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CAPACITARY STRONG TYPE ESTIMATES
IN SEMILINEAR PROBLEMS |

by D. R. ADAMS (*)(**) and M. PIERRE (**)

1. Introduction.

Let us consider the following semilinear boundary value problem

(1.1) —Au=u"+f on 0
(1.2) ©u>20 on N
(1.3) u=0 on 0N

where € is a bounded open subset of RN with a smooth boundary 99, f a
given nonnegative function on Q and « € (1, 00). Two conditions on f are
necessary for the existence of solutions to (1.1)-(1.3) :

(i) a regularity condition : f should be “regular” enough

(i) a size condition : even if f is a C§°-function, it should be small
enough. For instance, if f = \g where g € C*(Q), g > 0, g # 0 and
A > 0, then there exists A* so that (1.1)-(1.3) does not have any solution
for A > A*.

A necessary and sufficient condition on f for the existence of solutions
0 (1.1)-(1.3) has been established by Baras-Pierre in [5]. It says that a
certain “norm” of f, say [f],, should be exactly less than or equal to
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k(y) = (y = 1)/7"" where 1/y 4 1/4' = 1. This quantity [f],, is defined by
duality through a functional which is naturally associated with the above
problem, but whose expression looks rather awkward. Namely, the following
result is proved in [5] : let f be a nonnegative measurable function on (.
Then (1.1)-(1.3) has a solution (in a weak sense), if and only if

LAVNS C’°°(Q) with ¥ > 0 on 2 and ¥ = 0 on 0N
[er<ken [1aep e,
Q Q

Thus, one must deal with this functional if one wants to exactly describe
the optimal size of the datum f. Actually, this result remains valid when f
is replaced by a nonnegative Radon measure y on € as also proved in [5].

(1.4)

Our purpose here is to better understand the regularity condition
contained in (1.4). For instance, if f = Ay where ) is a positive real number
and p is a nonnegative Radon measure, one might want to solve (1.1)-(1.3)
at least for small A. Then the measure p should be “regular” enough, the
exact regularity condition being expressed by (1.4). It turns out that this
property has equivalent “simpler” forms — and apparently weaker — in terms
of W27 _capacities (see [1], [2], [8], [10], [11]). It is our goal to state some
of these forms and to prove their equivalence with (1.4).

2. The results.

We denote by ¢, the capacity associated with the norm ||.||, of the
space
2,p(pN N 0%u N
W*P(R")=due LP(R"): € LP(R"),Vi,j=1,...,N ;.
6:::1 dz,0z; x0T

This means that, for any compact subset K of R
ez p(K) = inf{||ul|} : u € C§° (RM),u>1on K,0<u<1}

where for instance

P ._ p
Il =l vy + 32 | ol

When 2p < N, this capacity is locally eqmvalent to the Riesz capacity
defined by

Lr(RN) Z ” oz; c')xj HLI (RN)

Ry,(K) = inf {||f||L,,(RN >0,Ry%f>1on K}
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where
(20) Rox fla) = [ Jo =Y fu)dy
is the Riesz potential of f (see for instance [12], [2]).

THEOREM 2.1. — Assume 1 < p < N/2 and let u be a nonnegative
Radon measure on RN . Then the following conditions are equivalent :

There exists k; > 0 such that for all ¥ € C§°(RV)
with ¥ > 0

/ \Idegkl/ AT |P@!-P
RN RN

(2.2) { There exists ko > 0 such that for all K compact in RN
u(K) < ks Ry p(K)

There exists k3 > 0 such that for all ¢ € C$°(RV)

(2.1)

(2.3)
[ teansk [ jar
RN RN
For all q € [1,p], there exists ky > 0 such that
(2.4) for all © € C§°(RY)

/ 101%du < ks / AQP|O)?
RN RN

Remarks. — a) The equivalence (2.2) < (2.3) is well known although
not obvious (see [10], [1], [8]). Indeed (2.2) looks like a weak form of (2.3)
and as a consequence, (2.3) is often referred to as “capacitary strong type
estimate” although not stronger than (2.2).

b) The interest of the theorem lies in the equivalence between (2.2)
(or (2.3)) and property (2.1) which appears in the characterization (1.4).
Indeed, as a consequence, (2.2) provides a new and simpler characterization
of the regularity of the measures p for which problems of type (1.1)-(1.3)
(with f = p) are solvable. Moreover, (2.2) is expressed in terms of a capacity
which (at least locally) depends only on the W2P-norm rather than on the
specific form of the operator A. This suggests that the solvability of

(2.5) Lu=u"+ M

for A small, should be independent of the specific form of the uniformly
elliptic operator L. This is precisely the purpose of the next theorem.
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c) Another interest of the theorem is its proof which surprisingly
relies (at least for the most difficult part (2.3) = (2.1)) on deep results for
singular integrals with A,-weights.

d) Property (2.4) is just a natural generalization of (2.1) and (2.3)
which correspond to the extreme cases ¢ =1 and g = p.

e) Theorem 2.1 is stated for p < N/2 since it is global in R". This
assumption will be dropped in the next theorem because of it local nature.
In order to state it, some definitions are in order.

Let Q be a bounded open subset of RV and let L be a second order
differential operator defined on open neighborhood w of 0 by>

(2.6) Ly = - Z(ai,juzi)zj +cu

> )
where
(2.7 a;; € C*'(w),c€ L®(w), c¢>0onw

28)  Fap >0, Y ai;(2)€& > alé?  VEERY Vrew.
12
The adjoint L* of L is defined
L'¢=- Z(ai,j‘ij )z + .
12

We introduce

Y(L) = {(p € Wy ®(Q);¢ > 0,L*p € L*(Q) and has compact support}.

THEOREM 2.2. — Assume N > 2 and p > 1. Let u be a nonnegative
measure with compact support in Q. Then the following conditions are
equivalent :

(2.9) { There exists k; > 0 such that for all K compact in
) . /L(K) < klczp(K)

There exists ka > 0 such that
(2.10) {Vso €Y () / Pdu < ko / |Apl?
Q Q
There exists ks > 0 such that
211) {W € Y(A)/ﬂwdu < kaLIAsOI”sol“” |
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There exists k4 > 0 such that
C1D Ao ey [ pau < [ L6,
Q Q

Remark. — According to the results in [5], the property (2.12)
characterizes the measures p for which the problem (2.5) is solvable for
A small enough. Then, one can deduce the following applications from
theorem 2.2.

COROLLARY 2.3. — Let N > 2, v > 1 and let u be a nonnegative
measure with compact support in Q). Then the problem

{—Au:u’-i-/\,u

(2.13) u>0o0nN,u=0o0n N
has a solution for A small if and only if the problem

{Lu=u7+/\u

(2.14) u>0o0nN,u=0o0ndoN

has a solution for A small.

Remark. — The solution in (2.13) or (2.14) is understood in a weak
sense namely

w€ Lh(@),u(@) = | Gula ) ()dy + Aduty)]
where G, is the Green function of L.

CoROLLARY 2.4 (Removable sets). — Let N > 2, v > 1 and let K be
a compact subset of ). Then any solution of

loc

we Ll (Q\K)NWEHQ\ K),u>0
(2.15) { Lu =lm in D'(R\ K)

is a solution of

loc

(2.16) {u € L), () N Wit (2),u > 0
Lu =" in D'(N)

if and only if

(2.17) | ca. (K) = 0.
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Remark. - The sufficiency of (2.17) was established in [4]. The
necessity relies upon solving

(2.18) Lu=u" + A\ug

where ¢; 4 (K) # 0 and pg is the c; -capacitary measure of K (see [12]).
It is well known that px satisfies (2.9) due to the uniform boundedness of
nonlinear potentials (see [12], [2]). By theorem 2.2, (2.18) can be solved for
A small enough on some neighborhood of K. Therefore (2.18) provides a
solution u of (2.15) which does not satisfy (2.16).

The result of corollary 2.4 had been obtained in the case L = A in [15]

where it was directly established that capacitary measures satisfy condition
(2.11).

3. The proof of theorem 2.1.

Preliminary remarks. — If (2.3) holds, it extends by density to all ¢
in W2P(RN)NC(RY) or even to all ¢ in W2P(R") if one chooses the W2»-
quasicontinuous representation of ¢. It holds also for all Riesz-potentials
@ = Ry x f where f € LP(R") (see (2.0)). Furthermore, the converse is true
and (2.3) is even equivalent to

@3y VeD®RY 20 [ (Rexfpausk [
RN RN
Indeed, if (2.3)" holds and if p € C§°(R"), we use that ¢ = C(N)Rax(—Ayp)

(where C(N)™! = (N — 2)Sn, Sy area of the unit sphere) and |p| <
C(N)R; * |A¢p| so that

[ tebans e [ (s sapan < oo [ iag.

The fact that (2.1) and (2.4) are also equivalent to the corresponding
Riesz-potential statement will be essential in the proof of the theorem :

Vf e LP(RVN), f > 0, f compactly supported
(2.4)

/Ru*fw / FP(Ry % )77

and similarly for (2.1)" (take ¢ = 1).
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Indeed, (2.4)" implies (2.4) since, for all © € C(RY), © >0
1] < Cn R, x|AO|,|AO|P(Ry + |[AB])*™7 < |AOIP|O7P.

The converse is obtained by regularization of f. Let f, € C$°(RY),
fn > 0 converging to f in LP(R") with support included in a fixed compact
set K. One first shows that (2.4)' holds for f, by applying (2.4) to a
sequence O, € C°(RY) converging uniformly on compact sets to R? * f,
and with A®, converging uniformly to f,. Then, using that Ry * f, remains
positive on K (uniformly in n), we pass to the limit in n in (2.4)".

Proof of theorem 2.1. — The equivalence (2.2) < (2.3) is proved in [1]
and (2.1) (resp. (2.1)") is a particular case of (2.4) (resp. (2.4)"). Therefore
it is sufficient to prove “(2.1) = (2.3)"” and “(2.3) = (2.4)"”.

“2.1) = (2.3)'" : Let f € C°(RN), f > 0 and p = Ry * f. Applying

(2.1) to a sequence ¥,, € C$*(RN) converging to ¢ in C?(RV) leads to
(integrals are taken on RY)

61 [ednsh [1a@Pet <ic, [1apr + [veire.

LemmMma 3.1 (Hedberg [9]). — There exists C = C(N) such that

(3.2) Ve eRY V(@) < Cno(x)M(f)(z)
where
(33) M(f)(@) = sup / F(w)ldy.

From this we deduce
(34) IVol?P < CYeP M(f)P.
Using the maximal theorem, that is (see e.g. [16])
(35) | vy <com [ 57 we o)
R~ RN
with (3.1) and (3.4) we get
o [easic,|[1aor i [mur| <icwm [ 1.

This gives (2.3)" for f € C$°(RY). The result follows by a density argument.



124 D.R. ADAMS, M. PIERRE
“2.3) = (2.4)’” : We may assume 1 < ¢ < p. Let f € CP(RN), f >

and ¥ = R, x f. Applying (2.3) to a sequence ¢, € C§°(R") converging to
¥4/ in C?(RV) leads to

(3.7 /\Ilqdu < k3/|A\II‘1/”|” < k3c(p,q)/|A\Il|p\Il""’+|V‘Il[2”\11‘1‘2”.
Arguing as before, we use Hedberg’s lemma to get
(3.8) |VE|2P@I=22 L CR WP M(f)P.

Here estimate (3.5) is not sufficient for the result. We need its generalized
version with Ap-weights.

LEmMMA 3.2 (Muckenhoupt [13]). — Let w € L} .(RN), w > 0 such
that

A p_l
(3.9) sup (/ w) (/ w‘l/(”‘”) LK<, 1<p<oo,
Q Q Q

where the supremum is taken over all cubes ) and ][ denotes the average

Q
over Q. Then there exists C = C(K,p, N) such that
(3.10) / M(f)?(z)w(z)dz < C / fIP () (z)dz

for all f € LP(w(x)dz).

We will apply this lemma with w = ¥97?7 which turns out to satisfy
(3.9) with a constant K independent of ¥ due to the fact that ¥ = Ry * f,
f > 0. Indeed, since f > 0, by Harnack’s inequality, there exists C = C(N)
such that, for all cubes @

(3.11) inf U > 0][ ¥
Q Q
Therefore, since ¥ Z0and ¢ —p <0
q—p -r
VeeQ  WITP(z) < [inf\Il] < (C ][ \1:)
Q Q

which after integration on ) implies

(3.12) ][Q ¥IP < CIP []{? \IJ]H
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or

(3.13) (fq w) (]2 \I:)sc

Now, since 1 < q < p, Holder’s inequality implies
Pe L}
][ vl g (7[ \Il) Pl
Q Q
Plugging this into (3.13), we have

(3.14) (][Q \pq—p) ]2‘1,; < 0P

which is (3.9) with w = ¥97? and K = C?7P.
We now apply (3.7), (3.8), (3.14) and lemma 3.2 to obtain
/\Ilqdp < Ic3C/ froae
RY :

which establishes (2.4)’ for all f € C{°(RY), f > 0. We finish with a density
argument as in the preliminary remarks.

4. The proof of theorem 2.2.

We will prove (2.12) = (2.9) = (2.10) = (2.12). The proof will then
be complete since —A is a particular operator L. Let us start with the easy
part.

Proof of (2.12) = (2.9). — We denote by ¥ a fixed function in C$°(2)
such that :

(4.1) 0< ¥ <1,¥% =1 on a neighborhood of the support of .

Let K C Q be compact. By the definition of ¢, ,, there exists a sequence
#n € Cg°(RN ) such that

(42) : 0\30n<1, ‘pn>10nK‘
(4.3) nll»nolo ||<Pn||£ = C2,p(K)'
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We apply (2.12) with ¢ replaced by ¥?P¢2P. Expanding L* <\I'2”<p%”) gives
various terms depending on ¢ng,z;, @nz;, Pn- Let us treat the main term
as an example :

A=Y Jau(e%) | ¥ =23 [oue on, ]| ¥
1,5 s 1,5 !

=209 Y ai0r" " pur,e, +20(2p = DI Y 0407 200z, Ona,

1,3 1,3

+ 2pq,2p Z(ai]’)r, ‘Pip_] ‘pnx, .
1,J

We deduce (using in particular ¥ < 1)

(4.4) AP[EPUP)' P < Cp, L") |8 |ona,a, P
1,

02 3 o, I” + [Vipu|

,J

By Gagliardo-Nirenberg inequality [14],
(4.5) 1960 < Clleallie o
Z"j
Using (4.2) and (4.3) we then obtain
5 11P
(46) [ 4 [eren] ™ < Cllgaly < ceap(K).
; ., Ja A

Others terms in L*(¥?P¢?P) are treated in the same way and give an
estimate similar to (4.6) with a constant C' depending on the derivatives-of
. The inequality (2.9) follows.

Remark. — Note that the constant k; obtained depends on ks, L, p
as well as on the distance of the support of 4 to the boundary of Q.

. Proof of (2.9) = (2.10). — This is essentially the content of the
classical capacitary strong type estimates (“weak = strong” as proved in
[8], [2])- We will not reproduce the proof here. Let us just indicate how the
local version here can be deduced from the usual result for Bessel capacities

(8] [2]-
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If p satisfies (2.9), its extension by 0 outside to the whole space RV
satisfies the same inequality for all compact sets K in R"Y. By the results
for Bessel capacities in [8], this implies the existence of a constant k such
that

4.7  VvO e W*P(RN)nC(RN) / @WWSk/ |© — AOP.
RN RV

Let ¥ € C§°(€2) as in (4.1). For ¢ € Y(A), we apply (4.7) to © = ¥ to
obtain

@8) [t [ ovdu<h [ ov - A

< kC(p) / Apl? + [Vl + .
Q

Since  is bounded, there exists C;, C> depending on €2 and p such that
(see e.g. [7])

@) wev@) [ [vor<e [1aqp.
Q Q Q
Then (2.10) follows from (4.8) and (4.9).

Proof of (2.10) = (2.12). — This is the main part of the proof. The
main difficulty will be solved by using the singular integrals theory with
A,-weights as in theorem 2.1. But here there will be more technicalities
due to the generality of L and to the necessity of working with A,-weights
in the whole space RV

Lemwma 4.1. — It is sufficient to prove (2.12) for operators L such that

(4.10) c=0.

Proof of lemma 4.1. — Recall that
L'o=Lyp+cp
where

(4.11) Lig == (aye.)r..
Y]
Then for ¢ € Y(L)

@12y [ el < (I8 T gl [ v
JQ JQ JQ
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Therefore, the proof of lemma 4.1 reduces to showing the existence of k
such that

(4.13) Vo € Y(L) /¢ < k/ |L* p|P P
Q Q

(The difference between Y (Lo) and Y (L) is easily taken care of by a density
argument.) In order to prove (4.13), let us set

(4.14) w = |L*ple V7.

By assumptions (2.7), (2.8), L is an elliptic operator satisfying the maxi-
mum principle (see [7]). In particular, the mapping f — u where u is the
solution of

(4.15) { u € Wo'™(2) NW2P(Q)

Lu = f on Q

is continuous from L* into L*. By duality, (L*)~! is continuous from L!
into L', which implies the existence of k = k({, L) such that (see 4.14)

, 1/p 1/p'
(4.16) /cpsk/ |L* )| <k/w<p1/z’ sk[/ 'w”] U 4" .
Q Q Q Q Q

This yields (4.13) and completes the proof of lemma 4.1.

We will now assume
(4.17) . ¢=0, e L*=1L
We need to extend L* to RY. For § > 0, we set
(4.18) Q5 ={z € RV;d(z,00) < 6}UN (d = euclidian distance)
and we assume that (see (2.7), (2.8)) '
(4.19) s CCw.

We extend L* to RY as follows. For ¢ € C°(RY), we set

(4.20) By = - (bijpa,)z;
L,J
where
bij(l') = a,-j(z) . Ve Q
(421) bij(():)‘: 6,']‘ Vz ¢ Qé .

bij(z) = 61 [d(z,00)8; + (6 — d(z,00))ai;(z)] V& € Qs \ 0
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Here the b;; are Lipschitz continuous on R" and they satisfy the ellipticity
property (2.8) with ag replaced by min(ag, 1). Note that

(4.22) {B:L on

B = —A outside Qs )

We will also use the following expanded form of B

(423) ) B(P = - Z bij‘Pzizj + Z CiPx; ‘
4j i
where
(424) | C; = — Ebijij € LOO(Q)
J

LEmMMA 4.2. — For all ¢ € Y(L), there exists ¥ such that

(4.25) ¥ e WLARN)n L2 (RY)
(4.26) BV = { L] on 0

0 outside Q
(4.27) ¥ > ¢ on 0.

Moreover, for all ¢ > 1, there exists C = C(B, N, q) such that

(N-2)/N
(4.28) [ / \qu/(N—?)] < / |L* |9
RN Q

and there exists ¢ = ¢(B, N) such that

(4.29) igf v > c][ v YQ cube in RV,
Q

Proof of Lemma 4.2. — Let ¢ € Y(L) and f = { l)L;ftls?(;le%' We set

B, = {r € RV : |z| < s} and for s large enough so that Q25 C B, we solve

T, € Wh3(B,)

(4.30) {B‘Ils =fon B,

It is classical (see e.g. [7]) that ¥, exists and by maximum principle that

(4.31) s — W, is increasing and ¥, > ¢ on Q.
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To bound ¥, from above, multiply (4.30) by ¥9~!, ¢ > 1 to obtain

(4.32) (q—l)/ Zbi,«p”,\y“,qlg/'zz/ gLy
RN > Q

(4.33) (¢ — 1) min(1, ao) / Vw2 < / pi-ly,
RN Q

By Sobolev’s imbedding theorem and Hélder’s inequality, there exists

C = C(q, B, N) such that
1/r 1/s
o) 4]
Q Q

(4.35) with r = ¢N/(g — 1)(N - 2), s=gN/(N +2(¢q—1)).

N-2

(4.34) c[/ q/gN/‘N—‘”] Mg
RN

This estimate together with (4.31) proves that ¥, converges to some ¥
satisfying the same inequality (4.34) and such that V¥9/2 is in L?(RV) by
(4.33). Moreover ¥ is solution of (4.26) by passing to the limit in (4.30)
and ¥ > ¢ on Q by (4.31). The fact that ¥ € L>*(R") is a consequence of
the maximum principle and f € L>(Q).

Finally, since
(4.36) BV >0 on RV

and because of the structure of B.¥ satisfies the one-sided Harnack
inequality (4.29) (see [7] th. 8.18).

LEMMA 4.3. - Let w € L. (R"), w > 0, satisfving (3.9). Then there

loc

exists C = C(p, B, K) such that for all ¥ € TV>>(R"V)

(4.37) / 9, P < c/ |B\Il|”w+/ (VTP + 9.
JRN Ry AR

Proof of lemma 4.3. — If B was equal to A on the whole space RV, this
would be the classical weighted LP-estimate for singular integrals except
that the last integral on Q.5 would not be needed (see Coifman-Fefferman
[6]). Using the continuity of the b;; and (4.23), we can extend it to B. Let
us indicate how.

We set M =max||b,|l,~ (R~
ij
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If b;; are constant on RY, by a change of coordinates, from [6] we have the
existence of C = C(ag, M, p, K) such that

(4.38) / 1¥,.0, Pw < C / |BY|Pw.
RN RN

Now, for ¢ > 0 given, by continuity of the b;;, there exist > 0 and
{xk, QU }k=1,...,q such that

(4.39) 2k €Qs, U ={z RN |z —z4| <7}, <6
q
(4.40) ﬁ& C U O C ﬁzg
k=1
(4.41) sup |b;;(z) — b;j(xx)| < € for all k,1, j.
TEQ

We denote Qp = RV \ Qs. We introduce a partition of unity ey, k =
0,1,...,q subordinated to {Q}x=o0,1,..., and with C*-functions. For ¥ €
W22 (RN), we write

P
(4.42) U=) =) ¥.
k=0

If Bk = Zbld(zk) 68 N by (438) we ha.Ve

s ;T
(N it

(4.43) / [Pre, o, [Pw < C/ |Br¥|Pw (C = C(ag, M,p,K)).
RN RN
But

(444) BV, = BV, + Z(bm(ﬂfk) - bij(x))q’kz,zl - Zci\l’kn.
1,3 i

Since ¥, = ¢, ¥ is supported in Qy, (4.41), (4.43), (4.44) imply
m_ax/ [Wiz,z,|Pw < C [/ |BY|Pw + €P m_a_x/ [Whe,z, |Pw
i JRY RN i JRN

+/ |V\Ilk|”w] .
Q2

If € has been chosen so that CeP < %, that is € = e(ao, M, p, K), we have

(4.45)  max / Wi,o, [P0 < 2C [ / | B [Pw + / |V‘Ilk|pw].
J RN RN Qayp

17
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Now, we use

By =, BY + UBex + ) bij(ex,, Vai + €k, Uay)-

Plugging this in (4.45) and using (4.39)-(4.42), we have (4.37). (Note that
€0 = 1 outside Q5 by (4.40) (4.42)).

End of the proof of (2.10) = (2.12). — Let © € C$°(Q) such that
(4.46) 006<K1,0=1 6n a neighborhood of the support of p.

Let now ¢ € Y(L) and let ¥ be the function assdciated with ¢ by lemma
4.2. Applying (2.10) with ¢ replaced by ©@¥!/? gives (recall (4.27))

/ pdp = / ©OPdp < / YOPdu < sz |A(@T/P)P
(4.47) 0 : 0 [¢) Q .
<C(0,p) [ +|VE[PEI~P 4+ |VE?PEI-2P 4 |AT|PEL-P

As in the proof of theorem 2.1, we use Harnack’s inequality (4.29) to prove
that w = ¥'~7 satisfies (3.9) with a constant K depending only on B and
N. The, by lemma 4.3, we obtain that

@wis) [(waper<o| [ [ veperis).
Q Q Qa4

Now, using (4.47), (4.48) and lemma 4.3, the proof will be complete after
proving the three following lemmas. :

LEMMA 4.4. — There exists C = C(p) such that

(4.49) / |VEPPet=? < C Y / [Ty, o, [P,
R~ 7 JRV

LemMA 4.5. — There exists C = C(B, p,(Ys) such that

(450) [ ows [ireper.
: (273 Q

" LeEMMA 4.6. — There exists C = C(B,p, Vs) such that

wsy [ weper<c [ |repete.
AT Q i
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Indeed, from (4.47), (4.48) we obtain

(4.52) / pdp < C [/ |L* P! =P + / Ve PE-? + ¥
Q Q Qa4 :

+ / |v\1:|2"\111—21’} :
Q
We now use (4.49) from lemma 4.4 and (4.48) to deduce from (4.52)
(4.53) / odp < C [/ Lol +/ |VoPwl-? 4 \p] .
Q Q Q26
Finally we use lemmas 4.5 and 4.6 to obtain (2.12) from (4.53).

Proof of lemma 4.4. — We use an integration by parts as in [10], [1]
to which we refer for the details

/ O = [, e
RN RN

o}
ST /RN ¥ or. xil\IlIi|2P—2\pl—2p]
i .
= —(2P - 1)/ \1’2—2p|\I’Ii|2p_2\I’ZiIi
- RN N i N

(-2 [ e

. 1/p
2p-1) [ 10 PO <p- ) [ / |wz..zt|"w1—”]
RN : RN

l /
/ |\I’ ,l2p\I’1‘2p /v .
RY

Estimate (4.49) follows with C = [(2p — 1)/2(p — 1)]7.

Proof of lemma 4.5. — Set w = |L*p|p~'/?". By (4.28) and (4.27),
for all q € (1, q), we have

(N-2)/N ) a/p (‘p—q)/p
[/ q,qN/(N—‘Z)] < C/ wip?? < C [/ wl’] [/ \IIT]
Qas Q Q

for r = q¢(p — 1)/(p — q). We.choose 'q so that r = qN/(N - 2) that is
g=1+2(p-1)/N (< p). We then have .

q(N-2)/Ng ,
/ ¥ <C) [/ TqN/(N_%] C/ wP < C’/ |L* [P —P.
Qs Qan Ja Q
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Proof of lemma 4.6. — We apply Young’s inequality to obtain

/ |V\IJ|”\IJ“”<€/ |V\I/|2”\I/"2"+CE/ .
Q-_}h RN . Qgh

The first integral on the right-hand side is estimated by (4.49) and (4.48),
and the last one by (4.50). We deduce

/ Ve P —P < C. [/ |L*¢|"¢‘—P+/ |V\I:|wl—"]
Qs RN Qas
+C: / |L* [P P

Choosing € small enough depending on C yields (4.51).

5. The proof of corollaries.

Proof of corollary 2.4. - By the results in [5], if (2.13) has a solution,
then (2.11) holds with p replaced by 7' and ks < (7 — 1)/77'. By theorem
2.2, (2.12) then holds with some constant k4 and p = 7'. Again by the
results in [5], (2.14) will have a solution if ks < (v —1)/7".

The converse is obtained in the same way.

Proof of corollary 2.5. — The sufficiency of (2.17) is proved in [4]. The
necessity is obtained as indicated in the remark following corollary 2.5.
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