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ON MEROMORPHIC EQUIVALENCE OF
LINEAR DIFFERENCE OPERATORS

par Gertrude K. IMMINK

0. Introduction.

We consider linear difference operators of the type

AA^) = y(z + 1) - A(z)y(z) ,

where A € G^(n;C{^-1}^]), n (E N.

Two difference operators A ,4 and Aj? will be called formally equiva-
lent, if there exists a matrix F € G^(n;C I^"1]^]) such that
F(z + l)~lA(z)F(z) = B(z). The difference operators AA and AB
will be called meromorphically equivalent if there exists a matrix F C
Gt(n•,C{z~l}[z}) with this property.

Meromorphically equivalent difference operators are also formally
equivalent. This paper is concerned with the meromorphic classification
of difference operators belonging to the same formal equivalence class.
The meromorphic equivalence classes will be characterized by a system
of "meromorphic invariants". It is shown that this system is both complete
and free. In other words, if two difference operators have the same set
of invariants they must be equivalent. Moreover, every possible set of
invariants corresponds to some equivalence class.

Key-words : Linear difference operator - Formal equivalence - Meromorphic equiva-
lence - Meromorphic invariants - Inverse problem - Riemann-Hilbert problem.
A.M.S. Classification : 39A70 - 30E25.
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Neither the results nor the methods of this paper are entirely new.
We have merely rearranged and extended some results already established
by Birkhoff (cf [I], [2]).

In §1 we define a system of meromorphic invariants. Its completeness
is proved by an argument familiar from the theory of differential equations
(cf. [7], [8], [11]). The main difficulty is to solve the inverse problem, i.e.
to establish the existence of a difference operator having a given set of
invariants. This is done in §2. The problem is reduced to a Riemann-Hilbert
boundary value problem (also called Riemann problem by some and Hilbert
problem by others) on two intersecting contours (cf. also [4]). Here we
have resorted to well-known existence theorems (cf. [9], [13]), rather than
adopting Birkhoff's constructive but elaborate method. In both sections
we pay special attention to the important subclass of difference operators
with rational coefficients.

We do not go into the difficult problem of the actual evaluation of
the meromorphic invariants. An attempt in that direction was undertaken
in [6]. For a very profound study of the analytic invariants of various local
objects we refer the reader to the work of J. Ecalle (cf. [3]).

1. A complete system of meromorphic invariants.

We use the following notations

K =C{z-l}[z}, K ^C^-^z},
Kp = ̂ z-^P}^1^} , Kp = Hz-1^1^} , p e N.

Let A € G£(n;K). It is known that there exists a positive integer p and a
matrix F e Gi{n; Kp) such that the transformation

A—^ =F(z+l)-lA(^)F(z)
C

changes A into a matrix function A of the form

A(z)=exp{Q(z+l)-Q(z)}(l+1^0

where G = diag{(?i,... ,Gm}, Q = diag^iJni,... ̂ nJn,J with m C N
and, for all i e {1 , . . . ,m}, G, = 7 ,̂ -+- N,, 7, e C, 0 < Re7, < ^, Ni

P
is a nilpotent ni x n^ matrix, qz(z) = diZ\ogz+ ^ A^,/^^, di € ^Z,

h=l ' p

^i,h ^ C, 0 < Im/ji^p < 27T.
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c
We shall call A a canonical form of A. It is uniquely determined by

A up to permutations of the diagonal blocks (cf. [10]).

We shall write

di - dj = d i j , qi - QJ = q i j , 7, - 7^ = 7^-, ̂  - p,j^ = ̂ ^

foralHj €{!,..., m}, /i € {I,...,?}.

LEMMA 1.1. — Let A (E G^(n;^), Fi,F2 € G^(n;^p) with p e N,
and suppose that

A^ = A^ =A .

Then there exists a constant invertible n x n matrix C such that

[A,G]=0 and F^ = F^C .

Proof. — Let F = Ff1^. Then we have

F(z+l)=A(z)F(z)A(z)-1 .
c

Hence the block F^ in the partition of F induced by A, must satisfy the
equation

y(^+l)=exp{^(^l)-^(^)}(l+l/^^(l+l/^y(^)(l+l/^)-^ ,

ij e {! , . . . , m} .

This equation has no nonvanishing solutions e Hom(JC^, A^1) unless
qij = 0, 7^ = 0. In the latter case the only solutions € Hom(^,^1) are
the constant rii x nj matrices Cij with the property that

Nid, = Ci,N, .

Thus -F is a constant matrix with the property that
c c
An Fij = Fij A j j for all 2, j e {j,. . . , m}

c
and hence [A, F} = 0. Obviously, det F ^ 0.

DEFINITION. — (i) A quadrant is a region T of C of the following
form :

F = {z e C : fcj < arg(^ - ̂ o) < (A + l)j , M > Ro}

where ZQ C C, k € Z and J?o is a positive number.
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(ii) Let r be a region ofC and R a positive number. By r* and F(R)
we shall denote the regions

and

r* = {z e c: z e r}

F(R) = {z c r: \z\ > R} .

DEFINITION. — Let r be an unbounded region ofC, (p an analytic
function on T and f a formal series of the form f = ^ /n^"71^? TIQ e Z.

n>no
We shall say that (p is represented asymptotically by f (or admits the
asymptotic expansion f) as z —> oo in F, if

N-l
sup (ip{z) - V fn^^}^^ < oo for all N > no .
^er ^^~ n=no

In that case we write

^p(z) ^ f , z —^ oo in r

and put f = (p .

DEFINITION. — A matrix function <I> will be called non singular on
a set S if del ̂ (z) ̂  0 for all z € S.

The following theorem is a slightly improved version of theorem 3.2
in [5].

C

THEOREM 1.2. — Let A € Gi(n\ K) and let Abe a canonical form
of A. Let r be a quadrant. There exists a positive number R and a matrix
function <I> with the following properties :

(i) <I> is 11021 singular and analytic in r(R) U r(-R)*

(ii) ^ is represented asymptotically by a matrix F C Gt{n\Kp}
(p e N), as z —> oo in T(R)

(iii) A^ =A.

Proof. — We shall consider the case that r (and hence F*) is
contained in some right half plane Re z > a, a e R. The proof for a left
half plane is analogous. Without loss of generality we may assume that r
contains a strip 5o of the form So = {z € C : Re 2; > &, | Im z\ < c} where
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b > 0, c > 0. Let R be a large positive number and let r+ = T(R) if Im z
is bounded from below on F, and F+ = F(fi)* otherwise. Let F_ = n.
According to theorem 3.2 in [5], if R is sufficiently large, there exist matrix
functions ^+ and <I>~ with the following properties :

(i) ^± is analytic in r±

(ii) ^± admits an asymptotic expansion 1̂  e Gi{n', Kp) as z —> oo
in F±

(iii) A^± =A.

The second property implies that
(1.3) det ̂ (z) / 0 for all z e F±
provided J? has been chosen sufficiently large. In view of lemma 1.1 we may
assume that F+ = F~ = F (if this is not the case, $- can be replaced by
$-G, where C = (F-)-1^). Let
(1.4) Y±(z)=<S>±(z)exp{Q(z)}zG

(we take arg^ C (-7r,7r)) and
(1.5) p=(y+)- ly-;
P is periodic matrix function of period 1, analytic in S = F+ H r_.
Furthermore, in the partition induced by A

P^z) = exp^^)}^-0^)-^-^
for all ij e {1 , . . . ,m}. Due to the fact that ($+)-1^- ~ I as z -> oo in
5, lim Pzj(z) = 6zj and hence P^ = ̂ , unless expg^(z) —> 0 as z —> oo

in 5. For convenience we shall assume that the blocks of A are ordered in
such a way that for all sufficiently large positive numbers z
(1.6) Req^(z)>0 if i > j .

This implies that, for i > j, Re(g^) is bounded from below on the
positive real axis and hence P^ = .̂. Following Birkhoff and Trjitzinsky
(cf. [2]) we are going to look for periodic matrix functions P~^ and P~,
upper-block-triangular in the partition induced by A, analytic in F+ and
r_ respectively, such that
(1.7) P == P+P- .
We choose P^ = P^ = 1^ for all i € {1 , . . . ,m}. The remaining blocks
can be determined recursively from the relations
(1.8) F,, = ̂  + P^ + ̂  ^P/^. , i<j

i<h<j
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by means of induction on j - i. Obviously, the factorization (1.7) is not
unique. We may impose the additional condition that, for i < j, Pt and
P^ have the form

(1.9) P^(z) = ̂  (P^-e2—— , P^{z) = ̂  (P^e2——
n>nij n<nij

where the numbers n^ are arbitrary integers. Now let

(1.10) $(z) = Y+(z)P+(z)exp{-Q(z)}z-G , z e F+ .

One easily verifies that A^ =A. Moreover, due to (1.5) and (1.7), <I> may
be continued analytically to F- and we have

(1.11) ^(z) = Y-(z)P-(z)-1 expi-Q^z-0 , z <E F- .

Noting that detP± = 1 and using (1.3), (1.4), (1.10) and (1.11), we
conclude that det ̂ (z) / 0 for all z € F^ U F_.

Now let us consider the asymptotic behaviour of $ as z —> oo in
F+ U r_. For all, ij C {1, . . . ,m} we have

(1.12) ^(z)-^(z) = ̂ ^^{q^z^P^z-^ , z e F± .
/i<j

First, suppose that, for some h < j, Req^(z) = 0 for all sufficiently
large positive values of z. Due to (1.6), the same is true of Req^ for all
k € {h + 1,... J}. Consequently, P/^ = 0 for all k C {h + 1,... j}. With
(1.8) and (1.9) it follows that P^ = P^ = 0 for all k e {h + 1,... J}. In
particular, P .̂ = 0. Thus the only non-vanishing terms in the right-hand
side of (1.12) are the ones for which Req^(z) < 0 for sufficiently large
positive z. This implies that either d^j < 0, or else d^j = 0 and there is
a number ho € {I, . . . ,?} such that Re^^ = 0 for all k < ho whereas
Rep,hj,ho < 0. In both cases there exists a number 6 e (0,1) such that

exp(g^)) = 0(exp{-z6}) , z -^ oo in S .

As ^(z) ^ F e G<(n;^p) as z -> oo in 5, it follows that there exists a
6 C (0,1) such that

(1.13) <M^) - ̂ )= 0(exp{-^}) , z-^oo in 5.

If F(fi) = r+ we choose the integers n^ in (1.9) in such a way that

2nij7r -h dij . + Im /^p > 0 , for i < j .

Then it is easily seen that all terms in the right-hand side of (1.12)
decrease exponentially as z -^ oo in F-^, provided argz > e for some
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positive number e. Combining this with (1.13) and applying a well-known
theorem of Phragmen-Lindelof (cf. [12], p. 177) we conclude that, for all
ije {!, . . . , m},

^(z) - ̂ (0 = 0(exp{-z6}) , z -^ oo in F+

and, consequently, ^(z) - F as z -^ oo in F+. If, on the other hand,
F(R) = r_ we choose the integers n^ in such a way that

2(riij - I)TT - dij ^ -h Im ̂ ,p < 0 for i < j .

By means of an argument similar to the one used above we find that
^~(z) ̂  F as z -^ oo in r- in that case.

The next theorem follows immediately from theorem 1.2 and lem-
ma 1.1.

THEOREM 1.14^— Let A,B e Gt(n',K) and suppose there exists
a matrix F € G^(n; Kp) such that A^ = B. Let F be a quadrant. There
exists a positive number R and a matrix function $ with the following
properties :

(i) ^ is noil singular and analytic in F(R) U r(.R)*

(ii) ^(z) ~ F(z) as z-^ oo in T(R)

(in) A^ = B.

c ^
Proof. — Let A be a canonical form of A. Obviously, A is a canonical

form ofBas well. According to theorem 1.2 there exists a positive number
-R and matrix functions $1 and $2 with the following properties :

(i) $1 and $2 are non singular and analytic in F(R) U F(fi)*

(ii) ^j(z) ~ <^ C G<(n; Kp) as z -^ oo in T(R), j = 1,2

(iii) A^1 = B^2 =A.

Consequently, A^1 = B^2 = A^2 =A. By lemma 1.1 this implies that
F$2 = ^iC, where C is a constant invertible matrix which commutes with
A. Hence it follows that

AW^^A^^B.

One easily verifies that the matrix function $ = ̂ iC^1 has the required
properties.
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DEFINITION. — Let <I> be a meromorphic matrix function in C. By
P$ we snaJi denote the set

P$ = {^ C C : $ Aas a pole in z} .

COROLLARY of theorem 1.14. — Jf, in addition to the assumptions
made in theorem 1 14, A and B are matrices of rational functions, then
any matrix $ with the properties (i)-(iii) can be continued analytically to
a meromorphic matrix function. Moreover

(1.15) P $ C P A U P B - i 4 - N , P^-i C?A-I U P a + N

ifT is container in a left half plane, whereas

(1.16) P$ CPA-i U P a - N o , P$-i C P A U P a - i - N o

ifr is contained in a right half plane.

Proof.— It r is contained in a left half plane the matrix function <1>
with the properties (i)-(iii) mentioned in theorem 1.14 may be continued
analytically to the right by means of the relation

(1.17) ^(z + 1) = A(zWz)B(z)-1 .

If, on the other hand, F is contained in a right half plane, $ may be
continued to the left by means of

(1.18) ^(z) = A(z)-1^ -h l)B(z) .

(1.15) and (1.16) follow immediately from (1.17) and (1.18), respectively.

THEOREM 1.19. — Let A,B,M C Gi(n\K) and suppose that
A A and AB are formally equivalent to AM- Let Fj, j = 1,.. . ,4, be
quadrants such that Fj+i = e^Tj for j = 1,2,3, and Fi,...,!^ cover
a neighbourhood ofoo. AA and AB are meromorphically equivalent if and
only if there exists a positive number R and matrix functions ^j and ^j,
j = 1,..., 4, with the following properties :

(i) $j and ^j are non singular and analytic in ̂ j(R)

(ii) ^>j and ^j admit asymptotic expansions <I>j and ^j C Gi(n\ K)
as z —> oo in Tj(R) and both $j and ̂  are independent of j € {1 , . . . ,4}

(iii) A^ = B^ = M for all j e {1, . . . ,4}

(iv) ^^j+i = ̂ "^j+i torj € {1,2,3} and ̂ -^i = ̂ ^i.
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Proof. — Suppose that A A and A 5 are meromorphically equivalent.
Then there exists a matrix function F € Gi(n^K) such that AF = B.
According to theorem 1.14 there exists a positive number R and matrix
functions ̂ , j = 1,... ,4, with the properties (i) - (hi) mentioned above.
Let ^j = F~1^, j E {!,...,4}. One easily verifies that conditions (i) -
(iv) of theorem 1.19 are satisfied.

Conversely, suppose that (i) - (iv) hold. (iv) implies that

^,(z)^\z) = ̂ ^(z)^(z), z e r^)nr^i(fi), j = 1,2,3
and

$4(^)^4~l(^)=$l(^^^l(^. zer^R)nr,(R).
Hence the matrix function F = ̂ i^f1 may be continued analytically to

4
(J r^(J2), i.e. to a reduced neighbourhood of oo. Moreover, F admits an

.7=1

asymptotic expansion F = ^j^J"1 € G£(n',K) as z —^ oo in (J r^(J%).
j=i

Therefore, F € G^(n;jFO- Obviously,
^F ^ A^T1 = M^ = B .

The connection matrices Tj = ^l^-(-l, '̂ = 1,2,3, and T^ = ̂ 1^!
are uniquely determined by M and A up to transformations of the following
type

Tj ——S^T,S^ , j = l , 2 , 3
(1.20) r4 —> «s'4~ r45'i
where 5j is a non singular and analytic matrix function in rj(-R), admitting
an asymptotic expansion Sj € Gt(n',K) as z —> oo in r^(fi), independent
of j, with the additional property that M83 = M for all j e {1, . . . ,4}.
The set of connection matrices {Ti , . . . , T^} modulo transformations of the
form (1.20) constitutes a complete system of meromorphic invariants of the
difference operator AA.

It is easily seen that theorem 1.19 remains valid if (i) is replaced by

(i)5 ^j and ̂  are non singular and analytic in Fj(R) U r^(J?)* .

This implies that, in the case that A, B and M have rational coefficients, the
matrix functions $^ and ̂  may be continued analytically to meromorphic
functions in C (cf. the corollary of theorem 1.14). Thus the meromorphic
equivalence classes of matrices of rational functions which are formally
equivalent to a matrix of rational functions, can be characterized by a set



692 GERTRUDE K. IMMINK

of meromorphic connection matrices {Fi,...^} with the property that
TiT^T^ = J, modulo transformations of the type (1.20), where Sj is
meromorphic in C for all j e {!,. . . , 4}.

2. The inverse problem.

DEFINITION. -^ Let C = C U {oo}, ZQ € C and let C be a simple
closed contour in C\{zo}. C is the positively oriented boundary of a
domain^D^ C C\{zo} and the negatively oriented boundary of a domain
D~ C C\{^o}. W6 shall call D^ the interior and D~ the exterior ofC.

We shall call <1> a sectionally holomorphic function in C\{zo}, relative
to C, if

(i) <1> is holomorphic in D^ U D~, and

(ii) for any t € C, ^ approaches a definite limiting value ^(t) or
^~(t) as z —^ t along any path in D~^ or D~, respectively.

A matrix function $ will be called non singular and sectionally
holomorphic in C\{zo}, relative to C, if in addition to (i) and (ii) above, $
is non singular in D^ U D~ and both $+ and $~ are non singular on C.

We begin by stating a well-known result (cf. [9], [13]).

THEOREM 2.1. — Let ZQ e C and let C be a simple, smooth, closed
contour in C\{^o}. Let A be a non singular, Holder continuous matrix
function on C.

There exists a matrix function $, non singular and sectionally holo-
morphic in C\{zo}, relative to C, with the following properties :

(i) ^(z)=<S>-(z)A(z) forallzeC

(ii) $ has at most a pole in ZQ.

Moreover, ̂ + and $~ are Holder continuous on C.

Remark. — The usual version of this theorem applies to the case
that ZQ = oo. However, the general situation can be easily reduced to
that case by means of a linear fractional transformation ip of the form
^(z) = Q^—^-, with a ̂  0, zi + ZQ.z - ZQ
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Theorem 2.1 will enable us to solve the inverse problem mentioned in
the introduction. We shall take ZQ = 0 and put C\{0} = (7*. Throughout
this section {Py, j = 1,...,4} will denote a set of quadrants such that
r^+i = e^^Yj for j = 1,2,3, and Fi, . . . , Y^ cover a neighbourhood of oo.
We define : Sj = Tj H Fj+i for j = 1,2,3 and 54 = T^ H Fi. Furthermore,
we shall assume that

sup Re« - z) > 1 for all j € {1 , . . . , 4} .
C^e^-

Let j e { 1 , . . . , 4}, R > 0, e > 0. By Fj^(R) we shall denote the quadrant

r^(R) = {z e Fj(R) : \z-(\>e for all ^ 6Fj(R)} .

THEOREM 2.2. — Suppose we are given a matrix function M C
Gi(n\ K) and matrix functions Tj, j = 1,..., 4, with the following proper-
ties :

(i) Tj is analytic in Sj

(ii) Tj ^ I as z —> oo in Sj

(iii) M^ = M.

There exists a positive number R, a matrix function A € Gt(n\ K)
and matrix functions $j, j = 1,..., 4, with the following properties :

(1) ^j is analytic in Fj{R) and admits an asymptotic expansion
F e Gt(n\ K), independent of j, as z —^ oo in r^e(.R), for every e > 0

(2) A^ = M

(3) ^-^i = Tj forj = 1 , 2 , 3 and ^-1^ = T^.

We shall prove theorem 2.2 in two steps. Let C\ be a smooth contour
in Fs U FS consisting of a half line L\ in 5'i, a half line La in 63 and an arc
connecting the starting points of L\ and Z/2. Since Tj; ~ I as z —> oo in 5j,
there exists a positive number J?o such that

(2.3) deiTj(z)^0 for all z € 5,(fio), J € { ! , . . . , 4}.

Let T be a matrix function on d U Si(Ro) U S^Ro) with the following
properties :

(i) T is Holder continuous on C\

(ii) det T 7^ 0 on Ci

(iii) T(z) = T,(z) for z € 5i(%), ̂ ) = T^z)-1 for z € ^3(^0).
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PROPOSITION 2.4. — There exists a positive number R, a matrix
function ̂ +, non singular and holomorphic in F2(R) UFs^) ^d ^ matrix
function ^>~, non singular and holomorphic in F^R) U ̂ i^R) such that

(1) ^(z) = ̂ -(z)T(z) for all z € Si(R) U S^R)

(ii) ^+ and <I>~ admit the same asymptotic expansion $ e G^(n;C [^-1])
as 2; —>• oo in r2^(-R) U F^^^R) and F^^^K) U ri^(-R), respectively, for any
e>Q.

Proof. — Let D^~ and -D~ denote the interior and exterior of (7i,
respectively. According to theorem 2.1 there exists a matrix function <I>,
non singular and sectionally holomorphic in C*, relative to (7i, such that

(2.5) ^(z)=<^~(z)T(z) for all z C d

and $ has at most a pole in 0. By Cauchy's theorem,t(2'=^/„&••2eD+

/ ̂ ^i w ^_and

Jc, t(t - z) Jco t(t - z)

where Co is a simple, closed contour in D~ enclosing 0. With (2.5) it follows
that

ww.-f *-ww-i^^_, w . ^ ^
v / v / 2^ Jc, t(t - z) 2m Jc^ t(t - z)

Similarly, we have

.")^=^i,"(^^-^L^---
where Co (z) is a simple closed contour in P~, enclosing 0, but not z. In
view of (2.3) and the third property of T, both T and T~1 are holomorphic
in 5i(J?o) U 5'3 (-Ro)- Hence we deduce, by deforming the contour C\
in (2.6) and (2.7), that <1>4' and <I>~ may be continued analytically to
J^U^^U.S^.Ro) and D~USz(Ro)US3(Ro), respectively. Consequently,
(2.5) holds for all z C S^(Ro) U S^Ro). As $ is non singular in C* and T
is non singular in 5i(-Ro) U S^(RQ), due to (2.5), the analytic continuations
of ^+ and <1>~ are non singular in Si(Ro) U S^(Ro).

Next we consider the asymptotic behaviour of ^+ and <1>~ as z —> oo.
Note that the second integral in the right-hand side of (2.6) and (2.7) is
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holomorphic at oo. Furthermore, T(z) ~ I as z -> oo in S^(Ro) U S^Ro),
hence

sup \(T(t) - I)tn\ < oo for all n e N .
^e5i(^o)us'3(-Ro)uCi

Putting

~2^/ ^"(W^-7)^"1^-^
we have, for all z € ^+,

JLf ^WW-^dt-YFz--^ [ ^-ffl(rffl-J)
27rz^ ^-z) 2^ -27TZ' ^———t=~z———'^

The right-hand side of this identity is 0(z~^) as z —f oo, uniformly on
D^ = {z (E Z^+ : |z - t\ > e for all t € Ci} for any e > 0. Hence, it
follows that $ admits an asymptotic expansion ^+ as z —^ oo in D^" for
any e > 0. Moreover, lim ^ ( z ) = ^(oo) and det^foo) ^ 0.

z-^oo , z^D+ v / v / /

This implies that ̂  e Gi(n\ C [z~1}). By varying the contour d we find
that ^(z) ~ ^-^(z) as z -^ oo in F^W U F3^(jR) for any e > 0 and a
sufficiently large number R. In a similar manner one proves that <I>~ admits
an asymptotic expansion $- as z -> oo in F^(R) U r\e(.R) for any e > 0
and a sufficiently large number R. By (2.5),

$+ =$-r=$- .
This completes the proof of proposition 2.4.

Proof of theorem 2.2. — Now let Ri be some sufficiently large
positive number and let 62 be a smooth contour in F^R^) U F^R^)
consisting of a half line 1/3 in S^Ri), a half line 1/4 in 64(^1) and an arc
connecting the starting points of 1/3 and 1/4. Let S be a matrix function on
C2 U 62(^1) U 5'4(jRi) with the following properties :

(i) S is Holder continuous on 62

(ii) det S / 0 on C^

(in) S(z)=^(z)T^z)^(z)-1 for ^ € ^(fil),
S(z) = ̂ -{z)T^(z)^-(z)-1 for ^ € 54(^1),

where ^+ and <1>~ are matrix functions with the properties mentioned in
proposition 2.4.

Obviously, S(z) ~ J as z -^ oo m S^(Ri) U S^R^). Thus we may
apply proposition 2.4, with Fs U Fs replaced by T^R^) U r^(R^), T by 5,
etc. Hence there exists a positive number R, a matrix function ^+, non
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singular and holomorphic in Fs^) UF^R) and a matrix function ^-, non
singular and holomorphic in T^R) U T^(R), such that

(i) ^(z) = ^-(^)5(2:) for all z C S^(R) U S^(R)

^ (ii) ^+ and ^- admit the same asymptotic expansion
^ € G^(n; C [z-1]), as z -^ oo in r3,,(fi) U r4,,(7?) and F^(R) U r2,,(^),
respectively, for any e > 0.

We now define the matrix functions ̂ , j = 1,..., 4 as follows :

$i(z) = ^~(z)<s>~(z), z € ri(^)
^2(^) = ̂ ~(z)^(z), Z € r2(JR)

^) == ^+(^)$+(^), ^ e rs(R)
$4(^)=^+(^-(^), ^er4(fi),

$j is non singular and holomorphic in Tj(R) and represented asymptot-
ically by F =E $$ as z -> oo in F^, for every ^ > 0, j € {j, . . . ,4}.
Furthermore, we have

^)-1^) =^-(^)-i$+(^)=ri(^, ^€5i(A)
^2(^)-1^3(^ =^(z)-lS(z)^(z)=T^z), zeS^R)

$3(^)-1^4(^ =^(^-l$-(^)=^3(^, 5€53(fi)

^(z)-^(z) =^-(z)-lS(z)-l^z)=T^z), z e S ^ R ) .
Hence it follows that

M^\z) = M^^i^) = M î̂ ), ^ e 5,(JZ)n5,(fi)-i, j e {1,2,3}
and

M^-1^) = M^^r1^) = M^"1^), ^ e 54(a) n 54(7?) - 1 .
Consequently, the matrix function A defined by

A(z) = M î"'̂ ), z c ri(^) n ri(fi) -1
may be continued analytically to a reduced neighbourhood of oo. Moreover,

4

A(z) - F(z+l)M(z)F(z)-1 as z -. oo in |j r^(R)nr^(R)-l
^==1

for every e > 0, and this implies that A € G^(n; J^).

Remark. — An alternative proof of theorem 2.2 can be given by
adapting an argument used by J. Martinet and J.P. Ramis in [14], which
makes essential use of the theorem of Newlander-Nirenberg.
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Finally, we consider the particular case that M is a matrix of rational
functions and the matrix functions Tj are meromorphic in C for each
j e{ l , . . . , 4} .

DEFINITION. — Jf$ is a meromorphic matrix function in C with the
property that del $ ̂  0, then EW will denote the set of all singularities
of^>, i.e.

EW=^uP^-i .

THEOREM 2.8. — Ji2 addition to the assumptions made in theorem
2.2, suppose that M is a matrix of rational functions, that Tj is meromor-
phic in C for each j € {1 , . . . , 4} and that

T^T^ = I .
Then there exists a matrix A of rational functions and meromorphic matrix
functions ̂ j, j € {1 , . . . , 4}, with the properties mentioned in theorem 2.2.
Moreover

4

E(^)cUEW), 3 €{!,..., 4} ,
i=l

and

E(A) c U EW) u EW) -1 u E(M) .
1=1

Proof. — From property (3) in theorem 2.2 we deduce that the ma-
trix function <I>i can be continued analytically to a meromorphic function in
some reduced neighbourhood U of oo. Moreover, the singular points of $1

4
in U will form a subset of (J EW)- Vsmg an ^ea of Birkhoff (cf. [1]),

j=i
we shall remove the singularities of <l>i outside U by means of a simple
transformation.

Let C be a simple closed contour in C with interior D+ and exterior
D~, such that <I>i is non singular and analytic on C and C\U C D^.
According to theorem 2.1 (with ZQ = oo) there exists a matrix function
X, non singular and sectionally holomorphic in C, relative to G, with the
property that

(2.9) X^(z)=X-(z)^(z) for all z C C .
Moreover, X has at most a pole at oo. Consequently, at oo X admits a
Laurent series representation X C Gi(n\K).
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For each j € {1 , . . . , 4} let ̂  be defined by

^(z) = x(z)^(z), z e D- n r,(R).
Thus, for a sufficiently large number fii, ̂  is a non singular and analytic
function in F^i), admitting the asymptotic expansion XF e Gt(n',K)
as z -^ oo in r^(fii), for every e > 0, j e {!,...,4}. Moreover, $1 is
meromorphic in D-. Due to (2.9), it may be continued analytically to D^~.
Thus it becomes a meromorphic function in C and the same is true of ^>71.
Furthermore, we have

$, ̂ i = ̂ -̂ i = r, in 5,(7?i), j = 1 ,2,3,

and

$4- l$l=^ l$l=^4 in ^4(^1) .

Hence it follows that all $^ may be continued to meromorphic functions in
C with the property that

(2.10) E ( ^ ) c U E W ) , 3 e {! , . . . , 4}.
1=1

Now let A be defined by

A(z) = M î (z), zeC .

One easily verifies that A has the properties mentioned in theorem 2.2
(with respect to ^ instead of ^). In particular, A e G^(n;J^). At the
same time, A is a meromorphic matrix function in C. Hence its entries
must be rational functions. Moreover,

E(A) c n$i) u n$i) -1 u E(M) .
With (2.10) the last statement of the theorem follows.
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