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SMOOTHING OF REAL ALGEBRAIC HYPERSURFACES
BY RIGID ISOTOPIES

by Alexander NABUTOVSKY

1. MAIN RESULTS

We consider in this paper compact smooth hypersurfaces of Euclidean
spaces which can be represented as the zero set of some polynomial p of
degree d such that gradp and p do not vanish simultaneously. We will call
such hypersurfaces d-hypersurfaces. Two d-hypersurfaces are called rigidly
isotopic if there exists a connecting isotopy which passes only through
d-hypersurfaces. This notion was generalized in [Nl], [N2]. Namely, two
d-hypersurfaces are called P-rigidly isotopic (D > d) if there exists a
connecting isotopy which passes only through {D — z)-hypersurfaces, where
i > 0.

Rigid isotopies were studied (mostly in projective case) in works of
Rokhlin, Viro, Kharlamov, Marin, Finasbin and others (cf. surveys [R], [Vi]
and references there). The main goal there was the complete description of
rigid isotopy classes of algebraic curves and surfaces for small values of the
degree d. Here we prove a result of a different type. Informally, it can be
described as follows.

We consider two functionals which characterize a "badness" of em-
bedding of a smooth hypersurface in the Euclidean space. Informally speak-
ing, these functionals assume large values if the hypersurface has a large
principal curvature at some point or if it comes close to itself. Suppose a

Key-words : Rigid isotopies - Real algebraic manifolds - Triangulation of manifolds.
A.M.S. Classification : 14G30 - 57Q15 - 53A07 - 57R52.
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d-hypersurface E71 in R71'1"1 is given and we are looking for a d-hypersurface
E71 rigidly isotopic to E71 and embedded in R714'1 as "nicely" as possible.
This means that we try to minimize the values of both functionals men-
tioned above on E71. We prove here a priori upper bounds on the values of
the functionals at E71 in terms of d for an arbitrary fixed n. Thus, we prove
a quantitative version of the following almost obvious statement : although
E71 can be embedded arbitrary badly, we can guarantee the existence of a
d-hypersurface rigidly isotopic to it which is embedded nicely enough.

More precisely, let r(E71) denote the distance from E71 to its central set
Center(E71) (which is defined as the union of the focal point set and the set
of points y € R71^1 such that the minimum of the distance between y and a
point x of E71, min \x-y\, is attained at more than one point x). We refer to

X ^ 2 j "

[LF1], [LF2], [M], [MW], [VEL] for some properties of central sets. Define
the crumpleness of E71, A<E71), as the ratio diamRn+^E^/r^E71). Some
properties of the crumpleness functional are discussed in [N2]. We introduce
also a functional y^E") = max (|Jb,(;K)|)(Vol(E71))^, where ki(x)

rcGS", i€{l,...,n}
are principal curvatures of E71 at x. Note that /c and ^ are invariant under
transformations x —> ax + b of R71.

THEOREM 1.1. — For any n there exist constants c(n) and a(n)
such that for any compact d-bypersurface E71 C R71'^1 there exists a d-
hypersurface E71 rigidly isotopic to it such that

(1.1) ^(S^^exp^^W^),

(1.2) ^(E^^exp^n)^^^1).

Remark. — From (1.1), (1.2) one can derive estimates on another
global geometric characteristics of E71 invariant under rescaling. For exam-
ple, let %(E71) be the injectivity radius of E7' in the inner metric. Then (1.1),
(1.2) and the inequality (10) in [BZ], Corollary 34.1.9, imply that

vol(E^)^/z(E^) < exp^^exp^W^)),

(perhaps one can derive a better estimate).

Let us describe the idea of the proof of Theorem 1.1. First, we show
that it is sufficient to find a hypersurface E71 isotopic to E71, which is a zero
set of a polynomial q of degree d such that

(1.3) max || Hessg(a;)||/ mm | grad^)| < exp^n)^71^1),
;rCGonv(2-.^) a'eS^
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where co(n) and ao(n) are some constants depending only on n and
Conv(E^) denotes the convex hull of E^ in R^.

Consider in the space of coefficients the discriminant variety which
corresponds to polynomials p such that gradp vanishes at a point of the
zero set of p. It is contained in a possibly larger algebraic variety which
is the zero set of a polynomial T. This polynomial is denned as the
sum of squares of resultants of a system of n + 2 homogeneous forms of
n + 2 variables (these forms are the projectivisations of polynomials p,
9p/9xi, i = 1,... ,n 4- 1, cf. [VW]). The key moment in the proof is that
the polynomial T is a polynomial with integer coefficients which can be
estimated. This enables us to prove that every connected component of the
complement to the zero set of T contains a ball of a large enough radius
having a non-empty intersection with the unit ball. Note that if two vectors
of coefficients belong to the same connected component of the complement
of the zero set of T then the corresponding zero sets are rigidly isotopic
(any path connecting two vectors inside the component corresponds to a
connecting rigid isotopy). Thus, any d-hypersurface is rigidly isotopic to
a zero set of some polynomial q of degree d with rational coefficients such
that numerators and denominators of all the coefficients can be bounded by
some bounds depending only on n and d. It is obvious from the finiteness
of the set of such polynomials that there exist an upper bound depending
only on n and d on max ||Hessg(a*)||/ min |gradg(.r)L where E^ is

a-eConv(E^) ^GS'J

the zero set of q. Such a bound follows from a result of Vorobjov [V] (see
also [GV]). (The proof of this result uses Lazard's work on the lA-resultant
[L]). This bound coincides with (1.3). This completes the proof.

As an application we prove the following result.

THEOREM 1.2. — TAere exist such constants c, f3 that any two
isotopic compact plane non-singular algebraic curves of degree d are
[exp^d^2 )J -rigidly isotopic.

Note that it was proven in [Nl], [N2] that for any n there exists a func-
tion An(d) with the following property : any two isotopic d-hypersurfaces
in R71"1"1 are Ayi(d)-rigidly isotopic. However, for any n > 5 all such func-
tions are non-recursive. (Moreover, they will be still non-recursive if we
will consider only hypersurfaces isotopic to 5'71). So, there is no analogue
of Theorem 1.2 in the case of arbitrary dimension.

We would like to mention here also an application of Theorem 1.1 to
a question posed in [ABB], p. 156. Namely, Theorem 1.1 can be used to
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majorize the minimal number of simplices of a (7°°-smooth triangulation
of a d-hypersurface in H^1 in terms of d and n only. Indeed, the minimal
number of simplices of a C°° -triangulation of a submanifold is invariant
under isotopies of the submanifold. Hence Theorem 1.1 permits to reduce
the case of an arbitrary triangulated d-hypersurface E71 to the case of a
d-hypersurface E^ satisfying inequalities (1.1), (1.2). But for such hyper-
surfaces it is easy to derive an explicit upper bound on the minimal number
of simplices of a C^-triangulation.

Indeed, one cas use Whitney's proof of the triangulability of smooth
manifolds ([Wh], ch. IV). On the first stage of the proof a subdivision
LQ of R71"1"1 into cubes of a small enough side length h is chosen. Then
the regular subdivision L of LQ into simplices is considered. One can
slightly move the vertices of L forming a new triangulation L* of R714"1

which will be "in general position" with respect to E^. In particular, all
vertices of L* will be at a certain positive distance from E^. Since all
one-dimensional simplices of L* have small enough length, one can ensure
that any one-dimensional simplex of L* intersecting E^ intersects it in a
unique point, at an angle not too small. The intersections of E^ with the
simplices of L* are approximately convex cells and the desired simplicial
complex K (homeomorphic to E^) is like the regular subdivision of this
set of cells. It is clear from this proof of Whitney that the number of
simplices of K < constl(?^)(diamRn+l(E^)//l)?^+l, where consti(n) depends
only on n. The length h is defined by formula (5) on p. 129 of [Wh].
One can see from this formula that h >_ const2(n)min{<5o,$o^iL ^ere
const2(n) depends only on n and ^o?^o^i ^e defined, respectively, in
texts of Theorem 10.A, Lemma 8a and Lemma 8b of Chapter IV of [Wh].
Since E^ is a C^-smooth hypersurface, SQ coincides with r(E^). Not
entering into details, note that using a quantitative version of the implicit
function theorem (cf. [N3], Proposition 3.2, or [AMR], Supplement 2.5A)
and the inequality r(E^) < I/ max \kz(x)\(= I/max ||iy(.z')||),

.ces^,ze{i,...,n} xe^
one can prove that min{^o5$i} > const3(n)r(E^). Here, as before, ki(x)
are principal curvatures of E^ at a point x and W(x) denotes the second
fundamental form of E^ at x. This argument implies a polynomial in /t(E^)
upper bound for the number of simplices of the triangulation. This method
together with Theorem 1.1 leads to a doubly exponential in d upper bound
for the number of simplices. Thus, we come to the following corollary of
Theorem 1.1 :

COROLLARY. — For any n there exists a constant 7(71) with the



SMOOTHING OF REAL ALGEBRAIC HYPERSURFACES BY RIGID ISOTOPIES 15

following property. Any d-hypersurface in R71'^1 admits a C°°-smooth
triangulation into not more than [exp(d7^^" )J simplices.

Estimates provided by Theorem 1.1 are doubly exponential in d. This

is related to the fact that there are ( ) monomials in a polynomial
\ n )

of degree d of n variables. If, however/we consider d-hypersurfaces S72

representable as zero sets of a polynomial p of degree d (gradj? 7^ 0 on
E71) such that only t(n} monomials of p have non-zero coefficients, then
the estimates can be made only exponential in d. (Here i{n) is an arbitrary
function of n not depending on d). Moreover, it is sufficient to require only

that the remaining ( ) —i(n) coefficients ofp will be integer numbersV n )
from an fixed interval [—M,M].

THEOREM 1.3. — For any positive integer n there exist constants
c(n), a(n) with the following property. Let some integer numbers £ and
M > 2 be given. Suppose that p : IR724"1 — ^ R i s a polynomial such that

( } — i of its coefficients are integer numbers from the interval
n+1 )

[—M,M]. Let S71 be the (non-empty) zero set ofp and gradp(.r) ^ 0 for
any x € S71. There exists a d-hypersurface S^ rigidly isotopic to S71 such
that

^) < exp^n^-^ In M)0^),

/^) < expO^nXd^lnM)^).

As a corollary from Theorem 1.3 one can prove the following gener-
alisation of Theorem 1.2.

THEOREM 1.4. — There exist constants c, f3 with the following
property. Suppose that some integer numbers i and M > 2 are given. Let
Pi^P2 : IR2 -^ R be polynomials such that for i € {1,2} :

1) All coefficients of pi but i are integer numbers from the interval
[-M,M];

2) The zero set of pi is a compact smooth curve S^ and gradp^(:r) ^ 0
for any x € S^ ;

and

3) S^ is isotopic to S^.

Then E^ is [exp^d^1 In M)^)J -rigidly isotopic to S^.
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Note that the method of the proof of Theorem 1.1 can be easily gen-
eralized for the case of greater codimensions and a multi-codimensional
analogue of Theorem 1.1 can be formulated. We believe that the proposed
method using the fact that coefficients of the resultant are integers and
Vorobjov's estimates of sizes of compact zero sets of multivariate polynomi-
als with bounded integer coefficients can be widely applied in the following
situation. Suppose that we want to prove the existence of an algebraic sub-
manifold with some prescribed topological properties by a desingularization
by a small variation of parameters (using, for example, Sard's theorem to
prove the existence of such variation). Upper bounds for a geometric com-
plexity of some such submanifold (for example, for principal curvatures)
can be obtained by this method. We would like also to mention that the
result of Vorobjov was used in a somewhat similar manner to a problem
from the geometry of point configurations in the recent article [GPS].

Note also that Theorems 1.1-1.4 can be similarly stated and proven
in the projective case.

2. Geometry of algebraic hypersurfaces.

Here we relate defined in Section 1 geometric characteristics of the
zero set of a polynomial to its analytic characteristics.

Let a compact hypersurface E71 be the zero set of a polynomial
p : R^1 -> R such that gradp(.r) ^ 0 for x € E71. Denote by a(p) the
ratio

^^ax^ ||Hessp(.r)||/^n |gradp(.r)|.

LEMMA 2.1. — r(E71) > ———
2a(p)'

Proof.— Suppose r(E71) = dist(xo,yo), where XQ € E71, yo €
Cente^E^. There are two possibilities.

1) yo is a focal point of E71. Then r(E71) = l/|A;(a;o)|, where |A;(a;o)| is
the maximal absolute value of a principal curvature at XQ. But the principal
curvatures at XQ are the eigenvalues of the matrix of the second fundamental
form of E71 at XQ. It is well-known (cf. [T]) that the linear operator
corresponding to the second fundamental form at XQ can be expressed
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as ———-—-—— Hess^.z'o^rE^nh where TE^rco) denotes the tangent
|gradp(a-o)|

hyperplane to E71 at XQ. This implies immediately the lemma in the first
case.

2) There are two different points x\^x^ € E71 such that

\Vo - x^\ = \yo - x^\ = dist(yo, E^ = r(^).

This means that

VQ = x^ 4- T^E^nOn) = ̂  4- T^E^n^).

Here n(;ri), n(x^) are unit normal vectors to E71 at a-i and at 2-2, correspond-
ingly. Note that in the intersection of the open l/(2a(p))-neighborhood
^l^ofE7^withConv(E7l)

|gradp0r)| > ^m^n |gradp(a:)|.

Extend the map n : E71 -^ S" on ^/^(p)) n Conv(En) letting n(a:) =

gra P^) Differentiating n(x) we get easily that ||ZM:r)|| < 2a(p).
|gradp(a-)|
Hence, if \xi - x^\ < l/a(p) then the segment [rci,^] is contained in
^(p^Con^E^and

|̂ i - ̂ 1 = ̂ E^ln^) - n(.ci)| < 2a(p)r(E7^)|r^l - ̂ 1.

So,
y(E^) > - 1 .

~ 2a(p)
If \x\ — x^\> l/a(p) then also

l/a(p) < |̂ i - ̂ | = ̂ E^ln^) - ̂ i)| < 2r(E71).

D

For a set X C FT^ denote by Xp the set of all points x € R71"1'1 such
that dist(:r,X) < p. For a hypersurface M71 let M- denote the union of
the bounded connected components of the complement R^^Af^

LEMMA 2.2. — For any n there exists 0(n) > 0 with the following
property. Let p < r(E71). Then

Vol̂ i (E^ n E-) > p6(n)\oW}.

Proof. — Using the transformation x —^ x / p we can reduce the
proof of lemma to the proof of the particular case of p = 1. Denote for
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any A C [0,1] the hypersurface {x + \n[x)\x (E E71, n(.r) is the unit
normal vector to E71 at x directed towards E_} by E^A). By the Cavaliery
principle

/•i
Vol^i(E^nE-) = / VoUE^A))^

(2.1) Jo ^

= ( { det^-ATVCr^ArfVol^E71),
J^1 Jo

where W(x) denotes the matrix of the second fundamental form of E71 at
x C E71. Consider det(J - \W(x)) as a polynomial of A. The condition p <
^(E71) implies that this polynomial assumes positive values for A C [0,1).
This polynomial is equal to one at zero and its degree is less or equal to n.
Let U(n) be the set of all polynomials q of degree n such that q(fl) = 1 and
q(\) > 0 for all A C [0,1]. It is easy to see that 0o(n) = inf \\q\\^\o n > 0.

qEU(n) ' -
Indeed, let U>^(n) denote the set of polynomials q of degree n such that
the norm of the vector of coefficients of q is greater or equal to one. Let
Ui (n) denote the set of polynomials q of degree n such that the norm of
the vector of coefficients of q is equal to one. Obviously, U(n) C U>i(n)
So,

X) MLl^ ̂  ,4;(n) MLl^ = A) ML1^ > °-

This proves the positivity of^o(^). Now it follows from (2.1) that

Vol^+i (E? n E_) > Oo(n) VoUE^

(recall that we consider only the case p = 1). Thus, Lemma 2.2 holds with
e(n)=eo(n). n

Denote the volume of a unit n-dimensional ball by Vn- The following
lemma relates introduced in Section 1 functionals K, and fi.

LEMMA 2.3. — For any smooth compact hypersurface E71 C ̂ ^
the following inequality takes place :

..n(yn\ ^ ^n+l n+lf^n\

^ (s ) < ~6W ( /

Proof. — By its definition E- is contained in a ball of radius
dianiRn-n E71. Let p = T^E^. By Lemma 2.2

Vn+i (diamR.+i E71)^1 > Vol^+i (E^ n E_) > ^(7l)pVol^(En).

Now Lemma 2.3 follows from the definitions of [L and K. D
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Remark. — Actually the proof of Lemma 2.3 gives even more.
Namely, we majorized (Vo^E71))1/^/^) in terms of ^n). This result
can be generalized for codimensions greater than one. One can also ma-
jorize /.(E71) in terms of (VoICE71))1^/^). (The exact formulations and
proofs of the two last statements will appear elsewhere.) Thus, the normal-
izations of l/r(E71) by factors dianiRn+^E71) and Vo^E71)1/71 are in some
sense equivalent. However, it is impossible to majorize ^(E71) in terms of
diamRn+^E71)^^ max^ \k^x)\. Indeed, there exist simple examples

showing that it is impossible to majorize the volume of E71 in terms of
dianiRn+i (E71) and of ^^ max^ ^ \k,{x)\, even if n = 1. (This fact was

pointed out to the author by Professor M. Gromov).

3. Zero sets of polynomials with integer coefficients.

An important ingredient in the proof of Theorem 1.1 is the following
observation. Suppose that a polynomial p : R71 -^ R of degree d has integer
coefficients and absolute values of these coefficients are bounded by some
number N. Let the zero set Z of this polynomial be a compact non-empty
set. Then Z belongs to the ball of radius r{N,d,n) centered at the origin
of R71 for some r(7V,d,n) depending only on N,d and n. This follows
immediately from the finiteness of the set of considered polynomials. The
following result of Vorobjov [V] provides an upper bound for r(N,d,n).

THEOREM 3.1 [V]. — There exist constants consti.consts^consts
such that for any d > 2, N > 2, n the following inequality holds :

/ ,j\ const2
r(7V, d, n) < exp consti ( ) (In TVY0118^

L \nJ 1 '

Proof. — This theorem is a reformulation of the second statement
of Theorem 3 in [V].

The next lemma is a simple corollary of Theorem 3.1. It provides a
positive lower bound for min | gradp|.

LEMMA 3.2. - Let E" = {x € R^^x) = 0} be a compact
hypersurface and grad p(x) + 0 for any x € E71. Suppose that all coefficients
ofp are integer and their absolute values do not exceed some given number
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N > 2. Then for some constants const4, consts not depending of N , d, p,
n the following inequality holds :

f \ ̂ Tld\ iconst5\min | gradp(:r)| > exp ( - const4 In N\ ] .
a-eE" \ L \ n / J /

Proof. — Consider the following system of two algebraic equations :
p(Xi,...,Xn+l) =0

X^\gTadp(x^...,Xn+l)\2 -1 =0.

The statement of Lemma 3.2 is equivalent to the statement that for
any solution (n - i , . . . , Xn-^-i, ^714-2) of this system

\xn^\ < exp (const4 (M InA^011^)

for some constants const4, consts. But this system can be replaced by a
single equation

P2^!, . . . , Xn-^l) -h (.4+2 ̂  (^^1. • • • . ̂ n+l))2 - l)2 = 0.

Note that the set of solutions of this equation is bounded. (The
existence of an upper bound on x^^ follows from the fact that |gradp|2

has a positive minimum on E71.) Now Lemma 3.2 follows from Theorem 3.1.

Remark. — The idea to use a new variable x 71-1-2 in the proof is an
adaptation of a similar idea from the proof of Corollary 3 in [V].

The proof of the following lemma is similar to the proof of Lemma 3.2.

LEMMA 3.3. — Let p : R"4"1 —> R be a non-trivial homogeneous
polynomial of degree d with integer coefficients from the interval [N, -N}.
Let p\sr• denote its restriction on the unit hypersphere 5^ centered at the
origin and j?2 be a locally maximal value ofp2\s^ . Then for some constants
constg, const7 the following inequality holds :

2 / //^A , \ constyPQ > exp 1 - conste (( ) In N J ).

Proof. — Let the value p2 be assumed at some point x € S71. Denote
pQ1 by Xn+2- Then coordinates of the point x and Xn+2 satisfy the following
equation :

n+l 2 n+1 ^

(3.1) (E^-Q +E(^-^i)-2^)
v ' 1=1 i=l

4-(a*n+2p(^l,...,a-n+l) - I)2 =0.
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Here A is, of course, a Lagrange multiplier. We consider it as an additional
variable and want to apply Theorem 3.1 to the polynomial Q of n 4- 3
variables at the left hand side of (3.1). The absolute values of (n+2)-th
coordinate of solutions of the equation Q = 0 are uniformly bounded
because of the finiteness of the set of critical values of p\sn- It is easy
also to verify the boundedness of A on the solution set of Q = 0. So,
Theorem 3.1 can be applied. It provides an upper bound on x 2 ^ which by
the definition of Xn-^-2 yields a lower bound on pj. It is easy to check that
this is the necessary bound. D

We will need also the following proposition which is a well-known
corollary of the elimination theory (cf. [VW], Ch. 11).

PROPOSITION 3.4. — Consider a space of coefficients of all poly-
nomials p : H71^1 -^ R of degree d (i.e. the Euclidean space R^, where

k = ( p. There exists a homogeneous polynomial T : R^ —> R\ n + 1 /
with integer coefficients such that :

1) IfT(a) 7^ 0 then for a polynomial p having the vector of coefficients
a p and gradp do not vanish simultaneously.

2) The zero set ofT is of codimension one in R^.

3) The degree of T is less than (constgd)2". Absolute values of all
coefficients ofT are less than exp((const9 d)271). Here constg and constg are
some universal constants.

Proof. — Consider the system of (n -h 2) equations

j?(:ri,...,a:n+i) =0
r^

-^-(x^...,Xn+l) =0

9p
( X ^ , . . . , X n + l ) = 0

Q X n ^ t ' ' " ' ^ '

where p is the polynomial with indeterminate coefficients a^ (2 = 1,..., k).
Homogenizing it and excluding all variables Xj, (j = 1,.. .n -1- 1) ([VW],
ch. 11), we obtain a resultant system of homogeneous polynomials hi of
variables 0.1 with integer coefficients. The simultaneous vanishing of all the
polynomials b^ on a vector of coefficients OQ of a polynomial po is equivalent
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to the simultaneous vanishing of homogenizations of p and grad p on a non-
zero complex n 4- 2 dimensional vector of variables. Let T == Y^J. Now

i
the properties 1) and 2) are evident. To demonstrate the property 3) it is
sufficient to follow the computation of the polynomials bf in [VW].

Remark. — The statement of Proposition 3.4 can be significantly
improved. It is well-known that exists a polynomial of degree n(d —
I)71"1 called the discriminant of p satisfying statements 1) and 2) of
Proposition 3.4 (cf. [VW], ch. 11 and [GZK]). However, coefficients of
this polynomial cannot be estimated so straightforwardly as coefficients
of the polynomial T. Also, it is not so simple to generalize the notion of
discriminant for polynomial maps Rn+k —^ R^ (but see [L]). Nevertheless,
if one wants to obtain an estimate of a(n) in Theorem 1.1 then it is better
to use the discriminant instead of the polynomial T.

4. Proof of main results.

In this section we present proofs of Theorems 1.1, 1.2.

Proof of Theorem 1.1. — Consider the polynomial T on the space
of coefficients of polynomials p : R^1 —> R of degree d which was
defined by Proposition 3.4. Its follows from Proposition 3.4 that if vectors
of coefficients of two polynomials p\ and p^ are in the same connected
component of the complement to the zero set of T then zero sets of pi and
p2 are rigidly isotopic d-hypersurfaces. Without any loss of generality we
can assume that E71 is the zero set of a polynomial p such that the vector a
of coefficients ofp satisfies |a| = 1 and T(a) ̂  0. Denote by W a connected
component of the complement of the zero set of T containing a. Our first
aim is to prove the existence in W of a point a^ with rational coordinates
such that numerators and denominators of coordinates can be bounded by
exp^s^)^4^^" ), where 03(71), c^{n) depend only on n.

Consider the restriction of T on the unit sphere S'̂ "1 centered at the
origin of the coefficient space Rk. Let V = WHiS^"1 and to denote a locally
maximal value of |r| on V. Suppose this value is attained at a point ai € V.
Lemma 3.3 implies that to > exp(—C5(7^)dc6^dn ), where £5(71), ce(7i)
depend only on n. The dependence on d is doubly exponential here because
of the fact that the dimension k depends on d here. It follows easily from
Proposition 3.4, part 3) that |gradr(a)| < exp^n)^08^) when |a[ < 2
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for some £7(71), Cs(n). Thus, there exists a ball B^ C W centered at ai of
radius exp(-C9(n)dclo^(f^+l) for some 09(71), cio(n). Obviously, there exists
a point a* in this ball B^ such that all its coordinates are rational numbers
with a numerator and a denominator bounded by exp^n^d010^^1)
for some cn(n). This completes the first stage of the proof.

Let p^ be a polynomial with the vector of coefficients a* and E^ be
its zero set. Our next aim is to prove that S^ is the hypersurface existence
of which is stated by Theorem 1.1.

By the virtue of Lemma 3.1 we have an upper bound on diam(E^).
Now Lemmas 2.1, 2.3 imply that it is sufficient to prove an upper bound
on the ratio

.00%^) " Hess^)"/ ̂ 1 ̂ P.(X)\

of the type exp^^n)^1^71)^1) to complete the proof of Theorem 1.1.
Theorem 3.1 yields upper bounds on all coordinates of any point x G
E^ which imply immediately an upper bound of the necessary type for

max ||Hessj^(a;)||. The necessary lower bound for min |grad^(a;)|
a;€Conv(S^) a;eE"

of the type exp^c^n)^16^)^1) follows from Lemma 3.2. Combining
these two bounds together we get the necessary upper bound for the ratio.
This completes the proof of Theorem 1.1. D

Proof of Theorem 1.2. — Let S,1 C R2 (2 € {1,2}) be two isotopic
smooth compact curves of degree d. By Theorem 1.1 there exist two curves
of degree d S^,E^ rigidly isotopic to E^ and E^, correspondingly, such
that ^(E^) < exp(c^du)d ) for some constants c* and uj. Moreover, the
proof of Theorem 1.1 implies that these curves can be chosen to be zero
sets of polynomials p^ of degree d such that gradj?^ does not vanish on
S^ having the following additional property :

(4.1) l|Hess^Cr)||/|grad^(.t/)| < exp(c*^2)
for some constants c*, 6 and for any x, y in the diamR2(S^)/(2exp(c^d2))
-neighborhood of E^.

To prove Theorem 1.2 it is sufficient to prove that it is possible to
connect S^ and E^ by an [exp^c^2^ -rigid isotopy.

In [Mo], ch. 3, a shelling algorithm for shrinking of a two-dimensional
polygon in R2 is described (see also [ABB]). Omitting lengthy but simple
details note that a smooth version of this algorithm can be used to construct
a smooth isotopy S^, (t € [1,2]) between E^ and E^ such that for any
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t /t(E^) < exp(consto d(30d ), where consto and /?o are some universal
constants. As it was noted in [N2] it is easy to deduce from that using
the Jackson-Bernstein theorem about polynomial approximation of smooth
functions that we can approximate this isotopy by an [exp(consi d(31d )J-
rigid isotopy At (t e [l,2],const and /?i are some constants) and it is easy
to see that the inequality (4.1) makes possible to find an approximating
[exp(cd0d )J-rigid isotopy which satisfies Ai = E^ for i € {1,2}. This
completes the proof of the theorem.

Proof of Theorems 1.3 and 1.4. — The proof of Theorem 1.3 is
very similar to the proof of Theorem 1.1. The single difference is on the
first stage when we look for a point a^ G W such that coordinates of a+ are
rational numbers with bounded numerators and denominators. In the proof
of Theorem 1.1 we looked for a^ in all W and, correspondingly, we needed
to prove a lower bound on all locally maximal values of |T| on W D S1^'1.

To prove Theorem 1.3 we fix the values of all ( ) —£ variables
V n + 1 )

of T corresponding to the integer coefficients of p. We assume that their
values are equal to the values of corresponding coefficients of p. Now we
consider the restriction of T on the ^-dimensional set Vi = W D Sk~l D R^.
Here R^ denotes the space of coefficients of p which are not supposed to
be integer in the conditions of Theorem 1.3. Now Lemma 3.3 provides
the lower bound exp(- constantl(n)dconstant2(n)^+l)(lnM)constant3(n)) on
any locally maximal value of T2^ for some constants constanti(n),
constant2(n), constants (n). The rest of the proof goes on exactly as the
proof of Theorem 1.1.

Theorem 1.4 follows from Theorem 1.3 exactly as Theorem 1.2 follows
from Theorem 1.1.

BIBLIOGRAPHY

[AMR] R. ABRAHAM, J.E. MARSDEN, T. RATIU, Manifolds, Tensor Analysis, and Appli-
cations, Springer, 1988.

[ABB] F. ACQUISTAPACE, R. BENEDETTI,,F. BROGLIA, Effectiveness-non effectiveness
in semi-algebraic and PL geometry, Inv. Math., 102(1) (1990), 141-156.

[BZ] Yu. BURAGO, V. ZALGALLER, Geometric Inequalities, Springer, 1988.

[GPS] J. GOODMAN, R. POLLACK, B. STRUMFELS, The intrinsic spread of a configuration
in R^, J. Amer. Math. Soc., 3 (1990), 639-651.

[GV] D. GRIGORJEV, N. VOROBJOV, Solving systems of polynomial inequalities in
subexponential time, J. of Symbolic Computations, 5 (1988), 37-64.



SMOOTHING OF REAL ALGEBRAIC HYPERSURFACES BY RIGID ISOTOPIES 25

[GZK] I.M. GELFAND, A.V. ZELEVINSKY, M.M. KAPRANOV, On discriminants of multi-
variate polynomials, Funct. Analysis and Appl., 24(1) (1990), 1-4 (in Russian).

[L] D. LAZARD, Resolutions des systemes d'equations algebriques, Theor. Comput.
ScL, 15 (1981), 77-110.

[LF1] V. LAGUNOV, A. FET, Extremal problems for hypersurfaces of a given topological
type, I, Siberian Math. J., 4(1) (1963), 145-176 (in Russian).

[LF2] V. LAGUNOV, A. FET, Extremal problems for hypersurfaces of a given topological
type, II, Siberian Math. J., 6(5) (1965), 1026-1036 (in Russian).

[M] D. MILMAN, The central function of the boundary of a domain and its different table
properties, J. of Geometry, 14 (1980), 182-202.

[MW] D. MILMAN, Z. WAKSMAN, On topological properties of the central set of a
bounded domain in R71, J. of Geometry, 15 (1981), 1-7.

[Mo] E.E. MOISE, Geometric Topology in Dimensions 2 and 3, Springer, 1977.

[Nl] A. NABUTOVSKY, Nonrecursive functions in real algebraic geometry, Bull. Amer.
Math. Soc., 20(1), 61-65.

[N2] A. NABUTOVSKY, Isotopies and nonrecursive functions in real algebraic geometry,
in Real Analytic and Algebraic Geometry, edited by M. Galbiati and A. Tognoli,
Springer, Lect. Notes in Math., n° 1420, pp. 194-205.

[N3] A. NABUTOVSKY, Number of solutions with a norm bounded by a given constant
of a semilinear elliptic PDE with a generic right hand side, to appear in Trans.
Amer. Math. Soc..

[R] V. ROKHLIN, Complex topological characteristics of real algebraic curves, Russian
Math. Surveys, 33(5) (1978), 85-98.

[T] J. THORPE, Elementary Topics in Differential Geometry, Springer, 1979.

[VEL] A.G. VAINSTEIN, V.A. EFREMOVITCH, E.A. LOGINOV, On the skeleton of a
Riemann manifold with an edge, Russian Math. Surveys, 33(3) (1978), 181-182.

[Vi] 0. VIRO, Progress in the topology of real algebraic varieties over the last six years,
Russian Math. Surveys, 41(3) (1986), 55-82.

[V] N. VOROBJOV, Estimates of real roots of a system of algebraic equations, J. of
Soviet Math., 34 (1986), 1754-1762.

[VW] B.L. VAN DER WAERDEN, Modern Algebra, v. II, Frederik Ungar Publishing Co,
1950.

[Wh] H. WHITNEY, Geometric Integration Theory, Princeton University Press, Prince-
ton, 1957.

Manuscrit recu Ie 4 septembre 1990,
revise Ie 23 mars 1991.

Alexander NABUTOVSKY,
Department of Theoretical Mathematics
The Weizmann Institute of Science
P.O.B. 26
Rehovot 76100 (Israel).


