^^"'(p), which is equal to

^v|/'(tn) + ^\|/(CT) for CT = mp because of 9 == ^'P'^'Q.

This shows that a^h) = ̂ -nv}^ (J3r+l ~ ̂ w+l' Then it is
^ (CT) - ̂ (zn)

easy to check by a simple computation that a^^hl^p) = a^^glO"1).
The assertion (iv) follows from the fact :

hu(x)= \D ^^^IdeHx)!^2

and the following formulae :

(5.8) l^plp-<m+l)'h|TOCTa)lK]=h|T(/ma^),
h T(/tnP) = ^(h^CTPlA^^hp.

We now compute each Euler factor £p for p e ̂ 3. In fact, if one
replaces \m\^ by X, we have for

a' = ̂ -l(CT)|^m/2)+l, b ' = ^v|/- l(m)|CT|w2)+l,

a=W\rQW2)+\ c= r|(TO)|in W2)+l and fo = ^(TO)ICT W2)+l,

oo

-EpW = Z X'9-l(ror•)fl(TO",fp)fl(^D",hp)^'l
7!=0

-iTOlp-^2'-1^)-1^)-^'^)-1)^ x'e-'^XTO",^^"-1,^)^''
^=o

00

+ Irolp-'"-2^'^'2^-1) ^ x'e-l(CT")fl(CT",fp)a(ro"-2,hp)^»
7!=0

00 n'n+l — h ' 1 1 ^ 1

= ̂  ^'WC""-——7—————-X'1
n.o a - b

x {l-lTOl^fl' + ^'^'(CT^+lrol^fl'fc'c^^ro)2^2}

= afcc2!^!,-^^1"^1^1'^^^1-^1^1'^^.
' p ' P /1 ^ „ -l̂ \ /I 7- - -I^\(l-acA')(l-fccA')

Replacing .T by \vs ^w-»ww and using the fact: ^(ro) =
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Irolp-'"^1 and f|r|(CT) = CT | p- m(p)~1, we know that

(l-a-'c-^ro.L.rXl-b-^-1!®,,!,,^)
(l-ac;r)(l-fccD

(i-^-^^Xi-^'n-'W)
(l-ir^aOlTOlpKl-^- 'riOiOlolp)

The contribution from the factor Co in (iv) is given by

[] iTO^Ip-^^W^lTO,,!^2 ^(h)
pe2;3

= n i^^ip-^"2^-^^'2^)^.
pels ISS V^p/lp

Then we see that

H I a(p) 1 -m(Q)12 ̂  ^P ("p) J^2/ ^^n^2 | i 2s-2 (
I"5 Ip ^^ ^ T y^p)^0^0 l^pip ls=(m(Q)-m(P))/2

p e Z g SS V"?/

^ ,-r ^Y^^ri^^l^^lpG^-1^-1)^^,-1^-1)
plis WW\

which gives the I^-part of Ci. We can compute similarly the Srpart
for i = 1, 2, 4 and the 3-part. Then, using the well known fact :

W\g^') = W^W^j) for d ^ ^ d d ^ ,

we conclude the assertion (v) for p e S. All the other Euler factors for
q outside Z can be computed similarly and we conclude (v). Now we
prove (vi). Let Np^' (resp. N p 6 ' ) be the exact level of fp(resp. fp(g)v|/).
First we list several formulae which can be verified from the data we
already know:

((f^|T(n^),f?)a/ = ̂ -^d^'Wr®^'1^^1)^®^,

((fW^nrnW)^ = r}W-^ \^'^(p)'2 ((f^^W^
(cf. (5.6 a)),

((f^®^-1]!^^),^®^),/

= rl\|//(CT)a/-8/|CTa/-8/|^p)/2((4)"®v|//- l|T(nT^5/),f?®v|//)5.,

^(^)^(fp)=^(-l),
l^'(fp(x)v|/) = ^(Nd^W'^p) (see [H3], (5.4 c)),
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^. ,. p Ti^^^-^^^GCTi-1^-1) - n^p)
peVp) iTI^pW^^GW-1^-1)! ̂  |T1«H '

f^®^ = f°|7? for an operator 7? == ]~] JR? g1^11 ̂
p e £

and
^ = I d if pe^(P)u^(P)

f |^p=f-^^(mp)!^?!^2^^^^^ if peE^).

Especially &'(?) = 8(p) 4- 1 if peEaCP) and otherwise 8'(p) = 5(p). By
the above formulae, we know that

((f^lT^),^),

= ̂ "'(d'n^^W'^-6' ^((f^RY^n^'^f^R^.

We now quote some other easy formulae: Let a= \|/r|(TDp)| CTpl^^2

and b = vl/'ri^tHp)!^ ^<p>/2 . Then we have, for peI^CP),

(5.9) (f° [mp]o,fo)5-=(a+b)(fo,fo)5,(fo,fo|[^]o)^=(ap+^p)(fo,fo)5,

and
(FJ^s/ = (f°|[tnp]o,f°l[^pU = (l+[l^|^ l)(fo,fo)5.

Then by (5.8) and (5.9), we get the expression in (vi).

From this lemma combined with (5.7), we conclude the assertion of
Theorem 5.2.

6. Fourier expansion of Eisenstein series.

Following the method developed by Shimura in [Sh4] and [Sh5],
we shall now give an exposition of the computation of the Fourier
expansion of G^(x,^,9;s) defined in (4.8 d) for characters % and 9 of
Cl^(m). We use the same notation as in § 4. Our purpose is to formulate
the result in a manner suitable for our later use. We put

(6.1) £=^ ~^G(Q). and r(m) = ( ° ~^eGL^

for a finite idele m with mr = m. Let D be the discriminant of F . In
order to state the Fourier expansion of G^(x,^,9;s), we prepare some
notations: for aeF" , we define a subset of I by [a] = {ae/la^O}.
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For k e Z [ I ] and a subset J of /, we write k(J) =
^ k^a - ^ fe^a. We define a confluent hypergeometric function

a e J a ^ J

o)(r;a,P) for 0 < y e R , a , p e C by

C^
co(.v;a,P) = r(P)-1^ ^-^(x+l)01-1;^-1^,

Jo

which is absolutely and locally uniformly convergent if Re (p) > 0 and
is continued as a holomorphic function of a and P to the whole
R+ x C2 (cf. [Sh6], Th.4.2). We then define out of O)(^;OC,P) the
Whittaker function Wj(s,k\y) for s e C , fceZ[7] and y e F ^ + by

(6.2) W,(s^y) = ^Kyr^'^iy) n cof4^;5-^ 5+^)
aeJ \ z 2 /

x n^j^+^s-^V
a ^ J \ 2 2/

where e^(x) = exp (2ni ^ ^o) • We define functions cr^, a^^ for
\ 0 6 7 /

integers m and c^^ for complex number s on the group of fractional
ideals of F by

(6.3) a^(a)=$: /(b)^^))7", ^(^^^^(a/^^^br,
6:30 b=>a

c,,,(a) = .^(a)5-1 ^ /(^^-^^(b)1-^ if a is integral,
b='a

an^
(T^^a) = ^^^(a) = c5,x(a) =0 if a is not integral.

Here, the value ^(a) is defined as follows : When a is prime to m,
then we choose a e F^ such that ax == a and a^ = 1 and define
^(a) = /(a). When a is not prime to m, we simply put ^(a) = 0.

THEOREM 6.1. — Suppose that m 7^ r . Then \ve have

(̂(i! M'x'9'5) = D1-^1-^9^-^)

x ̂ '-"^•l̂ ir ^F(,(2'"l)f) ,.^(2.-l,x92)

1 ^-D^^t)

+Z^/st-fcf)) E ^92(^b)^(s,fcJ^|^)e^jc)l,
17 v ^ ^ e F X , [ ^ ] = J }
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where {k} = ^ fe^ anrf e^: FJF -^ C" fce r^ standard additive character
ae I

which coincides with ep(x^) onF^.

A proof of this theorem will be given in the later half of this
section. From the theorem, it is obvious that

(6.4 a) G,(x,/,9; s) = 9- ̂ det (x))G^x^Q\id; s).

Thus we know in particular

(6.4b) Enx^~\Q,s) == 9(det(x))^(x,%-le-2,id;s).

Actually we can easily verify this formula from definition. However we
will not use this fact in the computation of the Fourier expansion in
the theorem.

Next we specialize the Fourier expansion in the theorem to
\k] \k}

s = — and 1 - — when k is parallel and k = - [k]t with 0 < [k] e Z :

We quote a formula from [Sh6], (3.17-18) for 0 ^ n e Z :

(6.5) o)(z;n+l ,P)= ^ f n ) p ( P + l ) • • . • • ( P + k - l ) z - k

k=0 W

^ yMnp±fc)-.
kW r(p) ?

o)(z;oc,-n)= f fn\l-a)(2-a)•...•(k-a)z-A

k=0 W

^ - /n\r(fc-a+l) _,
^W r(l-a) z •

From this, we get, for k = — K( with 0 < K e Z,

^f•(s~k^>) ^(s,fe;|i;|̂ )|,.̂

^ fr^-t^^Trl^l^r'^O-l^^) if J = 7
10 otherwise

r/s-^ ^(s,k;|^|^)|,.i-^
l(47t ^y^'^Wy^) if J = I
I 0 otherwise.
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From these formulae, we conclude

COROLLARY 6.2. — Suppose that k = — Kt for a positive integer K .
Suppose either F -^ Q or K ^ 2. Then \ve have

G-M^ ^Ue;^ = D^wr^^r^r^'^Q-^y^

x {S^-^Z^O^e2) + ^ a^^e2(^b)e^(f^)e^^)},
^»0

G-J^ ^Ue;i-j) = (20^ •v^Q-^W
x {2-[F••Q]L,(l-K,xe2) + ^ cr,-^e2(^b)e^^)e^z)}.

^»0

We now make explicit the value of Eisenstein series of weight
K K

— Kt — 2r for 0 ^ r e Z[7] at the integer points . and 1 — _ by using

Shimura's differential operators. The following relation ([Sh3], (1.16 a, b))
between the defferential operators 8 and d in (1.7) is useful for that
purpose :

(̂ ) 5;- E (;)-̂ ,)(-̂ )-''''-'
O^rV/ A F(K-^r J )

= s (J)'̂ ^^)-^-'.O^-^r V/ 1 F\.t K r)

where we have written ( . ) for J~[ ( .CT j - Then (6.6) combined with (6.5)
V/ a V0/

and Theorem 6.1 yields:

COROLLARY 6.3. — Suppose that k = — K( for a positive integer K .
Let 0 ^ reZ[7]. Then \ve have

y^2 r^(K)sJ^2 G-J(3; ^Ue; ̂ l

= ^^(Kr+r)(-4^)-r<.-^J^ ^Vx,e;jV

^/2 s.Loo"^ <.-K/^ ^' x,e; i - ̂ l

= ^^(r+0(-47l^)-rG-^-2/^ ^)9^9;1~I)•
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Here we let the differential operator 5^ act on the function G-^
regarding it as a function on ^ for a fixed finite part y^ (if one
regarded 5^ as an operator acting on functions defined on G'(A) as in
(1.8), then the factor y^ on the right-hand side would have been
disappeared).

Before proving the theorem, we list easy lemmas without proof: We
first compute the Fourier expansion of E(x,s) = ^(xe/^.O^) in (4,8 a).
We put

^^(o u for x e J F A-

LEMMA 6.4. - (saa(x)(^ i ) 6 ; e^(Ay)(7o(m) for a, a' e F^

if and only if the following conditions are satisfied: (i) xe^^mr,
a E a ' ~ ^ x and (ii) axx + aa'x = r .

LEMMA 6.5. — Under the conditions (i) and (ii) in Lemma 6.4, \ve
have

^((^(x)^ °\-1}} = x(fl^)

n^eaa(x) (a' ?)e~1)) = K^'WA,

il((eaa(x)w)<») = |aTlm ̂ '^-(eaa^z)-2'

ejYeaaMJ0' ^e-1')N) = eaaV^aa'),2) = 9(a;-l)9(aa't)2-- l l j = eaaV^aa'),2) = 9(a;-l)9(aa't)2

= eCapr^aVr) = 9(aVt)

(the last equality holds only if a'^ = 1),

9((eaa(x)w)J = 1 ,

where w e G+ (R) and z = w(zo) e 3 £ .

We define the Fourier coefficient of E(x,s) at ^,eF by

(6.7) fc(^,w,s)= E^x)w,s)e^-^x)dx,,,w,s) =
J^A^

where ^x is the self dual Haar measure on Fi such that dx = 1.
JF^IF
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LEMMA 6.6 ([Sh4], §3). - If b(^,u,s) ^ 0 for u = x^ °)w mth

^m = ^oo = 1 ̂  weG '+(R) , ^en ^ e a'^rrr^"1.

LEMMA 6.7 ([Sh5], Lemma 3). — Let a and b be integral ideals.
Then for ^ea^m"1!)"1,

^ e^(-^r)= ^ H(ab/c)^T^Q(c),
r e (b - Im/am) x c=>ab+^amb

w/i^r^ H denotes the generalized Mobius function on the ideal group of
F and (b~lm/am)x = {x e (b~ lm/am)|Ann(x)=ab}.

Proof of Theorem 6.1. — Now we start with the computation of
the Fourier coefficient b(^,x,s). Let N be a subgroup of B denned by

N(A) == < (o ^) a e F®Q^ ^ . The term of E(x,s) :

7*(YXE71)9(Yxc71)r|(yxe71)s|J(y,Xoo(zo))-fc|J(y,Xoo(zo))A

for y G G + ( Q ) == G(Q) n Goo+ is non trivial if ^(yxs/^^O; i.e.,
yxe^e B(A)Uo(m)G^+ . Here note that Supp(0) contains Supp^*). If
X E B ( A ) F A , then the non-trivially of X'^Y^/1) means that

yxeB(A)UQ(m)G(R)^ and if we write y = ( a , ) . then c ^ 0 and

thus yeB+(Q)F^N(Q) (cf. [Sh4], p. 422). Namely, we know (from
(4.8 a))

E(x,s) = S ^(eyxe/Weyxc/^Eyxe/1^
y e r x \F x 7V(Q)

x ^(ey.xo^zo^'^ey.xo^zo)^.

We take finite ideles a and x with x^ = 1 and w e G o o + . Then with
the notation of Lemma 6.6, we have, writing z for vv(zo),

(6.8) b(^w,s)=\ ^ ^Q^yx^+v)^ Jwe/1)
^A/^ yer^F^^F \ \ / /

x n^eyxa(§+i;)^ ^ ^J lJ(£ya(§+^^)-Al7(£Ya(§+l;),z)te^(-^) dv

^ f x*efey^^)^ ?)w^l)
.-l^O})^ ^A \ \ / /y e (a ^ "-{O})/ ! " v r A

x ri^Eyxa^)^ i)^; ̂ (^^zY^j^^^e^-^v) dv,
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where x = xx. Here, to get the last identity, we have used Lemma 6.4.
We now introduce

M;a,P) = |(6.9 a) i;(3/,t;a,P) = exp (^Tnrx^x+iyr^x-^rPrfx
J —CO

for a, P e C, 0 < }/ G R and ^ , x e R. Note that the self dual measure
dx on FA coincides with the usual Lebesgue measure on Foo • We know
the following formulae from [Sh6], § 3 :

(6.9 b)
I fp-a(27l)a^(a)-l(2^)-^a-l^-2^(o(47t^;a,P) if r>0

(;(^;a,P)= !I•p-a(27l)p^(P)-l(2^)-a|?|p-l^-2^o)(4^|^|;P,a) if «0
fp-a(27I;)a+p^(a)-l^(p)-l^(a+P-l)(4^)l-ot-p if (=0.

/ k k \
We then put ^(s\y,u) = ]~[ 4 ̂ ' ^ ; s -—.s+—) for M = (^) and

C T £ l \ 2 Z /

^ ::= (^o) m R7 ' Then by Lemma 6.5, we see

(6.10 a) | e^(-^)r|((£ya(F)w),)s|J(eYa(I;),z)-fc|7(eYa(y),z)fc^
•̂00

=sgn(Y)fcIm(zn(s;Im(z),^).

Then, we have by Lemmas 6.5 and 6.7
/» / \ '

(6.10 b) ^ ^^(eyxolOO^ ^we/^e/-^)^
yea" lx- l/r x ,yax+m=r VFA.^• v /

= D-1'2 ^ e(fl71)e((Y^a)2)^(Y2)-2s^^(a)-s

y e a " ^x — ^ / r x ,yai+nt=r

x x((Ya^)n,)^F;<»(am)-1 ^ ^(ysa/c)^^^^).
c => yxa + ̂ amb

In fact, by Lemma 6.5, for Q(v) = X*^^ ^yxd(v)[ ^ . i w E / 1 ) ,

we have

Q(v)eF(-^Vf)dVf
^

l((yx)2a),|19((yx)2a)x((yxa),) e^(-^) dv^
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Here the domain of integration is over y~l^~lmx because of Lemma 6.4.
Note that sgn (y)*^((yax)^) = ^(ax^'^yax), where in the right-hand
side, we consider 7~1 as an ideal character. Then, writing n for yax,
by (6.10a,b), we know from Lemma 6.7 that

/^ 11\ L/e ( a ^\ \(6.11) b\^x\^ Jw,sJ

= ^FiM-'D-^jQ-^a^x)^^)8-1 Im (z)^
x ^;Im(z),^) ^ e^-^rO^QOt)-25 ^ n(n/b)^Q(b),

n ~ xa b => n + ̂ omb

where n runs over all integral ideals in the same class as xa. We have
defined in (4.8 b)

h

^?(",X,e;s) = ̂ ^(m)^D ̂  (x-l)(fl,)<^(a..M,x,e;s).
t'=l

Then by (6.10 b), the Fourier coefficient of £^( ( (we/1,^^;^) for

a e FA with a^ = 1 at ^ is given by

(6.12 a) ^-^^(a)5-1 Im (z^^Im (z),^)
x Sx'^n^/QOi)-25 ^ n(n/b)^^(b),

n b =3 n + ̂ amb

where n runs over all integral ideals of F and ^ can be zero. Writing
n = cb in the above summation and interchanging the two summations,
we know that (6.12 a) is equal to

(6.12 b) xe-^r^ar1 Im (zU^Im (z),^)

x Z X-192(b)^m(b) l-2SS/'"192(0^(0^/Q(c)-2s

b => ̂ amb c

= ^-'(fl/).^ (a)5-' 1111(2)^0; Im(z),OL„(2s,x-le2)-l

^ /-^^^-^(t))1-25 if ^0
\/ < b =3 ̂ amb

L^ls-l^-'O2) if ^ = 0 .

By the formula (6.9 b), we see

(6.13) ^(s;y^^)

=iW^F:w^^_Wp\ y-^ ^-'w^s,k;\^y^ for ^ 0,

^s;^,0)

= ,{*)(2TC)f^r/st-J') r/st+J') ^^(2s-l)t)(4^I^)(l-2s)'.
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^ ^ ^ - / O -1\ /m-1 0^We put T(m) = ( ° ^ = - m^ ' ^e/1 e GL,(F^ for a finite= — m

idele m with mr = m. Define

G,*(x,7,9;5) == e-l(m)^^(m)s-15c(det(x))^(x,T(m),x-l;e;5).

Thus replacing 7 by /-1 in the above argument and keeping in mind
the fact that (-1)^ = Xoo(-l) times (6.12 b) gives the coefficient of

^((^ ^) ? X 5 9 ; S ) ^ the ^ ~ )> ̂  in front of m(wo ' J8715 w

/ / \ v \ /

conclude that the Fourier coefficient of 6'?((3. ^ ^ ^ ( a t ^ e F

is given by

(6.14) (-l)w9-l(^)|};|A|^|Asl^ools-l^s;Im(z)^)L,(25,7e2)-l

S XOW^^^b)1-25 if ^0
X • b=>^b

L^(2s-l,792) if ^ = 0 .

Then by the definition (4.8 d), Theorem 6.1 is now proven.

7. Operators acting on /?-adic Hilbert modular forms.

Here we shall summarize known results on operators acting on
p-adic Hilbert modular forms. Throughout this section, N is a given
integral ideal prime to p.

A. The action of G = Z(N) x r; .

For (z,a)€G, we let it act as

a^(};,f|<z,fl» = a^^-VKz)) and ^,p(yJ <z,a» = ̂ {ya~\i\^)

by choosing a representive z of z in FA with z^ = z^ = 1. Thus on
^(A^01,^,^;^), (z,a) acts via multiplication of vK^vl/^^z)^"2^".

j5. The operator [m].

Let M be an integral ideal prime to p and m be an idele with
mx = M and m^ = m^ = 1. For feM(U(MN)), we define f|[m] by

ap(^f|[m]) = a^m-1,!) and ao,^(^f|[m]) = ao^^m-1^).
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This operation corresponds to the action

fItmlW^^^M)-^^1 ^(^^^^(M)-1^^1 oy\

and induces a linear map [m]: M(L^(W)) ->- M(U(NM)). If one restricts
the operator [m] to M(AQ, then the operator [m] only depends on the
ideal M but not on the idele m. We can similarly define the operator
[m] acting on M^^^O?00);^) for m with non-trivial nip by

ap(j,f|[m]) = mp^apOn"1,!') and ao,p(.v,f|[m]) = mp^ao.pOwl"'1,!'),

which may not preserve integral forms.

C. The action ofxe SL^(x) with Xp = 1.

Every element xeSL^x) with x? = 1 acts on M(U(N)) (e.g. [HI],
Th. 4.9) and sends it into M(U(N,N)). This action coincides with the
following one on M^UW^) ;Q) : f |xOO = f(yx).

D. The trace operator Tr^^N-

Let M and N be the integral ideals prime to p and L be the
product MN. Then we put

S(N,M)=^ ^EU^beMx}

and define 7r^: M(5WM))^M(C/(7V")) by f|Tr^==
^ f|x. Note that this operator takes M^(S(N,M)(pco);Q)

xe U(N)j^lS(N,M)^

into M/,^(£/(7V)(p00) ;Q) and hence naturally extends to an operator as
above by C.

E. The twisted trace operator T L I N -
Let L be an ideal prime to p and N be a divisor of L. We take

finite ideles I and n so that nx = N and ?r = L. We define 7^ by

n-r ^ ^^/n °MT-fl^L/^) = H O ^ Tr^.

. „ , , , fl/n 0\ ^ . - /</n 0^ J fl/n 0\\
In fact, the operator ̂  ^:f^^f^ l)=\x[o l ) )

actually takes M(5') for 5' = U(N) n £/o(^) into M(S(N,L/N)), because

a^a-1 = S ( N , L / N ) for a = (^n ^. Thus on M,^(£/o(^a),^,v^;^)
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for finite order characters \|/ of Clp(Ay) and v|/ of r? , the operator
T L I N coincides with [Uo(Np^Uo(Lp")] defined by

f\lU,(Np^U^Lp^)](x) = ^vKa.r^aO"1^),
i

where a, is given by the disjoint decomposition:

U,(Np^U,W) = U^W^)
i

_, . ( a b\ , , , . , , , ( a b\ . , , - i , ^
and ^[c d ) = ̂ ^ and ^\c d ) = ̂  {ap dp)'

F. The twisting operator for a ray class character %.

Let M and N be integral ideals prime to p and let ̂ : C\p(Mp^) -> (9 x

be a Hecke character. We then define 7 : M(W) -> M(NM2) by

a^Cv^lx) = X^^a^^O.
and

ao,p(^flx) = XO^ao.pC^f) if ^P01 = r and otherwise ao,p(^,f|x) = 0.

Here we consider % to be ideal character such that ^(jr) = ^(y) if
J^M exMX' an(^ X(};r) = 0 if }^Mp ^ r^x. As a special case of this type of
operators, we can associate to the trivial character ip to Clp(p) the
twisting operator i p : M(N) -> M^^(7V), which does not affect ap(j,f)
if yx + pv = r and simply annihilates a?(j,f) if yx + pr 7^ r . This
operator coincides with 1 - T(p) o [p]. For more general character ^,
we can show the existence of such operator as follows : We assume
that % is primitive of conductor C. Let c be a finite idele such that
cr = C. Then we define for feM^V^N)^) ;Q),

f|^(x) == x(det(x)) I: z(M)f(x^ ^)Y
u e y \ \ //

where V is a representative set for c~lx^ modulo X c ' Then we see

a(,,fW= {G^,)^^l)a^f) if ^cetc ,w / [0 otherwise

where G'Oc"1) = S /(^"'^e^"1"). Then ^"^"'f R gives the
M€ y

desired form since %(yyc1) == XG^) if ^ c ^ ^ ^ - Ky continuity, we can
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extend the operator ^ to M(AO. We see easily that if
feM^(U,W)^'^,(P), then f|x e M^U^NM2?^'^2'^).

We now introduce a similar but different operator for each Hecke
character 9: F ^ / F " -> C" whose conductor is C(9) and whose infinity
type is given by ^eZ[7], i.e. 9 (^ )=^^ . Then automatically ^ is
parallel and 9 has algebraic value on finite ideles. We then define f (x) 9
by a(^,f®9) == 9(jy)a(j,f){/} or equivalently, ap(j,f(x)9) =
Q(yf)^p(y^y^' We see easily that f®9(x) = 9(^)9(det (x))f(x). Thus

y feM^W.vl/.il/;^), r^n f ® 9e Mk,w^(C(Q)Np^ ̂ ,Qp\^Q2; (9).

In the special case when 9(j) = | ^ | A 1 ? we see ^ = — t and

ap(^f®9) = 90v)ap(^f)^ = ^rF/Q^r)^^^^!) = ^(^)ap(^f).

In general, any Hecke character 9 of above type is a product
9 = X l I7 for a finite order character ^ ^d an integer j , and hence
ap(.y,f(x)9) = /^(j)a^,(j,f). Thus this operator also extends to M(AQ
by continuity.

G. Differential operator.
For each a e 7, there is an operator d 0 : M(W) ^^ M(7V) defined by

a^(^f|rf0) = y^p(y,f) and ao^(^f|^0) = 0. Thus we define for
0 ^ r = ^ r^a e Z[7], ^r = ]~I ^CTrCT • Then we see

CT CT

ap^flrf') = ypfip(y,f) and ao^^fl^') = 0.

In fact, by [K], (2.6.27), there exists a differential operator
9(a): F(c,^) ® Qp -> F(c,^) ® Qp such that

9(a)f^^(^)^)=^^a^)^,
\ ^ / ^

where ^(c,^) is the space of ^-adic modular forms defined in [K],
§ 1.9. We can show the stability of the subspace M(N) under this
operator ^ as follows. Let

M^r^r;^);^) = limM^(rW;a,);70
Ot

and M^^(^(A^pco;a^);^) be the completion inside

K[[q}}, = L(0) + ^ ^^)^|a(^)e^l
I 0«^6a;b-1 J
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of M^(^(Npco,ai),K) under the norm \f\p = Sup^ \a{^f)\p. Then we
can easily show that there is an operator 9 (a) acting on
^^(^(A^00;^);^) defined as above. We first choose a, so that

h

FA = U FX^^F(1)F^+ a^ ^en choose ^er? so that
;=i

h(N)

FA - U U ̂ ^^(AWF^.
j i= i

Then we can find /a,u6 M^(r(Ay;a,);A:) so that
|^J^J-^(;;,f^ < p^ and |^(0,/^-)|, < p-". Define

a^fa) = a^,/,,,,)^,-1^1^)^^,-1^^)^^)"1

if y = ^a^u]'1 ud with t^, = 1 modp01. Then f^ converges to f|^° under
the topology in M^(Ti(W)(p°°);^). Then we know

a,(^f|<r) = ^(^fde^^r1^)^^^^-1) if y = ^a^ud.
Thus fj 9'' behaves as if it were a modular form in M^+2r,w+r(r(Ay; a,); AT).
This is reasonable because each element a of the subgroup Xp of G(N)
acts on f l^T by s^p(y,f\dr\a) = ^p(ya,f\dr) and if a = Imodp" for
sufficiently large oc, then ^p^ya^^) = sir~vap(y,f\dr) and hence the
p-adic weight of f\df' is (n+lr,v—r) (which corresponds to (A;+2r,w+r)).

H. Relations of operators under Petersson inner product.

We put

^o(m) = G(Q)\G(A)/£/o(m)FAC^ = G(Q)^\(7(A)^/C/o(m)FA C^ .

Then, we define for feN^^(m,\(/,\[/;C) and g eN^^^(m,v|/ ' ,\)/;C),

(7.1) (f,g),= f f(x)g(x)|det(x)|r2-]^(x)
J^o(m)

whenever the integral is convergent. Here we used the measure d[i^
defined in § 4. We first determine the adjoint of the twisted trace
operator 7^. Assume geM^CLp^vl^C) and feS^(Np\^'^;C)
for a divisor N of an ideal L prime to p. Then with the notation in
V, we can prove in a standard manner that

(7.2 a) (f,g|7^)^ = {(7v/L)u}^(L/^)l-m(f|[L/^],g)„a.



HARUZO HIDA 371

Similar computation yields for a G (7 (Ay)

(7.2b) (f,g|[[7a^])n, = X(det(a))(f|[^a^],g)n^

where o^oc == det (a) for ^/^^(m"). As in §4, we define the
unitarization of feM^^Lp^vl/^vl^C) by

r^)=7)-(-/2)-if^^^^^et(x)|r2 for m=m(P).

Then we see that

(7.2 c) (f",g")m = D-^-2^)^.

Assuming ky > lm^ for all a, we now define the holomorphic projection
map ^:^k,w,m(U,A)-^M^(U;A) for any Q-algebra A inside C by
t)(f) == fo using the expression in Proposition 1.2. The following result
has been shown in [Shi], Lemma 4.11 and [Sh3], Lemma 2.3 :

PROPOSITION 7.1. - Suppose that k^ > 2m^ for all a. If
feS^(Np^'^,A), then (Wg))^a = (f,g)^a for all

geN,,,.,(Ay,v|/,iM).

We have a natural multiplication :

^K^mW^'^A) x N^W,v|/,vM)
-^ N^^+co.m+nW^X^X^;^)

ftg) ̂  fgW = f(x)g(x).

The relation of t) and the differential operators in (1.7) can be given
as follows :

PROPOSITION 7.2. - Suppose that k^ > 2m^ and K^ > 2^ for all a
and geN^^AW^X;^) and f eN^^oW^^M). r/i^n we
have ^(f§Krg)eS^^2,,,+,^(<7o(^a),X/^X^ ;^) ^ r > 0 a^

t)(f8^g)=(-l)^(g5if),

^here (-1)' = (-1)^.

Pr^/. - Note that f5^g eN^^^+co^m+^^AW^X ;^) and
^ + K^ + 2r^ > 2(m^+(^+rJ for all a. Thus t) is well defined. Note
that (f5^g), = f,8^g;. Thus we consider only

fi^i = t)(f^g.) + E §LK+2r-2.h,,,
0<s^ m+ n+ r
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with hseM„+K+2r-2s,w+a+r-s(Uo(Npa),•^',•^•,A) for a fixed i. Define
c : N^,,,(r'([/o(Ay)),<M) ̂  ^[[4]]. by

c(/) = a(0,/)(0) + ^ a^,f)(0)q\
0«^ 6 (l{b 1

which is the constant term as the polynomial of Y. Note that
d^nyVq^) = - r^nyV^q^ + ^TiyT^. Thus we know

0(^(0) =^(0(0).

Then we know from (6.6) that

(*) WiW = 0(^^(8,) - ^ ^^(h,,,).
0<s$; w+(A4- r

Since ^(O^'c^)) = 0 if s > 0, we see a(0,^(f^g,)) = 0. This is true
for all translation of l)(f,8^g,)|a by a e G ( Q ) + . Thus I)(f^g0 is a cusp
form if r > 0. Then the result follows from the argument in [H4],
Lemma 5.3.

We now define a formal ^-expansion

c(f) = ^-\y)\^yd,f)(Q) + E a^(^rf,f)(0)^l
I 0«i;eFX J

for each f e N,,,,,(£/o?a),v|/^v|/;^). By (*) we have

a^MfiW) = aC;,c(f,)^c(gO) - ^ ^a(^h,,,).4^
0<s^ /w+p+ r

Thus if y = ^a-i^du, by (1.3b), we see

^•(a,)ap(y,h(f8^))
= ^(a,)a,(^c(f8^g)) - ^ ^-(a,)^a,(y,h,,,-).

0<s<m+n4- r

This shows that

(7.3) t)(f5;g) = c(f8^g) - ^ hjd5 msf^ ^(^uZ;^().
0<s^m4-^i+r

Since ap(^f T^")) = ̂ (yvs'",!)^-"1''}^'' if fe M^(5(p00) ; (P) , we
know that for the quotient field K of (9,

a^hjd'iro^^l^la^^^hj^l^lp^a^hji^lp^lpllh,!!,
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and thus hs\ds\e == 0 for the idempotent e defined in § 3. Namely we
have :

PROPOSITION 7.3. — Suppose that ky > 2m^ and K^ > 2^ for all a
^_g6NK.,,,W,^X;Q) and feN^W^^Q). Then c(f) exists
in M^^jVp00,^,^;^) and \ve have

eW^g)) = e(c(fSig)) = ^(c(f)^c(g)),

The existence of c(f) in the space of p-adic modular form follows
from (7.3) and G by replacing 8^g by the constant 1. The other assertion
follows from the above argument.

Now we can prove the p-adic version of Proposition 7.2 :

PROPOSITION 7.4. — In Mk^(Uo(Npa),^^ff,^f ;K), we have

^((f|x)g)=Xoo(-l)^(glx)f) and ^((f|^)g) = (-l)^((g|^)f).

Proof. - As already seen, ^((fid^g) + e((g\d^f) = ̂ 01^)= 0.
From this, the second assertion follows. Note that, by choosing
sufficiently large n so that p11 = ImodjV, we see yp'p = ^p" a,1 d u p ' ' ~ n

and u p ' ~ n e Up(N) if y = ^a^ud with ue Up(N) where p ' p p = p in
FA. Thus

ap(^,f|ro(^)) = a^^Odp"}^)" = a^p^fO^-1^)?^-1^).

Then the first assertion follows from the fact that (fg), = f,g, and

^V.(gJx)) = E xCpa^b^a.f^P.g,)
a+P=^»

= E x(-^-lb)a(a,fOa(P,g,) = Xoo(-l^^p^g^lx)).'
a+p=^»

8. Eisenstein measure.

In this section, we interpret the result of § 6 into p-adic setting.
Namely fixing an ideal L of r prime to p, we give a definition of the
Eisenstein measures on the p-adic group G(L) = Z(L) x Xp , where

Z(L) = Z(L)IF^ = F i / F " UF^P^F^.

Although our construction is covered by Katz [K], (4.2), our view point
is more adelic. We use the same notation introduced in § 3. We write
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J7* = M(L) (thus we write U for the ^-dual of £/*). Then we can
state the following theorem-definition :

THEOREM 8.1. - We have a unique (9-linear map E: ^(G(L);^) -> U*
such that

(8.1 a) ^{yY^lyS (|)(w-\z)w-^(z) dE\
\ JG(L) /

( Z <!>(3U^). if ^ r + L p = r
;̂ / a => ̂ r, a + Lp = r

0 otherwise
and

o,p(^
\ JG<

ao,p ^ w-^cKz)^)^ = 0
\ JG(L) /

for any continuous function ^ : Z(L) x r? -> (9 such that <))(w,z)^r(z)
factors through G(L), w/i^re w (resp. z) denotes the variable on Xp
(resp.Z(L)). If the Leopoldt conjecture holds for F and p, then E has
values in S(L).

Proof. - We first show the existence of E with values in U * .
Consider a quadruple (6,^,K,r) consisting of a finite order Hecke
character 9 of p-ower conductor, an integer K > 0, a finite order
character 7 of Z(L) with Xoo(-^oo) = ^oVi^o' and a weight 0 ^ reZ[/].
By (8.1 a), we see, if V L p ^ ^ L p x ,

•(-I '\ JG(L)
apb'J eov-^w-'-^z).^'^)^

\ JG(£) /

= ^GOeo^; I: x(a)^(ay-1.
a =3 yr, a + Lp = r

Thus, it is sufficient to prove for all quadruples (9,%,K,r), we have
E = E(9,7,K,r)e U* such that

(8.1 b) ^F^E)
0(^)^ S X(a) ̂ W-1 if ^r + Lp = r

a=>3n',a+Lp=r

0 otherwise
and

ao.p(^E) = 0,
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because functions of the form (a,z) \-> eOz)"1^"7^)^'^) are dense in
^(G(L);Q) for the p-adic completion 0 of Qp. We see easily from
Corollary 6.2 and § 7.F-G that E(9,^,K,0) is a constant multiple of

I^IA-^G-.^ ^^e-1;!-^-1.

Here we use the twisting operator ip in place of 9 when 9 is trivial.
This shows

and
E(9,x,K,0)eM^(^,(L)(poo);Q)

E(e,7,K,r)=^E(9,7,K,0)e£/*,

and we know the existence of E having values in U * . If the Leopoldt
conjecture is true for F and p, we can find an Eisenstein series Gn of
^mt,t(Uo(p),Q) with the following property [Col]:

(8.2) Cy^eM^((£/o(p),Q) for each positive integer n such that (i)
r^p^^p-l), (ii) G^^lmodp^'Zp for O^seZ independent
of n and (iii) ao,p(y,GJy) = 0 (f y e G(A^) - ̂ (A^ l/o00.

It is easy to show that G» [ [p^ satisfies the above condition for
£/o(pQ instead of U^p). Then we see that G»EeS(L) and E =
lim G'^EeS(L). This shows that E has values in S(L). Thus, in fact,
ra-+oo

the 7?-adic cuspidality of E follows if one assumes the existence of
sequence of modular forms {Gn} as in (8.2) without assuming the
Leopoldt conjecture.

For a finite order character c : Z(L) -> Q with ^j(j>0) factoring
through Z(L), we see

(8.3 a) a ,̂ | eOv-1)^-^) ̂ (z) rf^)
V ^G(L) /

=9(^)};;^W E £(a)^F/Q(aY-1 if yv + Lp = r,
a=3.yr,a+L^=r

/ r \
(8.3 b) a,[y, Q(w-l)w-jt+'-rs(z) ̂ ^'(z) dE 1

\ JG(Z.) /
= ̂ W^eC ,̂) ^ e(yr/a)^-^Q(ay-1 if yt + Lp = t,

a=ijn:,a+Lp=r
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because ^(y?) = ^'p/Q^)"1^^). Thus the measure E has values in
M^^L)^00);^) for any K > 0. Then modifying the action of G on
m^V^L^YK) so that f | ,<z,a>=^f|<z,a>, we see that

r r(8.4) ^z)dE(z)\^z\a) = ^(a^z'z) ̂ -(z)2 dE(z).
J|G(L) . JG(L)

9. Convoluted measure.

In this section, we define a convolution of the Eisenstein measure
E and an ^[[G]]-linear map (p : M* -> S(L) for an ^[[G]]-module M.
Let L be an ideal of r prime to p . As in § 3, we decompose
G(L) = W x Gfor(^) for the torsion-free part W and a finite group
GtorGO- We write A for the continuous group algebra ^[[W]]. We
begin with

LEMMA 9.1. — Any A-submodule M of an A-free module of finite
rank satisfies the following conditions : (i) M ̂  lim M^ as A-module ;

a

(ii) Ma is an A-module and is (9-free of finite rank ; and (iii) The transition
maps : Afp -> My, are all surjective. Moreover if an A-module M satisfies
(i), (ii) and (iii), \ve have

M* = Hom^(M,^) ^ lim^limMn®^/?01^),
^ N x ^ / /

(M*)* ^ M and Hom^ (M,A*) ^ M* and HomA (M*,A*) ^ M.

Proof. - Let E ^ A'' be a A-free module of finite rank and suppose
that M is a A-submodule of E . Writing W" = W/W^, we see
A = lim ^[W"], and hence E satisfies the conditions (i)-(iii) for

a

E^ = (9[^Y . Since A is noetherian, M is a closed submodule of E
and hence M is compact. In the category of pro-objects made of
compact abelian groups, the functor of projective limit is exact. Thus
we know M == lim My, for the image M^ of M in E^. Then it is easy

a

to verify the conditions (i)-(iii) for M^. The second part of the lemma
follows from the proof of [H3], Proposition 7.1. Especially, the pairing
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< , > : M x M* -> A* is given by

<m,m*>(a) = m*(aw) for m e M , m* e M* and a e A .

We now recall the space £/* introduced in Theorem 8.1, which is

the closure of the space ^ ^ M^riCL)^00);^) ^ n ^(^uZ;^) in
I A,w J

^(J^uZ;^) under the norm || \\p in § 3 (thus U is the (P-dual of U * ) .
Note that (7 satisfies the condition (i), (ii) and (iii) of Lemma 9.1.
In fact, we can take Ua, to be the (^-dual of

E M^JF^LK^TOn^G^uZ;^). Then we see U=
0<k<Qit,t^w^-a.t

lim U^. On the other hand, the multiplication induces a product
a

m ' : U* x S -> \D\S, where S = S(L) (see (1.4)). Thus we define
m: £/* x S -^S by m(f,g) == |Z>rW(f,g). Then by definition, we see

m(f|,<z,a>,g|<z,a» = m(f,g)|<z,^>

where the action f\—>f <<z,a> is given above (8.4) and, as seen in (8.4),
the Eisenstein measure E: ̂ (G(L);^) -^ U* becomes an ^[[G(L)]]-
linear map under the action: fh-^f <<z,fl) on U* and the action:

(|) h-> (|)|2(z,a)(w,z/) = ^(a^,z'z)^(z'Y on ^(G(L);^).

Let J be a divisor of L and consider a compact ^[[G(J)]]-module M
satisfying the conditions (i)-(iii) of Lemma 9.1. We consider M as a
^[[G(L)]]-module via a natural projection of Z(L) to Z(J). Let
(p : M* -> S be an ^[[G]]-linear map for G = Z(L) x Xp . Define

<p :M* ®c, £/* -> S by <p = mo((p®id),

where M* ®^ U* is a p-adic completion lim(M*(S)U*)/p}(M*(x)U*).

On the other hand, M®oU denotes the profinite completion
\imMi(x)Uj. We say that a function (p : M -> U* is continuous if it is
t J

continuous under the p-adic topology on U* and under the topology
of the profinite group M. Thus if (() is ^-linear, then ()) is continuous
if and only if there exists i > 0 for any j > 0 such that
(^mod^M/yM-^ [7*/y[/* factors through M^M,, where M=
lim M; as in Lemma 9.1. Then, since U = lim U^ for ^-free modules

Uk of finite rank satisfying the condition of Lemma 9.1, the image of
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(|) modp7 is actually contained in U ^ / ^ U f for some k . We denote by
Honic(M,£/*) the space of all continuous (^-linear maps. Then we have

Horn, (M, U*) = lim lim lim Hom^ (M,/^M,, U ^ / ^ U f )
7 7 7
= limlimHom^CM^M,®^^,^/?7^) = (M®^)*,

7 t^A

where M®^?7 is the profinite completion of M ®^ U.

LEMMA 9.2. — Let M and U be ^-modules satisfying the conditions
(i) (ii) and (iii) of Lemma 9 A. Then, we have

M* ®<p U^ - Home (M, £/*) - (M ®^ ^7)*,

w/i^r^ the identification is given by (^ ® u* i-> (<j)®M*)(m) = (^(m)u*.

Proof. - We have a natural map: M* ®o U* -> Hom,(M,U*)
given by <^ ® u^-> (m-^^(m)u). By definition, M ®^ ^7 = lim M,®L^

satisfies the assumption of Lemma 9.1 and thus

(M®^£/)* ^ lim (lim M*®£/M (x)^/y"^ = M*®^*,
m i j

which proves the assertion.
For each continuous function <3> e ̂ (Mx G;^9) , we define an action

of G = G(L) by {^\(z,a))(m,z ,a ' ) = OOz-^-^m.zz^). We now
define £* : ̂ (MX G;^) -^ ^(M,(/*) by

f
^(<D)(m)= (0|(z,a))(m,l)^(z,a).

JG(L)

Then ^* induces on M* ®(p ^(G;(^)(^ Horn, (M,^(G;^)) which can
be regarded as subspace of ^(MxG;^)) a morphism into
Hom,(M,C/*)(^ M*,®^*). Then we have

£*(<D)(m)= ^^"'^"^(z^)^^^) for $eHom,(M,^(G;CQ).
JG(L)

We now define the convoluted measure £ ' * ( p : M * ® ^ ^ ( G ; ^ ) ^ S by

£*(p((D) = q>(^(0)).
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By our construction, if we let (z,a)eZ(L) x r^ act on 0 via
^)||(z,a)(m)(x,5) == 0(m)(zx,^)J^(z)2 regarding ^> as an element of
Hom,(M,^(G;^)), then

(9.1) £'*(p fs a morphism of (P[[G]]-modules.

In fact, under the diagonal action of G on M* ®^ U * , <p is ^[[G]]-
linear. Thus we see

(9.2) CE*((D)|(z,a))(m)= | (^|(x,fc))((z,a)m,l) ^(x,^)|,(z,a)
JG(L)

= | (0|(zx,flb))((z,a)m,l)^(x,fc)
JG(L)

^(x^fc-^m^zx.flfc))^)2^
JG(L)

= | (0||(z,a)|(x,ft))(m,l)^(x,fc).
JG(L)

This shows the compatibility of the action with E * (p.
We now fix another divisor N of L. We can naturally identify the

maximal torsion free quotient of G(N) with W via the natural surjection :
G(L) -^ G(AQ. As in § 3, we fix decompositions: G(N) = W x Gtor(A^),
Z(AT» =- W ^ Ztor(AO and r^ == W x ^i. Then we may assume that
W = W x W and Gtor(AQ = Ztor(AO x H . Let L be the quotient field
of A = ^[[W]]. We fix a finite extension K of L inside the fixed
algebraic closure L and denote by I the integral closure of A in K.
Then there exists an A-free submodule M of K of rank [K : L] containing
I (cf. [B2], V.I.6, Lemma 3). Thus I satisfies the conditions of Lemma 9.1.
We now take a primitive A-algebra homomorphism ^ : h"01^^;^) -> K ,
which factors through h(v|/,\l/') defined in § 5. Then ^ has values in I.
By composing the multiplication map : I ®A I -> I with ^ ® id, we can
naturally extend ^ to an I-algebra homomorphism of h(\|/,\|/) ®AI mto

I, which we again denote by ^. We now consider the I-algebra
decomposition h(v|/,\|/) ®A K = K © B induced by ^ such that the first
projection to K coincides with X, and we let 1^ denote the indempotent
of the factor K . Let pr be the second projection into B and put
^(k) == (I©pr(h(\|/,v)/) ®Al))/h(v|/,vn ® A I . Then by [H2], Th. 2.4, ^(k)
is a torsion I-module. We take 0 ^ H el which annihilates ^(k). Then
m^eh^.v)/) ® A I . We now decompose S^^N^K) == S(\|/,\|/;70 © X
so that GtorC^O acts on S(\|/,v|/;A") via the character (v|/,\|/) and on X
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via other characters. We write S(\|/,v|/) for the intersection of S"-01"^;^)
with S^.vl/;^). We also write M = HomA(M,A) for any A-module
M and we define a pairing < , > between h^v)/) (x)^! and
S(v|/,v|^) 0AI as follows :

(9.3 a) <h®i,f®]> = (hj(i),f) = (h,f|J(i)),

where ( , ) is the pairing in Theorem 3.1. We then define

(9.3 b) ^SOI/^XSAI ^ (9 by ? , ( f )=<m, , f> .

For Pe^I), we have an (^-algebra homomorphism

Xp=Po^:h(v| / ,v | / / )®AI ^ Qp

Suppose P e e^(I). Then, we have characters v|/p and \|/p associated to
P as introduced in § 5. For a suitable S-tuple a = (a(p))pgs and for
k = n(P) 4- It and \v = t — v(P), as seen in §3, we find
fp e SCTA^^p, v|/p; Q) such that

(9.4) a,(^fp) = W^y-/ = P(Wy))) or equivalent^

^y,fp)=^p(ny)){y-u}-P(^(rT(y)))yvp{y~v} for yexr^F^.

For complex conjugation p, we write fp for the cusp form in
SrJWWp'Svl/p^Q) defined by a(^fp) = a(^,fp)P (see (2.1 a)).

LEMMA 9.3. — Let fp be as above for Pej^(I). TTi^n we have

'x(g) = ^(P)(R|T(ntaa),g|^V(^?|T(n1^a),fp),

for all g e S^A^vl/p, v|/p; Q), w^r^ (, )„ = (, )^a.

Proof. — By definition, we have f|r(x) = /"^det (x))f(xT(m)) for
feS^u;(m,^,^;C). We write U for £/o(nt). Then it is easy to see from
this formula that

^(detCx^lT)!^^] = ({^[U^U] ) |T ,

where a = ( ^ . ) with a prime element xs of r^ for a prime q. We

now suppose that m = N p " , X = ^p and ^/ = v|/p. Since

and
h^On,^;^) = hA,u,(m,^,/;ro) ®^C
hA,u,(m,/7,/;^) = hA,^,(m,^,7;r<i,)®^^,
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we can extend ^p: h^On,/^;^) -> C linearly to unique algebra
homomorphism of h^(m,/',7;C) into C, which we will denote again
by ^p. We first show that the linear form I :feS^(m^'^C)-> C
defined by /(g) = (fp^(Np^g\e^/(Pp\T(Np^,{p\ is ' the unique one
satisfying ;(g|fc) = MWg) for all fc eh^m.^C) and f(fp) = 1.
The uniqueness is obvious by the duality theorem (Theorem 2.2) and
the fact : l(fp) = 1 which follows directly from the definition. By (7.2 b),
we have

(f;|T,g|[^a^])=^([£/a£/])(f^|T,g).

This shows the desired property of 1. Now, by definition, ^ satisfies
the same property, i.e. ;,(g|A) = ^p(h)l^(g) for operators
/ieh^(m,^,5c;Q^). Thus ^ is a constant multiple of ; on
S^W^p,^p;Q). Since ^(fp) = H(P), we know that ?„ = H(P)l on
SA,^W,^P,^P;Q). This finishes the proof of Lemma 9.3. Note that
the expression on the left-hand side does not depend on the choice of
a = (a(p))p,s.

Now we take an A-free submodule X in K containing I. Then X/I
is a torsion A-module. We use the symbol: "*" to indicate ^-dual
module while we use the symbol: "'" to indicate A-dual module. We
write v|/: Z^{N) -> G)x and \|/ : a -> ( 9 x for the characters which gives
the restriction of 'k to G^(N). Define a subspace of ^(G;0) by

^(G;60[v|/,vn = {/e^(G;^)|/(^) = v|n|/(0/(x) for all ^eG^}.

We know, by restricting functions on G(L) to W,

^(G;^)[i|/,^] ^ ^(W;^) as A-module.

Similarly, we define

S(L;v|/,v|/) = {/eS(L)|/|<^> = v|/(0v|/((;7)/ for all K.QeG^}.

Then S(v|/,\|/7) = S(^;v|/,^) n S^^G) = e(S(N,^')). On the other
hand, we see

^(W; (9) ®A Hom^ (X,A) ^ HomA (A,A*) (a^HomA (X,A)

^ Hom^ (A®^X,A®^A*) ^ Hom^ (X,A*) ^ X*.

Here, to get the second isomorphism, we have used the A-freeness
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of X. Thus we know M* ®^(G;^)[\|/,\H)®AX = M* ®^X*. We
then define

^:M*®^(G;^)[v|/,in) -^S(L;^vn

—^S(A^,i|/) ^S(vl/,^)
and

^(p:M* ®c,X*-^ by ^oCP®id).

Here we naturally consider X as a submodule of I and hence
^:S(\|/,\|/)(x)J-. (9 is well defined on S(\|/,\|/)®AX. We shall regard
£'*^(p naturally as an element of the profinite completion M ® ^ X .
We now show that E ̂  (p is independent of the auxiliary choice of X.
Let first assume that X' =3 X =3 I and write E ̂  cp(X) for £'*?,(? obtained
from X. Then naturally, we have X =3 X' and a natural map : X7 * -> X*
by duality. Thus we have a commutative diagram :

£*,(p(X/):M*®^^(G;^)[v|/,v|/'])®AX^ M*(^X'* -^S(v|/,v|/)(g)AX' ^ (9

I I I

^(p(X): M*®^(G;^)[\|/,\|/])®AX ^M*®,oX* ^S(\|/,V|/)(X)AX ^(9.

This implies the image of E *^ (p(X) in M ®^ X' is given by E ̂  (p(X7).
Thus £'*x<P is uniquely determined in l i m M ® ( p X and is contained in

x
Z = Q M ® ^ X , where X runs all A-free submodules containing I.

X

LEMMA 9.4. - £ ' * ^ ( p e M ® ^ I .

Proof. — We only need to show that

(*) I = Q X for finitely many A-free lattices X.
x

Pick one A-free lattice X =) I. Then Ass = ASSA(X/I) consists of finitely
many height one primes Pi, . . . , P ^ . Let X^ denote the localization at
Pi for any A-module X. Then by the approximation theorem of Krull
domains [B2] VII.1.5, we can find a;eAutL(K) such that oc;X, = I, for
each i and oc;X =) I. Then I = Q oc,X n X, which shows the assertion.^

(
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10. Proof of Theorem 5.1.

We take a primitive homomorphism (p: h"0^^;^) ̂  J for the
integral closure J of A in a finite extension F of L. By the duality
(Th. 3.1), we have cp* : J* -> S1101'^./;^). Let L = N n J . We take J*
as M* and [ L / J ] o (p* as (p in the previous section. We therefore write
q/ for [L/J]o(p*. Let (x,X7) be the restriction of (p to G^(J) ; i.e.,
^ : Ztor(^) -> (9 x and 5C 7 : ^ -^ ^ x . Then (£'*„((/*) gives an element of
(J*®^X*)* ^ J ®^ X. We define an element Q) = 'k * (p in the quotient
field of J ®^I by C£^q/*)/l 00^. We now want to evaluate Q) at
an arithmetic point (P,g)ej^(I) x j^(J). Let ^ 9^ 0 be an element
of I which annihilate X/I and write 0^ for (100-/l)(jE'*^q/*) in
J ® ^ I . Since the localization Ip == I ®A Ap of I at P is Ap-free for
Pe^(I) ([H2], Th.2.4, Cor. 2.5), we can always choose an A-free
module X ^ I so that A (P) ^ 0. We can also choose H so that
H(P) ^- 0 and ^ kills the congruence module ^(k',1). We first compute
^ = T T J L ° e ° (£^*<p) • By extending scalars if necessary, we may assume
that P : I -> Qp and Q : J -^ Qp have values in ^. Then especially
geJ* and thus 0 ® T| e M* ®^^(G;^) for any character r| of G(L)
with values in (9 . We first compute ̂ {Q^^p) e S^,^) for the character
Tip : G(L) ̂  ^ x given by r|p(z) = vl/p^vl/p^)^)^^, where
i;(^)eZ[7] and m(^)^ = n(P) + 2i;(P) > 0. Let

g=gQeSKn:Srd(/pa,ZQ,XQ;^)

be the cusp form corresponding to Q, where m(Q) = [^(0)+2y(g)],
K == n(Q) + 2^, co = t - v(Q) and a = (a(p))pe£ is a suitable S-tuple.
Then regarding Q ® r|peM* ®(9(^(G;^)[\|/,\)//]), we have by definition
(see also (1.4))

(10.1) \D\^(Q®np)
= rL/No^gQitL/Jl^E^Qvl/p-^XQ^P^W-^Ce)^^)-^^)))

where E(9,7,K,r) is as in (8.1 b). The discriminant \D\ appears in front
of ^ because we have divided the multiplication map m' by D \.

Hereafter we assume that

(10.2) /Qvl/p"1^ a restriction to Vp of a character 6 o/CUp0').

We now compute the value of <^. We start from the algebra
homomorphism P : I -^ (9 given by the point P E <^(I) as above. Suppose
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that ^(P) 7^ 0 and consider ^(S®^) = A(P){E^)(Q®P). Since X
is A-free of finite rank, we see from Lemma 9.1

S(vm ®A X ^ HoniA (h(i|/,v|/),A*) 0^ X

- HomA (h(\(/,v|/) ®A X,A*) - S(v|/,\|/) ®^ X* .

Let I(X) = { f e I | X =) fX} (i.e. the order of X), which is a subring of
I. Let P = P n I ( X ) . Note that ^ ® id (g®P) eS(^,\|/) (g)<p X*[P]
and S(v|/,^)®^X*[P] ^ (h^vl/^^X/PX)* (cf. [H3], Prop. 7.3).
Tensoring 7(X)/P to the exact sequence : 0 -> I -> X -> X/I -> 0, we see
that the natural morphism: I/PI -> X/PX is an isomorphism up to p-
torsion, i.e., having finite kernel and cokernel. We also have
I/PI ^ I/PI ^ (9 up to p-torsion. Thus the torsion-free part X/PX0 of
X/PX contains naturally I/PI (^ (9) and A(P) annihilates (X/PX°)/(I/PI).
Thus we see

(h(\|/,v|/)®^X/PX)* aa S^^p^.vl^X/PX0)

which is a subspace of S110^^?",^?,^?;^). Thus we see

\D A(P)X¥ ® id(g®P)
==^(P)^^o^{(gQ|[L/J]•(E(e^XQ l^p,m(P)-m(e)^(e)-^))}

6 S^CMp^EpVl/cO)"^; (9).

Write KQ = Q n K. Then by Lemma 9.3, on S"0^^01,^?,^?;^), we
have

;.(h) = ^(P)(?|T(^pa),h)oc/(f^|T(^pa),fp)a,

-where ( , \ = (, )^ for m = A^p". Now we have

\D\^A(Q®P) = ^(P)^(P)(^|T(^pa),h)a/(^|T(^pa),fp)a

for

h = T^oe(^\[L/J] [ e^^a^-^^^vl/p^)^^)^^-^^^^^)).
^G(L)

Recall that ̂  = ^ * (p = <DA/^^- We now compute the value ^(P,Q)
for arithmetic points P and 0. As in the theorem, we now suppose
that

(la3a) n(P) - n(Q) ̂  t ,
(10.3 b) n(Q)-n(P)+2t^(m(P)-m(Q))t and v(Q)^v(P).
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Then, (10.3 b) is equivalent to

(10.3 c) n(Q) - n(P) + 2t ^ (m(P)-m(Q))t ^ n(P) - n(g).

We divide our argument into the following two cases :

Case I : m(P) - m(Q) ^ 1 and Case II : m(P) - m(g) ^ 1.

We put j = m(P) - m(Q) in case I and 7 = 2 - m(P) + m(Q) in
Case II. Replacing k by n(P) + 2t, K by n(Q) + It, w by ? - i;(P)
and co by t — v (<g), we can apply the result obtained in §4 :

Case I: (j=m(P) - m(Q)^l, v(Q)^v(P) ; t^jt^n(P)-n(Q)).

We see

\D\A(P)^(S)id(Q®P)

• = A(P)T,^oe{^ [L/JW^-^E^^^O)].

We now claim that, for the Eisenstein series G^ o introduced in (4.8 e),

(10.4 a) G,,ofx,XQl^p92,9-l;l-^le-l

^^-^^(^(ep^vl/p^O)

with c = (20?QWF:Q]. Writing E for E(9„,5CQl\|/pJ,0), we see from the
definition that

a^(^,E) = ^(y)Q(yp)Gj-i^(yx) for x = Xe'^p and ^er;
and otherwise a?(^,E) = 0.

Since ^p(ya,E) = a~tQ(a)sip(y^) for aer; (see (8.4) or (2.2c)), the
subgroup Xp of G(L) acts on E via the character Xp ^a\—>a~t (up to
finite order character 6) and hence we can compute formally the Fourier
expansion coefficient a(^,E) out of the ^-expansion coefficient Bp(^,E).
The tip for this transition is given in (1.3fc): a(^,f) = 3ip(y,f){y~t}(yp)t.
Then

a(^E)=^-<}(^)^(^)9(^)a,-l.,(^)=|};|A19(^)o,-l,,(^^^

since sip(y,E) == 0 unless y? e Xp . Now we compute the Fourier coefficients

of G = G.^^XQ^pe2^-1;!-^. Noting

G = l^lA^-Jx,/^1^2^-1;!-^
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we see from Corollary 6.2, for c = (2^)'[F:Q1TC[F;Q],

a(y,G) = c Dr^W-^O^^E) if y,ex; .

This shows (10.4 a).

Write m = Lp° and m = /CT" with a finite idele I such that Ir = L
and «Zx = 1, and recall that the p-adic L-function 3s is denned by
( S > A / A H . Then, we see from Lemma 9.3

(f^(Npa),{^(P,Q)

= c-'eow T^p^.r^oe^gQi^/jB.^^'-^^Gie-1)}),
= c-^dW ^m),e{(sQ\[L/J])•(d''w-VWG 9-1)}), (by (7.2 a))
=c-lQ(d)Q^-l)(f^(m),e{(gQ\[L/J]\0-l)

•(d^-^C)}^ (Prop. (7.4)

=c-19(rf)9WL)9„(-l)(f^T(m),e{(gg|9-l|[L/J])•(rfB<Q>-B<p>G)}),
= c-19(ri)9(.//L)(9-IXQU- l^^WD^-^^p")-'"^)

x (f?>|T(m),e{(ga|9-1 zW\^m)).(daw-u(p)G)}^
= c-19(ri)9(J/L)(9-lXQ)„(- I^^W^^F/Q^P")"""^

x (fppT(nl),h{(ge|9-l|T(yp°•)|T(m))•(8;w-•'(p)G)}), (Prop. 7.3).

Here we used the fact : h = gg 9-' eS^^C/p",^,^-2^) and

h T(Jp")|T(m)(x) = (x^U-l̂ ^LpT^.^F/eWML/./].

By (4.9), we know that, for g = gel9-l|T(Jp°') and r = i;(g) - v(P) ^ 0

^|(5^(p)^(e))/2^2_^^^^_^^g^-i\

=9-l(m)^/•^(m)-l-m(^)

x (^|T(m),J(g|T(m))G^^/x,^lv|/p92,9-l;l-^l) .
^ \ / J /m

Moreover we see from corollary 6.3 that

5.G- o j'^9'1-!
= r^+0(-47r)-<'-'G,(,^/^ ^,x,9; 1-0.
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Here it might be worth making the following remark: By (1.8) and
the definition of the correspondence of adelic automorphic forms and
classical Hilbert modular forms, (6^G). = y^ 8^G,. Hence in the
above formula, we have (-4-11)-^ instead of (-^ny^y. Thus
(^(AW.fp^^.g) is equal to

(10.4 b)
c-le(J/^)(e-lxo)„(-l)^•^(Jpa)^y(l;(e)-l,(/>)+t)(-4lI)-^c<e>-B(p»

x9(^)7)<5+m<p'+"•^>^(2-^^l^)z(-i.f.,g,e-lN)
for g = gelO^'lT^p01). Now by (4.6), we have, with the notation there,

Z(s,f,g,0) = 2)<l+2s)/29(rf)-l(4lt)-'s-<*+^^A+j+K^Z)(s,f,g,9)

and hence

z^-^fp.g.e"1) = Q^D11'"'^"'^'2^)1'^-'1^-''^-2'

x ^,(n(Q)+v(Q)-v(P)+2t)D(m(Q^m(p\{„g,Q-\

This combined with (7.2 c), (f^i-c^Np'1)-= \nvsa\^p)l2(fpp\^:(Npa)Y,
(f^|TW),fp)« = ^'"^^((^ITW))",^ and Q ( L / J ) = e^/eo-^)
shows

(10.4 c) e(d2)-I93CQoo(-l)|nCTC•|ATO(p)/2W)p|T(^pa),f^^(P,e)

= 90-^)^wWC(P,Q)

x L,,(2-m(P) + m(e),^l^^(m(e)ym(p).fp,g.,e-ly

where g, = g^Q-'Wp^ and C(P,Q) is as in the theorem.

Case II: (l^j=2-m(P)+m(Q), v(Q)^v(P); t^jt^n(P)-n(Q)).
From (10.3 b), we have

(10.5) r = n(P) - n(Q) + v(P) - v(Q) - t ^ 0.

.Writing E for E(Q,,^,2-j,j- IXx^e1^), we have similarly to Case I:

a,G^E)=^OQ2-^)CT;._^r) for x = Xe^p and j^er;

and otherwise a,(y,E) = 0.
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Moreover, the subgroup r, acts on E via the character
r^ 9 a !->• a°~2" up to finite order character 9, and hence we have from
Corollary 6.2

a(y,G') = D -^(d)- VO^a^.E) if y, e r;

for G' = \y\]ijl2G,Jx,^l,Q2,Q-l•,j^ and c' = (In^r^t)-1. Since

G..,o(^XQlY|/pe2,9-l;/) = l^ir^-Jx.Xe^M^e-1;^ keeping the

fact : f ® 9(x) = 9(rf)9(det(x))f(x) in mind, we know

(10.6 a) {G^/x.XQ^M2^"1^) ® |det(x)ir^|9-1

= c'D-'e-^^ep^a^p^-.O^O'-1)0.
Then, we see from the definition in § 7.G that

{^(G^Jx^a'vM^e-1;^) ® Idet^ir^ie-1

= c' £>|-19-l^)E(9^xal^|/p,(2-7)t.O•-l)t+?•)•

Especially, if we take r as in (10.5), we will have
(j-\)t + r = y(S) - v(P).

Now, writing G for Gjt^x^Q^pQ2^'1;!.} and m = Lp", by a

similar computation as in Case I, we see from Lemma 9.3

(f^|T(AW,f,,)^(P,g)

= c'-19(rf)9(,//L)a^9-lU- l̂ ^LpT1'2'''" '̂"^

x J^J/LMffilT^hKgQ^-'lT^p") ® det(x)|^7|T(m))•(8^G)})^,.

The only difference in computation form Case I is that we used the
following fact to conclude the above identity:

f® 9|T(m) = SWe^w^C/'lTOn)®^).

Again by Corollary 6.3, we have

r,Ot)y^G,J(y ^'i,^-)}(. \v 1 / "-/j
= ryO't+r)(-4TC)-'-G,^^/^ ^)'X,e;0.
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Now we want to apply (4.9). Note that the weight of
gQ|9~ l |T(Jpa)®|det(x)|A-J is given by (n(Q),v(Q)+(j- \)t) (see § 7.F)
and hence u in (4.9) is equal to m(Q) + 2j - 2 and m in (4.9) is given
by m(P). Then we see

(10.6 b) (f?|TW),fp)^(P,e)
= c7-1^^0-17)<5+7ro<p>+m<^>/29(rfm)9WL)(^e-l),(- 1)^^W

x ^^-l;(P)+t;((2))(-47^)-rL,o\XQl^)z^-l,fp,g,e-lY

where g == ge O'^T^p"). In fact, what we get in the right-hand side

is Z^-l,fp,g(x)| |^',9-1), but it is equal to ZJ 7- l,fp,g,9-1)

because this function only depends in the unitarizations of fp and g by
definition and the unitarization of g and g (g) | H"7 are the same.
Similarly to (10.4c), we conclude

(io.6 c) eon-^exQU-i)!^ AW(p)/2((^)p|T(^pa),fp)^(p,0)
= QW^FI^WWQ)

(m(Q)-m(P)L,,(2-m(P) + m(Q)^^)D(m(Q) ̂  m(JP) .fp,g., 9-1')

from

Z^-l,fp,g,9-1) = 9(rf)|Z)|(l-w<p)+m(Q»/2(47t)u(p)-ro(Q)-u<Q)-2(

x^^(6)-t;(P)+n(e)+20Z)^(6^m(p),fp,g,9-ly

Thus we have

^ = OA/^^ = ^(^*,(p'*)/^^ = (E^^)/H

is the desired p-adic L-function. The last assertion of the theorem is
then clear from the above formula and Lemma 9.4.
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