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THE VERSALITY DISCRIMINANT
AND LOCAL TOPOLOGICAL

EQUIVALENCE OF MAPPINGS

by James DAMON (1)

Introduction.

One of the goals of singularity theory going back to the early work
of Morse and Whitney and extending through the work of Thorn and
Mather was to classify germs of mappings between different spaces up
to change of coordinates in source and target (j^-equi valence). This
originally concerned the classification for generic mappings as well as
questions involving finite determinacy. However, the presence of moduli
(i.e., parameters describing continuous change of smooth or analytic
type) yields an uncountable classification unless we consider topological
analogues of the above questions. In the case of finitely j^-determined
germs which are weighted homogeneous, [Dl] provided a sufficient
condition for a deformation to be topologically trivial allowing one to
answer classification questions for topological equivalence of germs of
mappings. This was refined in [D2] for non-weighted homogeneous
germs fo which still had finite ja^-codimension but in a graded sense
relative to an algebraic filtration on the tangent space of the infinitesimal
deformations of fo. This allowed one to give precise topological
determinacy results as well as topological classification results.

Unfortunately, map germs are not finitely determined in general
once one leaves the « nice dimensions » [M2]; hence, the above results
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are often no longer directly applicable. The alternative is to verify the
Whitney conditions for a deformation of the germ. However, that
involves the checking of Whitney conditions for all pairs of strata,
which is not feasible except for very low dimensions.

Associated with the failure of finite determinacy is a germ of an
analytic set in the target space which we call the versality discriminant.
The versality discriminant of a germ fo is the set of points in the target
where fo is not infinitesimally stable, i.e., where fo, viewed as an
unfolding of some multi-germ, is not versal. For example, finite
determinacy is equivalent to the versality? discriminant being a point (or
empty). Often, the dimension of the versality discriminant can be quite
small even though the dimensions of the source and target spaces are
large.

At points off of the versality discriminant, fo is locally stable and
so small perturbations will not change fo locally near the point. Hence,
we might hope that the knowledge of the behavior of fo near the
versality discriminant will allow us to dfettermine the topological behavior
of/o itself under deformations. The goal of this paper is to prove such
a result.

The general statement will take the form : if an unfolding
f'.k^^ O-^k^^O of the germ fo: k\0 -> fe',0 is topologically trivial
in a « conical neighborhood » of the versality discriminant of / then /
itself is topologically trivial. Here by conical neighborhood we mean a
neighborhood in the punctured target fe^O}.

We will give several versions of this result. As might be expected
in light of the results referred to above, the simplest version of the
theorem (Theorem 1) concerns / an unfolding of non-negative weight of
a weighted homogeneous germ fo. However, the arguments for the proof
in this case are the same that apply to more general situations where
weighted homogeneity can be replaced by conditions stated in terms of
algebraic filtrations (Theorem 2-4). For this reason, we first separately
state Theorem 1 which considers the weighted homogeneous case and
then give the filtered version which states the modifications needed to
deal with the lack of weighted homogeneity.

Also, we shall see that it is not necessary to explicitly find the
versality discriminant to apply the theorems. It is sufficient to apply
the theorems for a germ of a variety which contains the versality
discriminant.
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We indicate applications of these results to a variety of examples,
including multi-modal singularities, unimodal singularities which are not
finitely ^-determined, and mappings to C2. These results have
consequences for the versal topological stratification of versal unfoldings
as well as the determination of topologically stable map germs for
higher modality singularities.

In § 1 we define the versality discriminant and give several examples
of its computation. We collect together in § 2 for later use several basic
facts about singularity submanifolds and weak stratifications and stratified
vector fields. In § 3 we recall certain basic properties of algebraic
nitrations which we will need and which follow automatically in the
weighted homogeneous case. Then in §4, we define the local condition
which must be satisfied near the versality discriminant and state the
topological triviality theorems. We also indicate how to apply these
theorems to the earlier examples. In §§ 5 and 6 we prove the theorems
by constructing stratified vector ifields in § 5 and proving in § 6 that
these vector fields are locally integrable, giving the desired topological
trivialization. Lastly, in § 7 .we give a further refinement of the theorems
which basically allows for non-positive weights or nitrations.

1. The versality discriminant.

Let/: fe54"9, 0 -> k^\ 0 be an unfolding of the germ/o: fe5, 0 -^,
0, so that if x, y , u denote local coordinates for k3, fe^ , and fe9 then
f(x,u) = (J(x,u\u) and 7(x,0) = ̂ (x). Here, if k = C, / is holomorphic
and if k == R, then / is real analytic.

We let the algebras of fc-valued germs (in the appropriate category)
on k8, /c^9, etc., be denoted by ^, ̂ , etc. These algebras have
maximal ideals of germs vanishing at 0 denoted by ^» ^x,u, etc. Also
a finitely-generated 7^-module generated by {(pi, . . ..(p^} will be denoted
by ^{(pi, . . . ,(p/J or R[n>i} if the set of (p, is implicitly understood.

We consider fo which has finite singularity type. Furthermore, if
k = R, we will replace fo by its complexification, so in either case
we have complex germs of finite singularity type, still denoted by fo
and /.

There is a neighborhood U of 0 such that fo has a representative
on U, again denoted by fo, and a neighborhood W of 0 so that if
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^(/) denotes the singular set of /:
(i) f\ ̂ (/) n £/ -> W is proper and finite to one
(^/-^n^nl/^O}.

We let V ^W denote the set of (y,u) e FF such that if S =f~1

(y,u) n ^(/) n £7, then the multi-germ /( ,u): 0s, 5' -> C', (y,u) fails
to be infinitesimally stable. Then, using an argument modeled on that
used by Gaffney [Gaf] for giving a geometric characterization of finite
j^-determinacy, we showed [Dl, I, II].

PROPOSITION 1.1. — In the above situation
(i) V is an analytic subset of W ;

(11) if I denote that ideal of germs at 0 vanishing on V, then there
is a k so that.

(1.2) ^-^^-{If}^-^}

(where 0(7) = ̂ ^-}\ and
\ W j ) /

(iii) if I ' is another ideal satisfying (1.2), then the germ V == V(F)
satisfies V ^ V.

The well-known relation between the infinitesimal stability of a germ
and its versality when viewed as an unfolding leads us to define.

DEFINITION 1.3. — The versality disciminant of the unfolding f
(respectively fo) is V {respectively V n C^) in the case k = C
or V r\ ^+Q (respectively V r\ d^) in the case k = 1R.

Remark 1.4. — In the theorems, we will allow V to be an analytic
subset of the discriminant which contains the versality discriminant. If
/ denotes the ideal of germs at 0, vanishing on F, then (1.2) is still
valid. This includes the special case where V is itself the versality
discriminant.

Examples.

(1.5) Pham Example [DGal]:

Pham considered the ^-constant family

f(x,y) = / + tyx6 + syx7 + x9 (4r3 + 27 ^ 0)



VERSALITY DISCRIMINANT AND TOPOLOGICAL EQUIVALENCE 969

and showed that the versal unfolding

/ 5 7 ^

F(x,y,s,t,u,v) = U^y) + E u^x'y + ^ 1:9.^, S,^,M,U
\ 1=0 1=1 /

is not topologically a product along the r-axis near t = 0. Thus, the
topological structure in the versal unfolding depends on the particular
values of s and t. Fixing s and t gives an unfolding /i: fe15, 0 -> ^c14,
0. In [DGal] the versality discriminant is determined for the case 5 = 0
and t fixed (7^ 0) by considering the family :

/ + t(x-xo)4(x+2xo)2^ + (x-xo)6(x+2xo)3.

Along the curve C in k14 defined by this deformation, there are £g
and 2)4 singularities in a fibre at the points x == XQ and -2xo (and the
EQ singularities have a fixed modulus value). However, the dimension
of the target space is 14, while the codimensions of £3 and D^ are 10
and 4 respectively. Thus, if the multi-germ in this fibre were multi-
transverse, the set of points where it occurred would be isolated and
not along a curve. Hence, this curve lies in the versality discriminant
for /i. In [DGal] it is proven that this curve is exactly the versality
discriminant.

(1.6) Unimodal singularities which are not finitely determined:

In conversations with Terry Wall he pointed out that even in the
region around the edge of the nice dimensions, we still have not
completely determined the topologically stable map germs because of
the presence of unimodal singularities whose negative versal unfolding
fails to be finitely determined.

For example, the negative versal unfolding of the germ fo: k2,
O-^3, 0 defined by fo(x,y) = (x2+£/,x^3+^5,^6) is proven in [Dl,
II], to be finitely ^-determined as a germ and hence topologically
versal (and topologically stable). However, the germ /i(x,^) = (x^e^4,
xy^ty^O) is also unimodal; but as shown in [Dl, II], its negative
versal unfolding is not finitely j^-determined as a germ because it fails
to be transverse to the jf-orbits of fo.

Terry Wall suggested that it is possible to modify various inequalities
in the proof in [Dl, I], for this special case to obtain topological
triviality along the ^-axis [Wa].
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Alternatively we can determine the versality discriminant and directly
apply our results here. If we assign weight 6 to the third coordinate
in the target (with \vt(x,y) = (2, 1)), then / becomes a «bimodal»
singularity with weight zero deformation given by

f(x,y) = {x^^y\xy^ty\uy^
u

section by F^ Jf-orbits of /

For these weights, the proof of prop. 7.2 of [Dl, II], shows that
the unfolding F of /, which now includes the parameter u (but fixes
0, fails only to be transverse to a jT-orbit of/o» which is a line parallel
to the M-axis. Thus, the versality discriminant for this unfolding is
exactly this line. We shall then see in § 4 as a consequence of theorem
1 that the versal unfolding of / (x,y) = (x2 + e^y4, xy3 + ty5, 0) is topolo-
gically trivial along the ^-axis. This same argument will work as well
for (.x^+e^4, xy^+ty5, 0, 0, . . . ,0) as well as for other finite map germs
with similar properties (see [Dl, II]).

(1.7) Weighted homogeneous germs/: C", 0-^C 2 , 0:

Suppose that / is weighted homogeneous and has finite singularity
type. Let/ : C", 0 -^C 2 , 0 be a deformation of fo of nondecreasing
weight. By [D2] or [D3] the germ/^O) is topologically trivial; however,
fo need not have finite ja^-codimension and the deformation / need not
be topologically ^-trivial. In fact, in [D3] is given the simple example
of a weight zero deformation /(x,^,z) = (xy+rz.^+j^+z2) which is
not topologically ja^-trivial. The restriction of / as a mapping from the
critical set to the discriminant is already not topologically trivial.

Thus, even the simplest weighted homogeneous germs can be non-
finitely ^-determined. For such a germ fo, its discriminant D(fo) is a
curve in C2. The versality discriminant is then an analytic subset of
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D(fo); if fo is not finitely ^-determined then it is a union of some of
the branches of D(fo). We shall identify in § 4 a class of weighted
homogeneous germs which enlarges the classe of finitely ^-determined
ones. We shall see that for this class it is not even necessary to identify
the versality discriminant to apply the theorems here. We shall prove
that a weight zero deformation of such a germ its topologically trivial
if and only if the deformation restricted to the critical set is topologically
trivial.

2. Singularity submanifolds and stratifications.

Next, we introduce the notion of singularity submanifolds which
will suffice for our purposes and give conditions which ensure that
vector fields are stratified relative to a stratification by such submanifolds.

Let /: fe", 0 -> k p , 0 denote a germ of finite singularity type. Let
J^. = J^(n,p,k) denote the r-multijets of order ^ and frf'- k " , 0->J^,
the jet extension of /. Also, we let ̂  = ^r(n,p,k) denote the r multijet
version of the group of left-right equivalence (see [Ml-V] § 1). Finally,
we let n: (k^^Ak" -> k" denote the projection n(x^, . . . ,x^) = Xi.

DEFINITION 2.1. — A singularity submanifold o f / i s a submanifold
of the form TcO^/T'W) (respectively /OiO^/V'W) where W is an
e^-invariant submanifold of J^ and / denotes a representative on a
neighborhood U such that /|^(/) n U is finite to one.

Remark 2.2. — In general, even if W is a submanifold, the associated
singularity submanifolds will not necessarily be smooth. However, off
the versality discriminant this will be true by [Ml-V, Thm 4.1] when
f\frf~l(^) is an immersion.

(2.3) We recall [D2,1], that a \veak stratification of an open subset
U of fe" is a decomposition of U into a finite union of smooth
submanifolds {FJ, the strata, which satisfy a weak form of the axiom
of the frontier, namely,

C/(V,) c= V, u (uF,) with dim V, < dim V,.

In [D2,1], we solved questions of topological triviality using stratified
vector fields on weak stratifications. Our definition of stratified vector
field was especially suited for the algebraic criteria used there. It is
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possible to use a weaker notion of stratified vector field and still obtain
one which is locally integrable by Wirthmuller [Wi] (or see §2 of
[D2,1]), and the vector fields constructed in [D2,1], can still be used
as they satisfy this weaker condition.

DEFINITION 2.4. — A vector field defined on an open subset U of k"
is stratified if it is continuous and there is a weak stratification {Vi} such
that :

(i) ^ | Vi is smooth and tangent to Vi for each V,.
(ii) For each x e U, with say x e V,:, there exists a neighborhood U^

of x and a smooth non-negative function p^ ; Ux -> tR such
that p^O) = V, n U and \f,(p^\ ^ C-p^ on U.

One problem with stratified vector fields occurs when one wants to
patch them together with a partition of unity. The resulting vector field
need no longer be stratified (nor possibly even locally integrable). We
wish to ensure that the resulting vector field is still stratified to ensure
integrability. For stratifications by singularity submanifolds, we show in
the next proposition that the vector fields will be correctly stratified, at
least where they are smooth.

PROPOSITION 2.5. — Given a germf: k", 0 -> ^, 0 (in the appropriate
category) and weak stratifications of neighborhoods U' and U of 0 in fe"
and V by singularity submanifolds of f. Let E, and r\ be germs of
vector fields such that ^(/) = T| of. If y e U' with f~\y) n ^(/) =
5' = {xi , . . . ,x^} and £. and T| are smooth in neighborhoods of S and y ,
then ^ and T| are stratified relative to the given weak stratifications in
the neighborhoods of S and y.

Proof. — Let the neighborhoods of 5' and y be denoted by U' and
U respectively. Given / e U with say y ' e V, then there are Xi, . . . ,x^ e S
with (xi, . . . .x^cfrf'^^W). If (p< and v(/< denote the local flows
generated by ^ and T| in smaller neighborhoods of / and 5" = {xi , . . . , x^}.
Then, ((p<,v|^) generate an e^-equivalence of germs/: fe", S ' - > k p , y '
and /,: k\ S\ -> ̂ , y\ with S\ = ^,(S') and y\ = v|/,(/).

Hence, 5'; c ̂ /~l(^•) and ^e/O^/"^^)) == ^. Hence T| is tangent
to Vi at /, and hence near y ' .

As Vi is smooth, there exist local coordinates near /, ( y ^ , . . . , y p )
{

so that Vi is given by y^ . . . ,^ = 0. Let py = ^ |^|2. Then, as T| is
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P Q
tangent to V, near /, T| = ^ ^•^— where ^(0) = 0 for i === 1, . . . ,<f<f 1=1 °yi
so h,= ^ g i j ' y j for i = 1, . . . , ^ .

7=1

Lastly,
f £

ln(py)l < E \Yi •|TI(^)I ^ Z l^-l- y i \ ' \ y j \ ^ c.p^1 = 1 ij=i
where C/^2 is a bound for all \gij\ in a neighborhood of /. A similar
argument works for the strata of U\. D

3. Filtration conditions.

In the weighted homogeneous case, a germ being of finite singularity
type or an ideal defining the versal discriminant can be stated in terms
of certain algebraic conditions which have immediate analogues for
corresponding graded algebraic objects. If in place of weighted
homogeneity we use more general algebraic filtrations, then the
corresponding graded conditions need not necessarily hold. Instead, we
must actually require the stronger graded conditions as part of our
criteria.

In this section we briefly recall the properties that we require for
the filtration on our rings and modules of vector fields. These properties
are described in more detail in §4-6 of [D2, I]. Then, the stronger
graded conditions are contained in the filtration properties (F1-F3).
These properties lead to certain «jump invariants » which we associate
to a germ.

We emphasize that for unfoldings of nondecreasing weight of
weighted homogeneous germs the conditions (F1-F3) are al\vays satisfied
and if the unfolding/is also weighted homogeneous (allowing nonpositive
weights for the unfolding parameters) the jump invariants are always
zero. Hence, a reader who wishes to understand the results for the
weighted homogeneous case may continue on directly to the statement
of theorem 1 in the next section.

Filtrations on rings and modules.

Recall that the algebras of k- valued germs (in the appropriate
category) on fe5, fe5^, etc., are denoted by ^, ^,^, etc. with maximal
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ideals ^, ^c,u? etc- A filtration on the algebra ^(or ^) consists of
a sequence of finitely generated ideals of finite codimension /i => /g => . . .
such that 7j • /» c /^.. Such a filtration will be called convex if there
is an f and h^ ..., hr e 7^ such that if

r

p=S i / t . i 2 -
1=1

then given h e 7 ,̂ there is a C > 0 so that

(3.1) \h\ ^ C-p^20 on a neighborhood of 0.

Such a p will be called a control function of filtration 2<f. The functions
AI, . . . ,hr are called a .ŝ  o/ vertices for the filtration at level f.

A filtration can have many sets of vertices of varying filtration
levels, e.g. {h[, . . . ,^} is a set of vertices for level 5 -<f , as well as many
different control functions. However, control functions pi and pa of
filtrations 2<f and 2m are related by inequalities of the form.

(3.1a) pa < C-p/^ on a neighborhood of 0.

The filtration extends to smooth functions and any smooth function of
filtration 1£ which satisfies inequalities of the form (3.1) for all hel^
is also referred to as a control function and satisfies (3. la).

The filtration extends to ̂  by {/,-^x.u) (this is no longer of finite
codimension). In the holomorphic case, the filtration extends to the ring
of complex valued smooth function S^u by (/, +/^) • <^c,u» where ()°
denotes complex conjugation.

We assume there are filtrations on both ̂  and ^y so that/? and/*
both preserve filtrations.

Example : Weight filtration.

If we can assign weights > 0 to x and y so that /o is weighted
homogeneous, then we can define weight filtrations on ̂  and ^y with
Ij generated by the monomials of weight > y . Such filtrations are
convex and preserved by /*. If 7 deforms fo by terms of weight
^ ^t(yi) in the i-th coordinate, then / is an unfolding preserving the
weight filtration (we will refer to / more precisely as an unfolding of
non-negative weight).
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Other important examples of convex filtrations are Newton filtrations
([K] or [DGafj) or filtrations by integral closures of powers of an ideal
[T].

Likewise, we also assume that we have filtrations on the modules

^M^}' ^M^} and ^M^}-
For example, for 9, this means there is a decreasing sequence of

finitely generated finite codimension ^-modules Mr => M^+1 => . . .
(beginning with some r e Z) and satisfying :

(i) 7,.M,cM^,
(ii) if C,eMj and g e l , , then ^(g)e7^

(^(g) denotes the directional derivative).

(iii) if i; = ̂ h 8 then fil(A,) ^ fil(0 + fil(x,).ox^
Also, through § 6 we will assume fil(^) > 0 for all i ; we show how

to relax this condition in § 7.

Note : here and in what follows if ge/^+i then fil(g) = i and
similarly for modules.

An analogous definition holds for G( ; while for 6(f) we do not
require ii). r ^ i

These filtrations extend to ^xu{~^~^ etc., by replacing Mj by the
[O^i)

^ u-submodule generated by the generators of My
/ a7\

If / preserves filtrations and fil ( —-) ^ 51 C/o) for all f, then / is
\81ui]

said to be an unfolding of non-decreasing filtration.

Filtration conditions.

We next describe the filtration conditions which will be required for
the main theorems. As mentioned above, these conditions will always
be satisfied in the (semi-) weighted homogeneous case.

As /o has finite singularity type, the Jacobian ideal, generated by
f^my and the t x t minors of dfo, has finite codimension. If i = (f i , . . . , i^
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is a (-tuple of { 1 , . . . ,s} and /„ = (/,,„ ... ,/„,), let A,(/o) denote the
/ -3 /. \

t x t minor d e t ^ — — 7 ) and A(/o) denote the ideal generated by such
minors, \ux^/

DEFINITION 3.2. — The filtration conditions are the conditions F1-F3
to follow.

(Fl) there are g,, . . . ,^, e A(/o) and ^, . . . ,^,, e ̂  of filtration m
such that {g,, . . . , g r J ^ ( g [ ) , . . . ̂ (g'n.r)} form a set of vertices for the
filtration on ^.

Second, by Cramer's rule, we may write

A.(/o)———<;.(/,) and A^.-^D.
y{ y^

Thus, we may write

&--^ = Z^-/M-A.(/o) •^- = E^y^(/o).
^ ^

Applying Cramer's rule in exactly the same way to / we obtain

(3J) ^•A=E^•^(7)(def^(7))
^

where G'^(x,0) == gj(x). The second condition is that for each ;

(F2) fil(G,)^m(^).

Third, if V s = f-\V) n ^, and 7 = 7(F) then the third condition
becomes

(F3) V == F(/+(Gi, .. .,(7,).^) (ornr^iffe=R).

For the general case, we must also allow for «jumps » in filtration
to occur in (1.2) and (3.3). Consequently, we give a « graded version »
of the definition of versality discriminant as follows.

DEFINITION 3.4. - V contains the versality discriminant in the graded
sense if there is an integer d and h,, . . . ,^6 /^ , (with say km'=m)
and V(h,, . . . , AJ == V, so that for any (, e 9(7)

(3-5) ^^=UT)-^of, l ^ i ^ a

m^ f i l ( ^ ) , f i l ( r h ) ^ m 4 - f i l ( 0 - r f .
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We define jumpy(/) (V for versality) to be the minimum such integer
d ^ 0 for which this is true for all i. Also, in the construction in (3.3),
we define jumpc(/) (C for critical set) to be the smallest integer d ^ 0
such that

fil (i;^) > m + fil (y.) - d for all i, ̂ .

Remark 3.6. — When / is weighted homogeneous (where the
unfolding parameters have nonpositive weights), jump^(/) =
jumpc(/) = 0. This is because the weighted homogeneity and analyticity
of the germs allow us to choose weighted homogeneous hi, Gj, and (^,
E ^ i , and r|, so that (3.3) and (3.5) preserve weights (for weighted
homogeneous Q. Even if only fo is weighted homogeneous we may
still choose ^ so that jumpc(/) = 0.

We conclude this section by deriving one consequence of the filtration
r

conditions. Let a == ^ |G'J2 and po be a control function of filtration
1=1

2m for ^ y . For a germ h on fe^9 , 0 we let n denote the pull-back of
h by /.

Then, the assumptions together with the following lemma imply that
po^ = a + po is a control function of filtration 2m for the inducedn (1) =Po
filtration on ( €.

LEMMA 3.7. — Let {/i, . . . ,fr} denote a set of vertices of filtration
m for ^ and let {F^(x,u), . . . ,Fr(x,u)} be deformations of non-decreasing

r

filtration. Then po = ^ |F,|2 is a control function of filtration 2m for the
1=1

extension of the filtration to ^x,u-

Proof. — By the assumption that Fj(x,u) is a deformation of fj(x)
of non-decreasing filtration, we may write

Fj(x,u) = fj(x} + ^^(x,M)-q^(x)
a

summed over a finite set of N generators {(p^(x)} of 7^. Also,
/!^(x,0)=0. Let

p o = ^ | / , 2 and p o = S l ^ lr ;| dUU Po — A \^i\2 -


