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GLOBALITY IN SEMISIMPLE
LIE GROUPS

by Karl-Hermann NEEB (*)

0. Introduction.

One of the most essential facts in the theory of Lie groups is that,
given a Lie group G, there is a one-to-one correspondence between the
analytic subgroups of G and the Lie subalgebra of L(G), the Lie algebra
of G. We are interested in the corresponding situation in the Lie theory of
semigroups.

Semigroups in connection with Lie groups became increasingly impor-
tant in recent years in such contexts as representation theory (Ol’shanskii
[01], [02], Howe [Fo]), harmonic analysis (Faraut [Fal], [Fa2]) and system
theory (Kupka [HiLPy]). For further references see [HiHoL] and [HLP89].

Firstly one has to look for a suitable class of subsemigroups of Lie
groups generalizing the analytic subgroups. These are the subsemigroups
S of a Lie group G for which the group G(S) dg(S U S~!) generated by S
is an analytic subgroup of G. We call this subsemigroups preanalytic. As
is described in detail in [HiHoL] V, it is possible to define a tangent wedge
for such semigroups S of G by

L(S)={z € L(G): exp(R+x) - Clg(g)S}

where the closure has to be understood with respect to the Lie group
topology of G(S). This generalizes the notion of a tangent algebra of an

(*) The author thanks Prof. Dr. Karl H. Hofmann for his support.
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analytic subgroup. Let us call a closed convex cone W in a finite dimensional
vector space L a wedge and H (W)défW N (—W) the edge of the wedge,
i.e., the largest vector space contained in W. The suitable generalization
of the Lie subalgebras of L(G) are the Lie wedges. These are the wedges

W C L(G) with the additional property that
MW =W forall he H(W).

Notice that the Lie wedges which are vector spaces are exactly the sub-
algebras of L(G). This definition is justified by the fact that for every
preanalytic subsemigroup S of a Lie group G the set L(S) is a Lie wedge
([HiHoL] V.1.6). It is also true that, given a Lie wedge W C L(G), we
find a local subsemigroup U C G having W as its tangent wedge in some
local sense, but the circle is a simple example of a Lie group such that
L(G) = R contains a Lie wedge W = R* which is not the tangent wedge
of a subsemigroup of G. This shows that the correspondence between the
subsemigroups of the Lie group G and the Lie wedges in L(G) is far from
being surjective as is true in the group case where every subalgebra is the
tangent object of a subgroup. We call the Lie wedges W C L(G) which
occur as tangent wedges of subsemigroups of G global in G. If W # L(G)
is global in G, we clearly have S déf(exp W) # G. These Lie wedges are
said to be not controllable in G. This definition has a control theoretic
interpretation : if W is interpreted as the set of controls, then S = (exp W)
is the set of points in the state space G attainable by the system whose
trajectories are obtained by piecewise constant steering functions.

To avoid technical difficulties in our formulations and proofs we often
restrict our attention to subsemigroups § C G for which G(S) = G and
Lie wedges W C L(G) which are Lie generating in L(G), i.e., L(G) is the
smallest subalgebra containing W. One knows from [HiHoL] that this is no
loss in generality but it guarantees that all semigroups S = (exp W) have
dense interior and the same interior as S ([HiHoL] V.1.16).

We trivialize the tangent bundle of G with the mapping
U:LxG—-T(G),(x,9) — drg(1)z.

If V is a finite dimensional vector space and f : G — V a differentiable
function we define f': G — Hom(L,V) by

(f'(9),z) = (df(9),dAe(1)z) forall =z e L.

For a wedge W of a finite dimensional vector space L we define the dual
w* d——e-f{w € L: (w,z) > 0 for all z € W}. This set is always a wedge in
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L. We also set algint W = intyy_wW. According to [HiHoL] 1.2.2, we find
that

algintW*={welL:(wz)>0 foral zeW\HW)}.

Our main tool will be the concept of W-positive functions. These are the
real functions f on G which are contained in the set

Pos (W)€ {f € C*(G): f'(xr) e W* forall ze€ G}

A principal resul in [N1] I1.12, states that W is global in G if and only if
Pos(W) contains a function f with

f'(g) € algint W* forall g¢e€@G.

Furthermore it is shown in [N1] I1.13, that Pos(WW) contains a non-constant
function if and only if W is not controllable in G.

Using these results, we give a characterization of those Lie wedges
W in L = sl(2,R)™ which are invariant under the maximal torus of the
adjoint group and which are controllable in the associated simply connected
Lie group G = S|,R)™ (Theorem 1.3). The rest of Section 1 is dedicated
to a more detailed analysis of this situation. In Section 2 we develop
some algebraic tools concerning real root decompositions with respect to
compactly embedded Cartan algebras and invariant cones in semisimple
Lie algebras. To every invariant cone W in the semisimple Lie algebra L
we associate the bigger Lie wedge V w4+ K y where Ky is a maximal
compactly embedded subalgebra of L. An inspection of the orthogonal
projection along K; yields some useful information about the intersections
of V with sl(2,R)™ subalgebras of L (Lemma 2.23). In Section 3 this allows
us to reduce the controllability problem for invariant cones in semisimple
Lie groups to the controllability problem for Lie wedges in sl(2,R)™ which
are invariant under a maximal torus of the adjoint group. Combined with
the results from Section 1, we get a characterization of the invariant cones in
a semisimple Lie algebra L which are controllable in the associated simply
connected Lie group G (Theorem 3.5). If L is simple, much more is known.
We even get a characterization of those e*d K#_invariant wedges W C L
with H(W) = K}; which are global in G (Theorem 3.7). We conclude with
a criterion for globality in the non-simply connected case.
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1. Globality in S1(2,R)™".

In this section we consider the simply connected group G = SI(2,R)"™™
and its Lie algebra L = L(G) = sl(2,R)™. We use the following notations
for the elements of sl(2,R) :

(1 0 _ (0 1 _ 01
A= (0 _1), B= (1 0), and U = (_1 0).
These matrices satisfy the relations
(1) [U,B] =24, [U,A]=-2B, and [A,B]=2U.

We denote the elements of the ideal L; = {0}*~! x sl(2,R) x {0} with
a subscript ¢ and write T span {Ui+ A;,B;:i=1,...,n} for the Borel
subalgebra of L, Ndéfspan {Ui+ A; : i = 1,...,n} for its commutator
algebra, K def span {U; : ¢ = 1,...,n} for the maximal compactly embedded
subalgebra and Pdéfspan {A;,B;:i=1,...,n}. Then L = K+ T is an
Iwasawa decomposition and L = P + K a Cartan decomposition of L. We

identify L with its dual L using the non-degenerate symmetric bilinear form
—k, where k is the normalized Cartan Killing form with

k(X)) k(X, X) = Za +b2—2? for X =3 a;A;+bB;+z.Ui.

i=1

LEMMA 1.1. — Let g(2) = 2(1 — e~*)7! for z € C\ (2niZ \ {0}) and
a € R. Then the linear operator g(ad aA) on sl(2,R) is well defined (adA
has only real eigenvalues) and may be expressed as

1 0 0
o %
g(ad aA) = tanha
a
0 tanha

with respect to the base (A, B,U) of sl(2,R).
Proof. — From (1) we get

[A,B+U]=2B+U), [A,B-U]=-2(B-U) and [A,A]=0.
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Another simple computation shows that

5920 +g(-20) = 2 and  (g(2) - g(~20)) =.

a
tanha
We conclude that g(adaA)A = A,

g(adad)B = %(g(ad aA)(B +U) + g(ad ad)(B — U))

=1 (9(2a)(B + U) + g(~2a)(B - U)) = —~— B + all,
2 tanh a
and
9(adaA)U = %(9(ad aA)(B +U) + g(adad)(B - U))
= 2 (g(2a)(B+U) + 9(=20)(B-U)) =aB + —U.
2 tanh a

For later reference we record the following simple fact :

LeEmMA 1.2. — If the Lie generating wedge W in the Lie algebra
L(G) of the Lie group G is invariant under the differential dy(1) of the

automorphism v of G, then the Lie wedge vy L((exp W)) is invariant
under dv(1).
Proof. — For v € V we have
exp (R*dy(1)v) = y(exp (R*v)) C 7({exp W)
C y({expW)) = (expdy(1)W) = (expW).

This shows that dy(1)v € V and that V is invariant under dvy(1). i

THEOREM 1.3. — Let W C L be a Lie wedge with non-empty interior
which is invariant under €24 X, Then Wis not controllable in G if and only if

W*Nn N # {0}.
Proof. — “=” : We assume that W is not controllable in G. Then
def %

vV L((expW)) = L({exp W) # L

is a global Lie generating Lie wedge which contains W ([Nel] IL.13).
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Therefore V has inner points. We see with Lemma 1.2 that e2d KV = V|
so it suffices to prove that V* N N # {0} because V* C W*. According
to Theorem I1.12 and Proposition II1.4 in [Nel] we find f € Pos(V) with
f'(g) € algint V* for all g € G and f o Iexpx = f for all k € K. We define

f: L - R by f~d§f f o expg. Using the formula for the differential of the
exponential function from [He] p.105, we see that

f'(exp p) = df (exp p)dAexpp(1) = df (exp p)dexp (p)g(ad p)
= df(p)g(ad p) € algint V* forall pe P.

The operator g(ad p) is well defined for every p epP beca,usg ad p has only
real eigenvalues for p € P. Furthermore we have foe®d* = f forall k € K.
n

For p = Z a; A; with a; # 0, this leads to

=1

1d ~ tadU ~
0= 2| FeZ ") =df(n)] - LU, A] = df 0B =
a; dt =0
Hence we may represent df~(p) with a = (a1,...,a,) € R" as

df(p) = Za, )A; + Bi(a)U;

i=1

With (2) we get

de!

w(a) = df(p)g(ad p) = Z ai(a

(3) +ﬂi(a)( —a;B; + Ui) € algint V*

a’l
tanh a;
for all a € R™. The averaging operator p : L — K = Lg, of the

action of the torus group e ¥ on L agrees with the orthogonal projection
onto K along P. Using the assumption that int W = &, we find that

@ # w(int W) C int W N K contains an element Up & Zé U, with §; # 0

foralli =1,...,n. Now (3) leads to

—k(w(a)v UO) 26 /81 >0

t nh a;

1

~ def
for all a € R™. Hence the element w(a) = ————
: @)= (@), 0o)

w(a) is contained
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in the compact base Cdﬁf{w € W* : w(Uy) = 1} of the pointed cone

V*. Setting an, déf(m,m, ...,m) we find a cluster point of the sequence
D(am) € C, ie., wy = klim W(am, ). We claim that (wo,U; — B;) = 0 for
i=1,...,n. If Bi(am,) = 0 for almost all k € N, this is clear. Therefore we
may assume that 8;(am, ) # 0 for all ¥ € N. Now we have

(a}(amk)’Bi) — (w(amt.-,)7Bi)
(‘:‘j(amk)a Ui) (w(amk)’ Uz)

which tends to 1 for k — co. Combining both cases completes the proof of
n

= tanh (my)

our claim. Using this information, we represent wy as Z a; A +5;(U;—B;).
' i=1

Application of a suitable element vy € €24 K leads to

y(wo) = D sgn (B:)y/a? + B2A; + fili € C C V*
1=1
because Uy and therefore C is invariant under e X . The element Z Bi(Ai+
i=1

U;) lies on the line segment between y(wp) and m(y(wp)) = Z B:U;, hence
. =1
is contained in CNN C V*Nn N \ {0}.

n
“<” : Let w = Zﬁi(Ai +U;) € W*n N\ {0}. We know from
1=1
[He] p.270, that G = (expT)exp(K) is a product decomposition in the

sense of [N1] IV.7. This means that the mapping (expT) x exp (K) — G,
(z,y) — zy is a diffeomorphism. We know, in addition, that w € N =
[T,T)* = ([T,T) & [K,K])* which allows us to apply Proposition IV.11
in [N1] to find a function f € C*(G) such that f'(1) = w # 0 and
f'(g9) € Ad(exp K)w = (e*dXYw C W*. Using again Corollary II.13 in
[N1] we have proved that W is not controllable in G. m

Remark 1.4. — One should notice that for n > 1 there are Lie
generating e*d K_invariant wedges in L without inner points. To see this,
let

n
Cdéf{ZazAz+szzaz2+b?<1 fOI‘ 7/:177"}
=1

and WERY (U, +0).
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Then e2dKC = C. Hence W is €24 X-invariant, pointed, and contained in
the hyperplane Us-. Every subalgebra containing W must contain L, and
therefore C. Then it contains also P; + [P;, P;] = L; and agrees with L.
Consequently W is Lie generating. o

CoroLLARY 1.5. — Let n = 1, G = SI(2,R)", L = sl(2,R) and
W, d—-gf{aA +bB +zU : x > 0,a® + b*> < s?z?}. Then the e*X-invariant

wedge W is global in G if and only if s < 1.

Proof. — We have N = T' = R(A + U) and W} = W.. Therefore
WiN N # {0} if and only if U + A € W}, which is equivalent to s < 1.
Using Theorem 1.3, we see that W is controllable in G if and only if s > 1.
If W, is global, then it is not controllable and if W; is not controllable, then
it is contained in a global W] (Lemma I.2) which shows that s < s’ < 1. O

Remark 1.6. — If we compare the proof of Theorem 1.3 with the
proof of Proposition I1.7 in [N2], it is remarkable that we did not use any
explicit parametrization of G to prove Theorem 1.3. The difficulties arise
from the great variety of e*d K-invariant cones for n > 1. For n = 1 the
proof is much easier. From W = W, and w(a) € W = W for all a € R,
we may conclude that *

2
5 B@)? £ 0.

2 2 2
a(a)” +Bla)a” < s tanh®(a)

This shows that s2 < m for all @ € R, hence s < 1. m]

LEMMA 1.7. — Let F C L be a subalgebra with [F,K] C F and
1% : FN P, # {0}}. Then
F=(FNK)+)_ L.
i€l
Proof. — The Lie algebra L is a K-module under the adjoint action
and L = K& @B is the decomposition into isotypical components.

=1
Consequently F' decomposes as

F=(FnK)oe@PnF=FnK)a@PnF.
1=1 i€l



GLOBALITY IN SEMISIMPLE LIE GROUPS 501

The K-modules P; are simple, hence P; C F for i € I. But F is also a
subalgebra which leads to L; = [P, P;)] + P, C F fori € I. a

CoROLLARY 1.8. — Let W C L = sl(2,R)" be an e*d X_invariant Lie
wedge containing W*. Then W is not controllable in G = SI(2,R)"™" iff
there exist numbers 3; € Rt such that

n

(4) W=D Bi(Ai +U;) € W\ {0}.

=1

If (4) is fulfilled, we have

H(L({expW))) Cw'nK e Y L;.
B;=0

Proof. — Let W be controllable in G. Then, using Theorem 1.3, we
find an element w = Zﬁi(Ai +U;) e W\ {0}. But U; € W» C W and

=1
therefore

(w,Us) = —k(B:U;,U;) = B; 2 0.

The other implication is trivial from Theorem 1.3. Let us assume that (4)
is fulfilled. Then V % L((exp W)) is an ! K-invariant global Lie wedge
in L (Lemma 1.2) with W C V and H(V) is a subalgebra of L with
[K,H(V)] € H(V). The function f € Pos(V) C Pos(W) constructed in
the proof of Theorem 1.3 satisfies f'(1) = w and therefore w € V* C W*.
Especially we find that H(V) C wt. Let I = {i : H(V)N P, # {0}}. It
follows from Lemma 1.7 that ¢ ¢ I for 8; # 0. Hence

HV)S(HV)NK)® » L; S (Knwhe Y L

=0 B;=0

O

ProPOSITION 1.9. — Let W C L = sl(2,R)™ be an e X-invariant Lie

wedge containing W with H(W) = wt N K for w = i Ai(U; + A;) and
A; > 0. Then W is global in G = SI(2,R)"™" if and on]yii:flw e W=

Proof. — “=" : Let W be global in G. Then W is not controllable in G

and Corollary 1.8 provides 3; € Rt with cT)défZﬂi(Ui + A;) e W*\ {0}.

=1
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Then @ vanishes on H(W) = w' N K. Hence & |k is a positive scalar
multiple of w |. Consequently 3; = uX; fori=1,...,n and p > 0.

“«” : Assume that w € W*. We apply Corollary 1.8 to see that

H(L((expW))) C (w" NK)® »_ Li=w'nK =HW).
Ai=0

This proves that W is global ([N1] IIL.1). i

LeEmMA 1.10. — Let W C L be a Lie wedge and F C L a subalgebra
with
e FW =W and WnNFCHW).

Then VW + F is a Lie wedge with H(V) = H(W) + F and V* =

W*nF-+L.

Proof. — Firstly we observe that WNF =-WNF=H(W)NFis
a vector space. Then [HiHoL] 1.2.32, implies that V is closed and therefore
a wedge. Clearly H(W) + F is contained in the edge H(V) of V. If for
v=w+ f with f € F and w € W the element —v is also in V, hence
—w—f = w + f with w' € W and f' € F. Consequently w + w' €
FNnW C H(W) which proves that even w € H(W) because H(W) is the
unit group of the additive semigroup W, hence H(V) = H(W) + F. For
f € Fandhe HW) we get [k, f] € H(W) because e!*d/ H(W) = H(W)
for all t € R. Therefore

Ty =2/ Wherd  F=W+F =V and "V =ed"W4e2dhF=vV.

We conclude that e*d#(V)V = V and therefore V is a Lie wedge. That
V* = W* N Ft is clear because a linear functional is non-negative on V if
and only if it is non-negative on W and vanishes on F. o

COROLLARY 1.11. — Let W C L = sl(2,R)" be a pointed e*d X
n

invariant Lie wedge containing W* with w = Z AUi+A) e W , A, >0
i=1

and w* N K NW = {0}. Then W is global in G.

Proof. — Let E =w* N K. Then V = W + E is a Lie wedge because
ENW = {0} (Lemma 1.10). It is also invariant under e X because this is
true for W and FE separately. It follows from Proposition 1.9 that V is global
in G because w € V* = W*N EL. The fact that WNH(V) = WNE = {0}
allows us to apply [N1] III.1, to complete the proof. m]
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We conclude this section with some facts about the subsemigroups
S = (expW) of G where W is an e*dX-invariant wedge in L.

ProposiTiON 1.12. — Let S C G = SI(2,R)™ be a subsemigroup
which is invariant under all inner automorphisms I, withk € K° = (exp K)
and q : G = K°exp(P) — K° the projection onto K°. Then

{a(s)>: 5 € S} CSNK® C q(S).
Proof. — It is clear that S N K° C ¢(S) because ¢ fixes the elements
of K°. Let s = kexp(p) € S with p € P and k € K°. Then Ad(k')p = -p
for k' = exp(E ZU’) as can be easily seen from a direct computation
2 =1
using (1). This leads to
q(s*) = kk = kexp(p) exp(—p)k = skl (exp(—p))
= skly-1 o Iy (exp(p)) = slj-1x (kexp(p)) = sl-141(s) € SS = S,
which completes the proof. O

If the conditions of Corollary 1.11 are not satisfied, we get more
information about the semigroup S :

ProposITION 1.13. Let W C L = sl(2,R)” be an e*dX-invariant
n

Lie wedge containing Wi with w = Y A(U; + A;) € W*, Ai > 0 and
i=1

wt N KNW = {0}. Suppose that z;,...,2,_1 € w* N K is a base of this

vector space. Then

G=exp(Zny®... ®Z2,_1)S for S = ({expW)
and K° = exp(Zz21 ® ... ® Zzp—1)(SN K°).

Proof. — To get a contradiction, we assume that G # § def exp(Zz &
.. @ Zz,—1)S. The semigroup S has dense interior ([HiHoL] V.1.10), and

therefore S # G ([HiHoL] V.5.14, V.5.16). Then [N1] 1.5 provides a non-
constant function

f €Mon(8) = {f € C®(G) : f(gs) > f(g)for allg € G,s € S} C Pos(W).

Let Zdéfexp(lzl ®...02Zz,_1) and K def exp(w® N K)/Z the associated
torus group. The function f is constant on the cosets gZ, hence it factors
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to a function f : G /Z — R. The group K° acts by right multiplication on
G/Z and Z acts trivially. So the torus K; acts on G/Z. If m is normalized
Haar measure on K; and 7 : G — G/Z the quotient homorphism, then the
function

hige [ Flalg)- kydm(k) = /K f(gk)dm(k)

is smooth and satisfies the conditions

1) h(g1) > h(g2) if f(g1) > £(g2),
2) h(gs) > h(g) for g € G, s € S, and
3) h(gk1) = h(g) for all k € K.

This shows that h € Pos(V) for the Lie wedge V = W +w' N K
(Lemma 1.10). The fact that h is not constant implies that V is not
controllable in G ([N1], II.13). Now Corollary 1.8 provides real numbers

n

B; € RT such that @ = Zﬁ,—(Ui + A;) € V*\ {0}. We conclude that

=1
Y BU. eV nK = R+(Z,\iUi). This proves that w € RY% C V* C
=1

=1
W*, a contradiction. O

2. Invariant cones in semisimple
Lie algebras.

In this section we denote with L a real semisimple Lie algebra and
n

with L = @Li its decomposition into simple constituents such that L;

is non—com}?a%ct for i < m and compact for ¢ > m. We assume that L

contains a pointed Lie generating wedge W which is invariant under the

adjoint action, an invariant cone for short. We fix a compactly embedded

Cartan algebra H of L ([HiHoL] II1.2.14) and denote the unique maximal

compactly embedded subalgebra containing H with Ky and its center
n

with Zx ([HiHoL] A.2.40). Then H = (P H;, where H; ' H N L; is

=1
a compactly embedded Cartan algebra in L; and Ky = @K H, with
=1

Ky, = L; for i > m because L; is compact for i > m. We need the real
root decomposition of L with respect to H :
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THEOREM 2.1 ([HiHoL] I11.6.5). — Let L be a finite dimensional Lie
algebra with compactly embedded Cartan algebra H and A be the set of
roots of Lc with respect to Hc. These are all purely imaginery on H. We
set

QY (—iAg:reA} and I =LY LN (L @ L) for w = —iA|n.

Any choice of a closed halfspace E in H whose boundary meets the finite set
Q) only in {0} allows us to represent ) as @ = Q* UQ~ where Qt = ENQ
and Q™ = —0*. Weshall call 2 a set of positive roots. For each choice of a
set of positive roots there is a unique complex structure I : H¥ — Ht with
I? = —idg+ and a direct decomposition of L into isotypic H-submodules
under the adjoint action

(5) L=HeH', H'= P I~
O#weN+

where the action of H is described by
(6) [h,z) = w(h)Iz forall he H,ze€ L*.

The complexification of L¥ is Lé @® LZ>, where X is the unique complex
extension of iw. We have

(7) (L4, L] € L4 4 L7
and if q is any invariant symmetric bilinear form on L x L, then

(8) q(z,Iz) =0 and q(z) =q(Iz) forall ze€ L“.

Proof. — In view of [HiHoL] II1.6.5/8, it only remains to show (7).
This follows easily :
[L°, L] = [Ln (Lg ® LY), LN (LE @ L)

CLN[Lg® L LY @ L]
AN —A=) A=N A=A

CLN(LFY @ L™ o LY @ L ™)

= LN (Lw+w' ® Lt ® o=’ ® iLw—w')

— Lw+w’ ® Lw—w'.
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DEFINITION 2.2. — A root w € § is said to be compact if L¥ C K.
The set of compact roots is denoted with Q};. We write O} for the set of
non-compact roots and
PrE P L.

+
weNy

m}

According to [HiHoL] III.6.38, we get a Cartan decomposition
L=Kyg® Py of L and

Kn=(P L“=He P L

+ +
weN 0#weN

We get a disjoint decomposition

op = [Jab6)
i=1
such that
{Wa, v € QB(0))

are the non-compact roots of L; with respect to H; ([HiHoL] III.9). For
z € HT we set Q(z)dﬁf[lz,w] and for w € QFf we choose an element
z, € L such that w(Q(z,)) = 1 and for w € Q} an element z,, € L*
with w(Q(z,)) = —1. The following lemma shows that this is possible.

LemMA 2.3. — Let L be a semisimple Lie algebra with the compactly
embedded Cartan algebra H,w € Q* and x € L\{0}, then w(Q(z.,)) # 0.

(i) (z) =Rz ®RIz @ RQ(z) = sl(2,R) if w(Q(z.)) > 0 iffw € O}
and

(i) (z) =R, @RIz ® RQ(z) = su(2) iff w(Q(zw)) < 0 iff w € OF.

Proof. — Using [Hu] p.37 and Theorem 2.1, we see that the complexi-
fication (x)¢ of (z) is isomorphic to sl(2,C). Consequently (z) is a real form
of sl(2,C) and therefore a simple Lie algebra. An application of [HiHoL)]
I11.6.12, shows that w(Q(z)) # 0 and that (z) = sl(2,R) if w(Q(z)) > 0
and (z) = su(2) otherwise. The rest follows from [HiHoL], I11.6.16. O

LEMMA 24. — For ¢ = 1,...,m we have dimZx N L; = 1 and the
Ky-module Py N L; is irreducible. We may choose Qt and z € Zg such
that w(z) = 1 for allw € Q}.
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Proof. — It follows from [HiHoL] p.249, that, for : < m, the ideal L; is
hermitean, i.e., Z(Kp,) # {0}. Consequently it is an irreducible symmetric
Lie algebra ([He] pp. 377, 379) and the Ky, ,-module Py N L; is irreducible.
It follows from ([He], p.382) that dimZ(Ky,) = dimZk N L; = 1 and that
ZgNL; acts on PyNL; as scalar multiples of the identity (Schur’s Lemma).
Hence |w(z;)] = c# 0 for a z; € Zk N L; and all w € Qf(i). Therefore we
may choose QF such that w(z;) = 1 for all w € Q}(i) and i = 1,...,m

(cf. [HiHoL] I11.6.37). Then z = Z z; is the desired element. o
1=1
In the following we denote the Cartan-Killing form of L with B and
set AT ={AeA:—i\g e Nt}

LeEMMA 2.5. — For A € AT we choose t, € H¢c such that A(h) =
B(t,h) for all h € H and define (\,\)% B(ty,ty) for \,X € A. If

w=—iA|g and W' = —i)|g we get :
Q(Zw) “)(Q(zw’))

9) ty = —zB(xw),(A,/\') = “Bla,) and w(h)B(z,) = —B(Q(z.), h).

Proof. — The last formula follows immediately from
w(h) - B(z,) = B(z,,w(h)z,) = B(z,,|h — Iz,])
= B(zu, [z, h]) = B([zw,Iz,],h) = —B(Q(z,), h).
Consequently we have the relation

Ah) = iw(h) = —i E(QB%@

for A € AT and h € H. This proves the formula for . The scalar product
of two complex roots A\, \’ can be computed as follows :

B(Q(zw),Q(xu’)) _ w(Q(xw))
B(z,)B(z.) B(z.)

(A X) = B(ty,ty) = —

a

LEMMA 2.6. — Let w,w' € O, w # + ', w = =iy, w' = —iN|g,

hyx = 2ty/A(ty) and hy = 2ty /N(tx). Suppose that p and q are the

greatest integers such that A + p\' and \ — g\’ respectively w + pw' and
w — qu' are roots. Then

(10) w(Q(zy)) = —= = %/\( V)= for ' €90}
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and
(A X)

(11) w(Q(zy)) = = —;A(h)) = By for '€ Q.

Proof. — According to [Hu] p.39 we have ¢ — p = ,\(h,\,') for
hx =2ty /N (tx) [Hu] p.37. Consequently

q—p ' _ _iQ(mw’) ' _iQ(:’:w’)
TP At/ () = ( o ) /A ( o )
=w(Qx,)) /W' (Qzu)) = 2w (Q(zu))

where the minus sign is valid if and only if &' is compact (Lemma 2.3). o

THEOREM 2.7. — Suppose that L is simple, py,. .., is a basis of the
root system At and w; = —ip;|g. Then the following assertions hold :

1) There is a unique non-compact base root, we may assume w;, and
every positive root w may be written as

l 1
w=w1+2mw,~ if wEQ,JS and w=2niwi if wEQ}.
=2 =2

2) The sum of two positive non-compact roots is never a root.
3) There is a system II = déf{ul, ..., v} of roots in Q} such that
a) Tworootsv # v' € II are strongly orthogonal, i.e.,v+v' & ().

b) v1 = w, is the non-compact base-root.

¢) v; is a minimal non-compact positive root which is strongly
orthogonal to vy,...,v;_;.

d) D% span {Iz, : v € 11} is a maximal abelian subspace of
Py.

4) Let Y span {Q(z,) : v € IT}. For a compact root w € U}, there
are three mutually exclusive possibilities :

a) w is strongly orthogonal to all v € 11, i.e., w|; = 0.

b) There exists one v € II such that w(Q(z,)) = —%6,,u for

p € II, w+ v is a root and w is strongly orthogonal to all
other roots in II.
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¢) There exist two roots v # v' € Il such that w +v and w — V'
are roots, w(Q(z,)) = %(511’# —6,,) for p € 11, and w is
strongly orthogonal to all other roots in II.

5) For a non-compact root w € Q} there are three mutually exclusive
possibilities :

a) well

b) There exists onev € II such that w(Q(z,)) = %6W for p € 11,

v —w is a root and w is strongly orthogonal to all other roots
in II.

¢) There exist two roots v # v' € Il such that v —w and V' —w

1 .

are roots, w(Q(z,)) = 5 + 6uy) for p € T, and w is
strongly orthogonal to all other roots in II.

6) Let o € Q and v € II. Then v &+ a are not both roots.

Proof. — 1) See [M] p.359 and [HarC1] p. 761.
2) This follows immediately from 1).
3) This is proved in [HarC2] pp.581-583.
4) This follows from [HarC2] p.586, [M] p.359 and Lemma 2.5.
5) See [HarC2] pp.587-588 and Lemma 2.5.
6) See [HarC2] p.585. o

Remark 2.8. — Theorem 2.7.2)-6) clearly may be generalized to

the semisimple case L = ZL,-. Then a basis of the root system A
1=1

contains exactly m non-compact roots, one for each non-compact ideal

Li,izl,...,m. [m]

CoROLLARY 2.9. The following assertions hold for w € Q}, :

1) For w' € Q}, wa have

W(Q(:Cw’ )) =

20,

N

where q is the greatest integer such that w — qu’ is a root,
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}foraIIuEHandw¢H,and

N =

2) w(Q(.)) € {o,

3) w(ZQ(x,,)) € {%1}

vell

Proof. — 1) This follows from Lemma 2.6 and Theorem 2.7.2.

2), 3) These are consequences of Theorem 2.7.5. m]
ProrosiTioN 2.10. — For v, u € II we have
(i) v(Qzu)) = buy,
(i) [Jzy,z,]) = Q(zy) - 6yy, and
(i) [Izy,Q(zu)] = v - bup-

Proof. — For v # pu € Il neither v + p nor v — p is a root.
Therefore v(Q(z,)) Iz, = [Q(z,), x| = [Tzu, x,), 2] = [Tzp, 2], 20] +
[Izy,[zy,2z,]] = 0 because [L¥,L¥] = 0 (Theorem 2.1). This gives i)
because the elements z,, were chosen such that v((Q(z,)) = 1. The second
assertion follows from the definition of Q(z,) and [L¥, L*] = {0} for v # p.
With [Iz,,Q(z,)] = —v(Q(z,))I Iz, = z, - 6,, we prove iii). o

COROLLARY 2.11. — Let k = card(II) and S @(z,). Then S =
vell
sl(2,R)* with

U, =2Q(z,), A,=2Iz, and B, =2z,.

Proof. — With Lemma 2.3 we see that (z,) = RIz, ®Rz, BRQ(z,) =
sl(2,R), because v(Q(z,)) =1 for every v € II and from Proposition 2.10
that S is a direct sum of these ideals. In addition we have

U.,B)] = [2Q(xy),2z,] = 41z, = 24,,
U,,A,)] =[2Q(z,),2Iz,] = -4z, = —2B,, and
[A,,B,] = [2Iz,,2z,] = 4Q(x,) = 2U,.

This completes the proof. o
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For a subalgebra A of the Lie algebra L we define
Inng(A) = (*4) and INNL(A) = Inng(A).

We usually omit the subscript if no confusion is possible. For every pointed
generating invariant cone W C L we have, according to [HiHoL] II1.2.15,
that

(12) int W = (Inn L)algint(H N W).

If N(H) d=e£{g € INNL : I,(INNpH) = INNpH} is the normalizer of the

maximal torus INNp H in INNL, then N(H) C INNy Ky and the quotient
group N(H)/INNLH is finite ([HiHoL], IIL.5.6). We call it the Weyl group
W(H,L) =Wof L. Forv € W with v =n(INNpH),n € N(H) and h€ H
we have

(13) v-h=n(h) and e*"" =noehonl

It can be shown ([S] p.151) that the Weyl group agrees with the group W
of automorphisms of H generated by the reflections on the hyperplanes
ker w for w € Q.

From now on we identify the duals of L and H with L and H
respectively using the non-degenerate symmetric bilinear form —B where B
is the Cartan Killing form of L. Then —B is positive definite on H ([HiHoL]
I11.6.8). Consequently we set for a cone W C L and a cone C C H :

w déf{x €L:B(z,y) <0 foral yeW}

and
c*fhe H:B(hc)<0 forall ceC}.

The next Lemma was already proved in [Pa] and [O1] for simple Lie
algebras but the same proof works in the general case.

LeEmMMA 2.12. — Let W C L be a pointed generating invariant cone,
then

(WnH)*=W*nH.

Proof. — That W*N H C (W N H)* is clear. Let p: L — H be the
orthogonal projection. Then p is the averaging operator for the action of
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the compact group INNH. Consequently p(W) =W NH.Ifhe (WnNH)*
and z € W, we get

B(z,h) = B(p(x), k) < 0
because p(z) — z is orthogonal to H. mi

DEFINITION 2.13. — The following two cones play the role of a minimal
and a maximal trace of an invariant cone in H :

Z RTQ(z,) and
VEQ;

Crin={h€ H:w(h) >0 forall weQ}}.

def

Cmin =

def
C'max =

That C;, = {h € H : w(h) > 0 for all w € O} follows from Lemma 2.5.
One knows from [HiHoL] II1.9.15, that these two cones are invariant under
the Weyl group, that Cp;n, is generating and that Cp,ax is pointed because
L is semisimple. The fact that Cpin € Chnax (Corollary 2.9) implies that
both are pointed and generating.

THEOREM 2.14 (Classification of Invariant Cones). — Let W C L be
a pointed generating invariant cone. Then there exists a choice of positive
roots Q C Q such that the cone C “'W N H is invariant under the Weyl
group and satisfies

(14) Cmin - C Cc Cmax~

Conversely, if C C H is a pointed generating cone which is invariant under
the Weyl group and satisfies (14), then there exists a pointed generating
invariant cone W C L with WNH = C.

Proof. — Let C = W N H for a pointed generating cone W C L. We
know from ([HiHoL] II1.9.18) that C is invariant under the Weyl group and
w(C)Q(z,,) C C for every non-compact root w because the set w(C)Q(z.)
does not depend on the choice of positive roots. If one replaces w by —w,
one has to change the complex structure I|r, which leads to a replacement
of Q(x.) by —Q(z.). Therefore w(C) # R for all w € QF. Hence C*
contains either w or —w. If E C H is a half space which contains C,
satisfies C N OE = {0} and no compact root lies on its boundary, we set

0t ONE. Then w(C) = R* for all w € O}. This implies that C C Cppax
and Q(z,) € C. This leads to Cpn;, € C and completes the proof of the
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first part. Conversely (14) implies that w(C') = R* for every w € Qf, hence
w(C)Q(zy,) = R+Q(zw) C Cmin € C.

Now a further application of [HiHoL] I11.9.18, completes the proof. m]

We say that a root w € Q} is long if the associated complex root
A € AT with w = —i)\|g is long.

ProprosiTioN 2.15. — Suppose that L is simple. Then the following
assertions hold :

1) All roots v € II are long.

2) If w € Q} is short, then there are two long roots v,v' € U} such
that Q(zv) = Q(zv) + Q(zv).

3) All long roots in U} are conjugate under the Weyl group W.

Proof. — 1) See [Pa], p.219.

2) Let w € 2} be a short root and w = —if|g for B € A*. With [Pa]
p.219, we find two long roots A\, \' € At with 3 = %()\ + X'). For h € H,

v = —i)|g, and V' = —i) |y we have
B(h,Q(z.)) = ~w(h)B(z.) = £ (A + N)()B(z.)

B(z.)
2B(x,)

=—Bf“(wm+wm»=

B(h’ Qz,) + Q(‘TV’)) ’
because v and v’ are long. One checks easily that A cannot be of type G,
hence (A, A) = 2(8, 8) ([Hu] pp.58,59). This implies with Lemma 2.5 that

111
(A (V) 2(8,8)

B(z,) = Ba,) = 3 B(z.) =

Therefore Q(z,) = Q(z.,) + Q(z.1).

3) We choose the minimal root »; € Il and assume that not all long
roots w € N} are conjugate to v;. Let w € QO be minimal with this
property. Firstly we assume that there exists v € II with w —v € Q} \ {0}
Then v is long and lower than w, consequently it is conjugate to v;. The
fact that w is long implies with Lemma 2.5 and Theorem 2.7.c) that

1
5 = W(Q(xu)) = V(Q(xw))
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Now Lemma 2.6 and Theorem 2.7 show that v+2(w—v) = 2w—v is no root
and the reflection generated by w — v interchanges v and w, a contradiction
to the fact that w is not conjugate to v;. Consequently we may assume
that w — v & QF \ {0} for all v € II. We choose v; € II minimal with the
property that v; —w € Q} (Theorem 2.7.5). Then w is strongly orthogonal
to all roots v; € II with j < 4. If ¢ = 1, we get v; = w (Theorem 2.7.1)
which contradicts our hypothesis. If ¢ > 1, we get w = v; (Theorem 2.7.3.c)
and we find a baseroot a € Qf with w — a € Q}, hence w + a ¢ QOF
(Theorem 2.7). The other end w — pa of the a-string through w is positive
(Theorem 2.7.1) and conjugate to w under the reflection s, on ker a which
is contained in W = Wk, a final contradiction. ]

COROLLARY 2.16. — We have

Chnin = Z R*w(Q(zy)) for every long root v € Q}.
weW

Proof. — This follows from the definition of C;, and Proposi-
tion 2.15. |

We know from Theorem 2.14 and Definition 2.13 that, if L is simple,
there are invariant cones Wy, and Wiax in L with Wi N H = Cuin and

Winax N H = Chiax- Now let L = @Li be semisimple. The fact that the

=1
cones Cnin and Cpax are adapted to the decomposition of L implies that
there are invariant wedges

n m

Wmax = Z Wmax,i + Z Li and Wmin = Z Wmin,i

i=1 i=m+1 i=1

where the cones with subscript ¢ are the mininal and maximal cones in the
non-compact simple Lie algebras L; for ¢ < m.

With respect to the maximal abelian subalgebra D = def span{lz, :

v € II} C Py we get a real root of decomposition of L :

L=Deo Y Lje(KH)NLY),
peXp\{0}

where X p denotes the set of linear functionals on D such that

L7, ={z€L:[a,z] =p(a)r forall aec D} #{0}.
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We define the functionals p, € D by pv(Iz,) = 6,, for all p € II and
choose a positive system 2“5 C X p which contains functionals. Then
T¥De Y I
pEE'g
is a Borel algebra of L.

DerINITION 2.17. — We fix the notations for the following special
elements in L :

bdéfz,xu, udéfz+b and ldéfZ—Q(b):Z‘ZQ(zu)

vell vell
where z € Zk is chosen such that w(z) = 1 for all w € Q}. We write the
corresponding elements in the ideals L; with a subscript i. D
LeEmMA 2.18. — For v € Il and z, € L” the following assertions hold :
1) z, + Q(z,) € LYY, z, — Q(z,) € L, and

2)l=2z-)Y Q(z,) € Ly NH.
vell

Proof. — 1) follows immediately from Proposition 2.10 and 2) from

Iz, 1) = Iz, 2] = Y 8oty = —p(2)I Iz, — 3, = 0.
vell

LEMMA 2.19. — If L is simple, we have

uwt =Ky ®T ={z € L: B(z,u) =0}

Proof (See also [V] p.10). — The space Py is orthogonal to Ky,
therefore B(z, [k, k']) = B([z, k], k") = 0 which leads to
B(u, Ky) = B(z, Ky) = {0}.

For p + p' # 0 the associated root of spaces are orthogonal ([S] p.151).
Therefore

B(w,T) = B(1+ Y (Q,) +2,),T)
vell
CB(LynKy+ Y L5, D+ Y LY) C B(Ky,D) = {0}.

pex} pest
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Consequently the hyperplane K @ T agrees with u'. O

DEeFINITION 2.20. — The following cone plays an essential role for
the globality of invariant cones in simple Lie groups (Section 3 and [02],
p-311). We define the cone Cy by its dual

Cr ¥ + > Rtw(l) = conv(Cuin + WRTI).
weW

ProrosiTioN 2.21. — Let L be simple. Then the following assertions
hold :

1) 1 € C§ C Cunax and L € S* for S = P(z.).
vell

2) Q(z,) £z, € Wiyin for all v € Q;.

3) In L exists an invariant pointed generating cone Wy with WoNH =
Co.

4) u € Wo* - Wmax-

Proof. — 1) (Cf. [V] p.9). Corollary 2.9.3) implies for every w € Q}
that

w(l) = w(z) —w(Q(b)) =1 —w(Q(d)) > 0.

Therefore | € Cnax and C; C Chax because Chax is invariant under the
Weyl group (Definition 2.13). For w € II we have w(l) = 0 (Proposition
2.10), hence B(l,Q(z.)) = 0 (Lemma 2.5). This proves that

le S*NH= () kerw.
well

2) With Proposition 2.10 we see that {[z,,Q(z,)] = z,. For t € R this
leads to

etadtlee (g ) = cosh(t)Q(x,) £ sinh(t)z, € Wiin.

The closedness of Wy,;,, now shows that

. +tadlz, — .
tlggo sinh(t) e Qz,) =Q(x,) £z, € Whin.

3) This follows from 1) and Theorem 2.14.
4) With 1) and 2) we see that

u=1+Q)+be W5+ Wyin € W§ C Whax.
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[m]

LEMMA 2.22. — Let q: L — P(H)® Zk be the orthogonal projection
with ker ¢ = K}, then we have, for h € H;, that
B(h, z;)
2
B(Zi) '

(15) q(h) = and ¢(Qz,)) = -

Ifx = Z t,z,, we get :
vell

(16) e*°h=h+ Z v(h) ((cosht,, -1)Q(z,) — sinht,,Ix,,) and
vell;

(17)  q(e*!®h)

= _B(z')( >~ v(h)B(,)(cosh(t,) — 1)B(h, zi)) — > v(h)sinh(t,)Iz,.

vell; vell;

Proof. — (15) : The first part follows directly from

B(h,zi) '
B(h— B(zi) Zi,Zi)=0 and kel‘an,'=ZiJ'ﬂHi=KHﬂHi.

In view of Lemma, 2.5, for v € II we have

B(Q(z,,),z,-) _ v(z;)B(z,) B(z,)

B U7 B U

Q(Q(-Ty)) =

(16) : The subspace ID = ZRIU C Py is abelian. By successive
vell
application of e2dti®: for v; € I we find with [HiHoL] II1.7.8, that

adzh adtulwu—1 R ad oy, Ty, h

=h+ Z ((cosht —1)Q(z,) — sinht t,,Ia:l,).
vell;

(17) : This follows by combining 1) and 2). a

LemMA 2.23. — Let W C L be a pointed generating invariant cone
containing Wi,

U:E2 Y Q), A d—*’fz S Iz, B¥2Y ua,

vell; vell; vell;
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Edéfspan{Ui,Ai,Biii =1,...,m} and Vdef(W + Ky )N E. Suppose that
there exist numbers §; € R+ W1th

> 6i(Ui+ A) eV,
=1

then
> biliewr
i=1
26, . :
for §; = wx~. The subalgebra E is isomorphic to sl(2)™
B(B;)

Proof. — Using Corollary 2 11 we see that E = sl(2)™. We set
e 8, #£0},U = ZUZ,A ZAZ,B ZB and

26, b;
B(B;) 2 Z B(z,)

vell;

61':

m

To get a contradiction, we assume that Z&,-li ¢ W*. Firstly we find an
=1

element h € W with B(h, Y _ 6;1;) > 0. For v € IT we have B(l;,Q(z,)) = 0

multiples of the Q(z,) to h and rescaling, we may assume that w(h) = 1
for all w € II. The invariance of W implies that e2dtBh € W for all ¢ € R.
Using the previous lemma, we see that the following element is contained
in g(W) :

=1
for i =1,...,n (Lemma 2.21.1) and Q(z,) € Wnin C W. Adding scalar
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q(et®Bp) = _ in: % ( Z B(z,)(cosh(2t) — 1) — B(h,zz‘))
% vell;

= B(=)
— ) sinh(2t)Iz,
VEH
— _Z ( Z B(z,)cosh(2t) + Z B(Q(z.),h)
z vell; vell;
sinh(2t)
- B(h1 Z’i)) - 9 A

35

We have, according to Lemma 2.22, that

@)=z a@e) =2 ¥ T smf T,

vell; vell;

( B;)cosh(2t) — B(h,li)) -

sinh(2t) 4
2

The fact that g(e!®Ph) € W + K, implies that the following element is
contained in V = (W + K}) N E because its image under g agrees with
q( etad B h).

sinh (2t) 4

XY (L B(Bcosh(2t) - Bk, 1) -

sinh(2t) = 2B(h, ;)
s U A2 By

Il
-

U,.
=1

According to our assumption ¥ = def Z (Ui+ A;) € V*. This shows that

there exists A > 0 such that

AB(X,Y) = —% i 6;(cosh(2t) + sinh(2t)) + Z %

=1 =1
- %i:: B(h,gé,—li) <0

for all y € R. For t — —oo this leads to

m
B(h,z&li) <0
1=1

a contradiction. m}
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ProposiTION 2.24. — Let W be a pointed generating invariant cone
which contains Wy, in the semisimple Lie algebra L. Then the following
assertions are equivalent :

1) W*n (K @ T)* # {0}
~ m ~
2) There exists §; 2 0,1 =1,...,m such that Z‘Siui € W*\ {0} and
i=1
6;#0forieI C{l1,...,m}.
m
3) There exist §; 2 0,i=1,...,m such that Zéili e W*nH\ {0}

=1

and 6; #0 fori € I C {1,...,m}.

Proof. — 1) = 2) : From Lemma 2.19 we get (K} ® T)* = ZRuz

because Ru; = (K 'Hi @ T;)* N L;. Therefore every non-zero element
w € W*N (K @ T)* may be written as

m ~
= Z&iui
i=1
From z; € Wipin CW fori=1,...,m and B(u,2;) <0 we find that
<wa zi) = _S;B(uiazi) = _&B(ZZ) 2 0’

which proves that 5 >0

2)=3):Let VE w4+ K};, then V is a Inn K y-invariant Lie wedge
in L with H(V) = Ky (Lemma 1.10) because W N Ky = {0} ([HiHoL]
I11.5.16). Therefore

Y b e WnKyg =V

=1

We set V% VNE with E as in Lemma 2.23. The elements l; are orthogonal
to E (Proposition 2.21), hence

2) bi(ui— I;) = }: Ui+ B;)) e (V*+EYHYnECV™



GLOBALITY IN SEMISIMPLE LIE GROUPS 521

m
From the invariance of V' under Inn(z RU;) we get that Z &+ A) €

1=1
V* and with Lemma 2.23 that Z 6;l; € W* for
i=1
%
~ B(B))

3) = 2) : With the notations from above we find with Lemma 2.21

Zéiui = Za (1,- + ) (Qz) + xu))

vell;

4

that

€ Z&ili + Whin € W* + Whin C W™
1

3. Globality of invariant cones

in semisimple Lie groups.

ProposiTioN 3.1. — Let G be a Lie group, K C G a compact
subgroup, L = L(G), W C L a pointed generating Ad(K)-invariant cone

with L(K)NW = {0} and V W+ L(K). Then the following assertions

hold :
1) W is global in G if and only if V is global in G.
2) W is controllable in G if and only if V' is controllable in G.
Proof. — 1) This follows from Proposition IIL.5 in [N1].

2) If W is controllable in G, it is clear that V is controllable in G, too.

Let us assume that W is not controllable in G, i.e., S dg(expW) # G. Then

vy L(S) # L is a wedge which is global in G (Lemma 1.2). Applying [N1],

II1.5, we see that V +L(K) is global in G. So we are done if we can show that
V +L(K) # L. If this is false, we have H(V +L(K)) = H(V)+L(K) = L.
This leads to

VNL(K) ¢ HV),

a contradiction to [N1] IIL.5. a



522 KARL-HERMANN NEEB

Remark 3.2. — If Kdg(epr}{) is the subgroup of G with Lie
algebra K, then K is a compact semisimple group and Proposition 3.1 is
applicable with V- = W + K; because WN K}, = {0} ([HiHoL) II1.5.16). ©

CorOLLARY 3.3. — Let L be a semisimple Lie algebra, W C L an
invariant generating cone, L; the sum of the non-compact ideals and L
the sum of the compact ideals. The simply connected Lie group G with
L(G) = Lis adirect product G = Gy x Gy withL(Gy) = L;,L(Gy;) = Ly;
and the Lie wedge W is global [controllable] in G if and only if the projection
dpr(1)W = WnNLj is global [controllable] in G, where p; is the projection
G — G onto the first factor.

Proof. — We want to apply Proposition 3.1 with K = G;; and
V =W + L. It follows from Lemma IIL.8 in [N1] that V is global in
G if and only if dp;(1)V = dpi(1)W is global in G;. The Lie algebra L is a
G1r-module under the adjoint action with Lgx, = Ly and dpy(1) : L — L;
is the averaging operator. Therefore dp;(1)W = WNL;j. It remains to show
that V is controllable in G if and only if V N L; = dp;(1)V is controllable
in Gj, but this follows directly from

(exp V) = (exp((V N Ly) + Li1)) = (exp(V N L))Gyy.

This semigroup agrees with G if and only if (exp(V N L)) agrees with G.

[}

ProrosiTioN 3.4. — Let G be a semisimple simply connected Lie
group with L(G) = L. Suppose that W C L is an e X#_jnvariant
wedge and W* N (K4 @ T)* # {0}. Then W is not controllable in G.
Ifwe W*n(Ky®T)t withw(Lj) # {0}, then L; ¢ H(L(S)), where
S = (expW).

Proof (Cf. [V] p.7, where the same idea is used in the simple case
for invariant cones). — Let w € W* N (K & T)* \ {0}, T° = (expT)
and K¢ = (exp Kpg). According to [He] p.270, the mapping T° x K° — G,
(t, k) — tk is a diffeomorphism. Therefore T° and K are simply connected
and we may apply Lemmas IV.10 and IV.11 in [N1] to find a function
f € C®(G) with f'(tk) = wo Ad(k) for all t € T° and k € K°. The
function f is non-constant and W-positive because W is invariant under
e Kr and w = f'(1) € W*. The last assertion follows from the fact that
f is constant on the unit group H(S) of S and w(L;) # {0} implies that
df (1) does not vanishes on Lj;. a
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THEOREM 3.5 (Controllability Theorem). — Let W be a pointed
generating invariant wedge with Wy, C W in the semisimple Lie algebra’
L. Then the following are equivalent :

1) W is not controllable in the simply connected Lie group G with
L(G)=L.

2) W*n(Ky e T)* # {0}

Proof. — 1) = 2) : According to Remark 3.2 the controllability of W is
equivalent to the controllability of V. = W+ K}, in G. We use the notations
of Lemma 2.23 to show that V% ¥ N E is not controllable in E° dg(expE).
We assume that this is false and set S (expV). The invariance of V under
e K implies that L(S) is an e X# -invariant wedge containing E because
(expVNE) = E° C S. We show that ngH(L(S)) = L. The simplicity of
the ideals L; implies the irreducibility of the K g-module Py N L; (Lemma

2.4), but the Kg-module F' contains B; € Py N L;, hence Py C F. The
fact that the edge of the Lie wedge L(S) is a subalgebra shows that

m
[Py,Pyl=) KyNL;CF
=1

and therefore

zm:Li+K}1=Xm:L,-+ i Li=LCF.
=1 =1

i=m+1

This proves that V is not controllable in E°. From

m
KyNECY Ky nRU; ={0}
i=1
m
we see that V is a pointed, e*? Z RU;-invariant wedge in E which contains
=1
all elements U; + A; (Proposition 2.21) and therefore the product W{* of
the Cartan Killing cones in the sl(2,R)-subalgebras span{U;, A;, B; }. Now
m

Corollary 1.8 provides 3; € RT with Zﬂi(Ui + A;) € V*\ {0} and an
=1
application of Lemma 2.23 and Proposition 2.24 completes the proof.

2) = 1) : This follows from Proposition 3.4. o

Theorem 3.5 is our main result on controllability in semisimple Lie
groups. Now we shall see that much more can be said about simple Lie
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groups. See also [02], where it is proved that an invariant cone W in a
simple Lie algebra L with Wy,;, C W is global in the associated simply

connected group if and only if W is contained in Wy (see Corollary 3.8).

LeEmMA 3.6. — Suppose that L is simple and | # 0, then Q(z,)+z, €
T" for all v € II.

Proof. — We claim that %p,, € =}, for every v € II. Since | # 0, [ is

not contained in H(Cyax) = {0} and, according to Proposition 2.21.1 and
Theorem 2.7.5. we find w € O} with w(l) = 1 — w(b) > 0. Now Corollary
1
2
p € II. It follows from [M] p.362, that we find for every v’ € II an
w' € QF with w'(Q(z,)) =

2.9 implies that there is exactly one v € II with w(Q(z,)) = 56,, for

16,,:“ for p € II. Using Lemma II1.9.5 and

2
I11.9.7 in [HiHoL] we see that we find an inner automorphism a of L¢
with a=}(Iz,) = —iQ(z,) and the function A = Aoa™l|p: A - Zp is
surjective. Taking A € A* such that w = —iA|g, we see that

%pu(Ixu) = %61/# = W(Q(f':V)) =A oa‘l(Imu)

and therefore %p,,- € Y p. Hence %p,, € ZB. We know from Lemma 2.18

that Q(z,) + z, € L}, so it is enough to show that

"= > L.

+ 5t
PEXL+E]

It is clear that T" = Z Lf,. We consider the complexification L¢ of L.
p€X}

Accordmg to [He] p.530, we may extend D¢ to a Cartan algebra HC of

L¢. Let A be the system of roots of L¢c with respect to HC For p € ¥p

we have

L5 = (I5)cNL = (@Lg)nL
XEA,
for A, = {X € A : Alp = p}. It remains to show that Lg C T for all

A€ A,y. We choose A € A% ,, and a lexicographic ordering on A such that
A > 0 whenever Aoa™!|p € EE and A —2), > 0. Then A cannot be a base
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root with respect to A. Therefore there exist roots A1, Ao with A = A; + Aa.
From [Hu] p.39, we get that

[LE, L@ C [Ly'?, Ly'P)e C TE.

a

THEOREM 3.7 (Globability in Simple Lie Groups). — Let G be a
simply connected simple Lie group and V C L = L(G) be an e*dKn_
invariant Lie generating Lie wedge with H(V) = K} which contains z.
Then the following are equivalent :

1) V is global in G.
2) V is not controllable in G.

3) For all subalgebras E = sl(2)* of L, the wedge V N E is global in
E° = (expE).

4) u=z+2:c,, evn.

vell

5)intVnT=¢.

6)intVNT' =d.
If | # 0, these assertions are equivalent to

NintVNnT'=g.

8) For all nilpotent subalgebras N C L, the wedge V N N is global in
N°® =expN.

Proof. — 1) & 2) : If V is global in G, then it is not controllable in G.

Conservely we assume that V' is not controllable in G and set S qléf(exp V).

Hence L(S) # L and we have to show that the assumption L(S) # V leads

to a contradiction. Then FdéfH(L(S)) # H(V) = Ky ([N1] III.1) and F

is an Kg-submodule of L (Lemma 1.2). Consequently
F=FnPH®K;,e>FnZK.

If FNPy # {0}, the irreducibility of Py (Lemma 2.4) implies that Py C F
and therefore L = Py + [Py,Py] = Py + Ky C F because F is a
subalgebra, a contradiction to F' # L. Hence F N Py = {0}. Now F # K}y
yields F = Kpg. The Lie wedge L(S) is Lie generating and cannot be
contained in Kpy. Consequently L(S) N Py must be an e2d X#_invariant
pointed cone. This is impossible since —idp, = (ad 2)?|p, would imply
that L(S)N Py = —L(S) N Py.
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1) = 3) : f S a closed subsemigroup of the simply connected Lie
group G with L(S) =V, then SN E° is a closed subsemigroup of E°® with

L(SNE°)={z € E:exp(R'z) CSNE°’}=L(S)NE=VNE.

3) = 4) : We know from Lemma 2.19 that K}, ®T = u'. Therefore we
have to show that u € V* because B(u,z) = B(z) < 0. If this is not true,
we find an element z+p in the compact base C = {p+z: p+z € V,p € Py}
of the pointed cone V “yn (Zk @ Py) with 6d§fB(u,p + z) > 0 because
V =V + K} and Ky Cut. We set M % max{B(p) : p+ 2 € C}. The set
of elements b = Z a,z,, whose centralizer in Py is ID, is dense in ID

vell
because these are exactly the elements in ID for which the one-parameter

group ¢™Rad? is dense in the torus e**D C Aut(Lc) ([He] pp.247, 248, [BD]
p.38). Consequently we find such an b with

62

B(b-1) < STF"

In the compact set INN(Ky)(p + z) there exists an element vo(p + 2) such
that the function v — B(z + b,v(p + z)) attains its maximum at 7. For
k € Ky this implies for p; = vo(p) that

d ~ ~ ~
0= a B(etadkpl +z2,z+ b) = B([k,lh,b]) = B(k, [Pl,b])-
t=0

But B is negative definite on K ([He] p.184) and [p;,b] € Ku which leads
to [p1, b] = {0} and therefore p; € ID because the centralizer of bin Py is
ID. Now we get

B(py + z,u) > B(p1 + 2,2+ b) — |B(py + z,b — b))

> B(p, +2,2+b) —\/|~B(P1+z [v/ B( b-—z

B(p, + 2,z +b) — \/_\/ B(p1+zz+b)——

B(p+zz+b)——_ (p+zu)-—§=§>0.

This shows that p; + 2z € (ID + z) NV and

(18) B(pi + ) = B(p, Y_o,) + B(x) >0
vell
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We choose the subalgebra Edéfspan{x,,,Ix,,,Q(x,,) :v € I} = sl(2,R)*
with U, = 2Q(z,), A, = 2Iz, and B, = 2z,,. According to our assumption,
V N E is global in E°. To apply Theorem 1.3 we have to show that V has
inner points with respect to E. As for H(L(S)) in- 1) & 2) we see that
V —V = L because V is a Lie generating and invariant under e X#  hence
V has inner points and must contain z in its interior because Zx = Lgy
for the action of the compact group INNKp. The orthogonal projection
q: L — Zy @ Py maps the element (z,) € E onto a positive multiple of z
(Lemma 2.22), therefore Q(z,) € int VNE C intg(VNE) because 2z € int V.
Using Theorem 1.3 we find an element o = Z B.(Q(z)+z,) € (VNE)*.

vell
All differences Q(z,) — Q(z,) are contained in z* N H C K} and

B(a,Q(z,) - Q(z,)) = (B, — B.)B(Q(z,) - Q(x,)) =0, hence 8, =8 >0

for all v € IT and adéfﬂZa:,,+Q(x,,) €e(VNE) . Inqg M p1+2)CV we
vell

find, according to Lemma 2.22, the element p; — ——BM Q(z,) e VNE.
B(z,)

Applying a yields
1 B(z) B(Q(-TV))
-~ B - — v),a | =B(p1,b) - ———~ B
; (pl Bl 9) a) (D) = s BE)

= B(plab) +B(Z) < 0,
a contradiction to B(p;,b) + B(z) = B(p1 + 2,u) > 0.

4) & 5) : According to the separation theorems of Hahn Banach, the
existence of a functional w € V* N T+ is equivalent to intV NT = @. But
VAT =V n(Kp)tnTH=v*n(Ky ®T)* =V*NRu.

A glance at Lemma 2.19 completes the proof.
5) = 6) = 7) : This is trivial.
6), 7) = 4) : From 6) or 7) (if I # 0) and Lemma 3.6 we see that

FnintV =@, where F%span{Q(z,)+z,:veTl}.

Let g : L — Py & Zg be the orthogonal projection. To get a contradiction
to intV N F = &, it is enough to show that intV N q(F) # &. According to
Lemma 2.22 we have

B(z,)

B(z)Z forall vell

Q(Q(zu) + Zv) =T, —
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and with Lemma 2.5 we find that
B(u,q(Q(z.) +3.)) = B(1,Q(@,) +3,) = —B(z,) + B(x,) =0,

Therefore g(F) C u* N(ID® Zg). The element ¢(Q(z,) +z,) are linearly
independent, therefore

q(F)=u*N(ID@® Zg)

because the dimensions are equal (Lemma 2.19). We assume that 4) is false.
Then we find p; € Py with p; + z € intV such that B(p; + z,u) > 0
(see 3) = 4)). Using the invariance of V under INNKy, we see that
—p1 +2=¢€"*%(p, +2) € V, too. But B(u,p1 + 2) = B(z) + B(b,p,) >0
and

B(—py + z,u) = B(z) — B(p:1,b) < B(z) + B(z) = 2B(z) < 0.

Consequently the line segment from p; + z to —p; + z, which lies completely
in the interior of V, intersects u* N (ID ® Zk) = q(F).

4) = 2) : This is a consequence of Proposition 3.4.

1) = 8) : This is the same proof as in 1) = 3).

8) = 7) : The subalgebra N e of Lis nilpotent. We assume

that int VN T" = intV N N’ # &. Then the Lie wedge VEV N N is
global in the simply connected covering group N° of N° ([N1] II1.7) and
intyV NN’ # . We show that this is impossible. Firstly we observe that
V has non-empty interior and therefore is Lie generating in N and the
semigroup S dg(expﬁo V) has inner points. Using [HiHoL] V.5.40, we see
that V is contained in a half space F C N such that F is a subalgebra
of codimension 1. A look at the classification theorem in [Ho] p.638 shows
that OF has to be an ideal of N which contains the commutator algebra.
This is a contradiction to intV Cint F and N' C F. ]

CoroLLARY 3.8. — Let L be simple, W C L an invariant pointed
generating cone containing Wy, and G the simply connected group with
L(G) = L. Then the following are equivalent :

1) W is global in G.
W is not controllable in G.

2)
3) W C W, ie., u€ W*.
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There are invariant cones in W which are not global in the simply
connected group G with L(G) = L if and only ifl # 0.

Proof. — 1) = 2) : This is clear from the definitions because W # L.

2) = 3) : It follows from Remark 3.2 and Theorem 3.7 that u € W*.
Proposition 2.24 implies that | € (W N H)* = W* N H. Therefore
CyC(WnNnH)*and WN H C Cy. Now Theorem 2.14 yields W C W,.

3) = 1) : It is clear that | € Wy N H C W*. Now Proposition 2.24
together with Remark 3.2 and Theorem 3.6 imply that u € W* N K§ =
(V + Ki)* and that W is global in G.

We prove the last assertion. If [ = 0; we have Wy = Wy,,., and every

invariant cone containing Wy, is contained in Wy, If | # 0, we set

p et 2Q(b) — z. Then h € Cpax (Corollary 2.9) and B(l,h) = —B(l,z) > 0.

Therefore the W-invariant cone
def
C=E Cuin + »_, RYw(h)
weEW

is the trace of an invariant cone W in L which contains W,;» but which is
not contained in Wy and therefore not global in G. O

Remark 3.9. — The simple Lie algebras containing invariant cones
are the following ([Pa]) :

1) su(p,q),p>2q21,1=0&p=q.

2) so(p,2),p23,1=0.

3) sp(n,R),n >3,1=0.

4) so*(2n),n 2 3,1=0&n € 2Z.

5) es(—14), | # 0.

6) e7(—25), [ =0. a

With Lemma 3.10 to Remark 3.13 we demonstrate how Theorem 3.6
can be used in special cases to prove the globability of certain Lie wedges.

LemMA 3.10. — For an INNK y-invariant Lie wedge V' in the semisim-
ple Lie algebra L with H(V) = K}; we have

qV)=Vn(Py®Zk)=InnKg(V N D& Zk)),

where q : L — Py @ Z is the orthogonal projection.
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Proof. — It is clear that
qV)=(V+Ky)N(Py®Zk) =V N (Py ® Zk)

because H(V) = Ky = kerq. The invariance of ¢(V') under InnKy shows
that the set on the right is contained in g(V'). Conversely, if v = Z+p € q(V)
with Z € Zg and p € Py, we find with [He] p.247, an element v € Inn Ky
with v(p) € D and therefore v € v~ (V N (D & Zg)). w

Example 3.11. — We consider the special case L = su(p,1). These are
exactly the simple Lie algebras containing non-degenerate invariant cones
with D =1 and II = {w,} for an w; € Q}. The set of all InnK g-invariant
Lie wedges V with H(V) = Ky is a one-parameter family. For r > 0 we
define V, by (Lemma 3.10)

V, N (D + 2) = {z + Mz, : B(\Iz,) < —m?B(2)}.
Then
q(V;) ={pz +p: B(p) < —r°B(pz),pn > 0}.
Then u = z + x; and therefore

vueV e B(z+x1,2+ Az1) <0 forall 2+ Az €V,

& B(z) + AB(z,) < 0 for all A with B(z)r? + A\2B(z;) <0
~B(2)
B(z;)
— B(z)
B(z1)

< B(z) +

rB(z1) €0
erlg

As explicit inspection of su(p, 1) shows, we have

B(z) =-2p and B(z,,)=p+1.

-B 2
We set ¢ def (2) = La . Then we see with Theorem 3.6 that V.
B(.’E]) P + 1

is global in the associated simply connected group SU(p,1)” if and only if
T < To.

For p = 1 we have L = su(1,1) =sl(2,R), 7o = 1 and V, agrees with
the cones W, (see Corollary 1.5). Therefore Corollary 1.5 is a special case
of the result above. O
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ProposiTION 3.12. — Let L be simple and Vo = {z € Py & Z; :
B(z) < 0,B(z,2) < 0} + Ky. Then V, is an InnK y-invariant Lie wedge
with H(Vp) = Ky and ¢(Vp) is the Lorentzian cone in Py & Zk, which
contains z and which is associated to the Inn K y-invariant Lorentzian form
B|p,ez,- The wedge V; is global in the simply connected group G with
L(G)=L.

Proof. — It only remains to prove the last statement. Using Theorem
3.6, we have to show that u € V*. Let £ = p+ 2z € ¢(V,) with p € Py. Our
assumption implies that B(p + z) = B(p) + B(z) < 0 and B(b) < —B(2)
follows from

—B(z) = —=B(l) - B(Q(b)) = —B(l) + B(b).
Therefore

B(z,u) = B(z) + B(b,p) < B(z) + v/ B(b)v/B(p)
< B(2) + V=-B(z)V/-B(2) = B(z) - B(z) < 0.

Hence u € V.. a

Remark 3.13.— Among the Lie wedges V C L with H(V) = Kj; and
2z € V which are global in the simply connected group G with Lie algebra
L, there is a maximal one :

Vglob = n yu',
yEInnK(H)

where u* is the half space {z € L : B(z,u) < 0}. With ! D K'(H) we
see that K'(H) C H(Vgob) and from B(yz,u) = B(z,u) < 0 it follows
that z € int Vgion, hence H(Vgon) = K}. We may apply Theorem 3.7 to
see that Vgop is global in G. If V C L is an e*d Ku_jnvariant Lie wedge
with H(V) = K}, it follows from Theorem 3.7 that V' C u*, therefore
V' C Vgiob- In general the wedge V from Proposition 3.12 is different from
Vgiob- For L = su (p, 1) (Example 3.11), we have

‘/glob = VT() a'nd VO = Vl

with 7o > 1 for p > 1 (Example 3.11). o

We conclude this section, and also this paper, with a result on the
non-simply connected case (Theorem 3.16). We need two lemmas to prepare
the proof.
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LEMMA 3.14. — Let G be the simply connected Lie group with
L(G) = L and Z° d-—e-f(exp Zk). As in Section 2 we choose z; € Zx N L;
such that w(z;) = 1 for all w € Qf; C QF. Then

Z°NZ(G)=exp (2n(Z21 @ ... Zzp)).

m
Proof. — For a = Z Ai2z; we have

=1

Ad(exp a) — eada — e/\l ad z;ekg ad 22 L e)\,,, adz,,

n
and this element is the identity on L = ZLi if and only if A\; € 27Z

because Spec(ad z;) = {0,i}. The lemma follows from Z(G) N Z° =
ker(Ad) N Z°. O

LEmMA 3.15. — Let W = (RT)® C R™ and D C Z™ C R" a discrete
subgroup with W N D = {0}. Then

W Nspan D = {0}.

Proof. — We give a proof with induction over decreasing codimension
n = rank D of the grid D. For n = rank D there is nothing to show
because only D = {0} is possible. We assume that the lemma holds for
n —rank D < m — 1 and that n — rank D = m. Suppose, in addition, that
we find an element v # 0 in W Nspan D and choose the dimension n as

small as possible such that the lemma does not hold. We consider the sup-
k
norm ||z|| = max;=1. ,|z;| on R". Let D = @Zdj and M % max;||d;||. If
Jj=1
, , k
v € int W, there exists a A > 0 such that min;(Av;) > kM. If dv = Z Ajd;,

j=1
k

we get || Av— Z[,\ 1d;|| < kM and d = Y _[;]d; € D. Hence d € DNint W,
Jj=1 Jj=1
a contradiction. Therefore we may assume that v € 0W and w.l.o.g. that

v, = 0.Let 7 : R* — {0}"~! x R C R™ be the orthogonal projection. There
are two cases to consider.

Case 1 : The group D is contained in ker 7. Then DN (R*)"~! = {0}
and n — 1 —rank D = m — 1, a contradiction to the induction hypothesis.
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Case 2 : The group D is not contained in ker 7. Then, according to
the Rank-Theorem for finitely generated abelian groups,

rank 7(D) + rank(kerm N D) = rank D

and therefore
rank(D Nker7) = rank D — 1,

because 7(D) is a non-trivial subgroup of Z and has rank 1. Now we find
linearly independant elements di,...,d,, € D with d!,...,d,_; C kerw
and d), ¢ kerm. Consequently the d) -coefficient of v in the representation
with respect to the basis of spanD vanishes. Thus we have reduced the

dimension of the problem :
@M N(RT)" ! ={0}, and 0# v € spanD' N(RT)*"L.

This is a contradiction to the minimality of n which completes the proof
for n — rank D = m.

THEOREM 3.16. — Suppose that the wedges W; C L; are invariant

def

pointed generatmg and that W = EB W, is global in the simply connected

=1
Lie group G with L(G) = L and contains Wi,. Let Z° 4 exp Zk,
D C Z° N Z(G) be a discrete central subgroup and D’ def exp (D) N Zk.
Then W is global in G G/D iff

(19) D'nY Rz = {0}.

Proof. — “<” : If W is global in G and d € (ER%z;) N D', then
exp (d) € expW because TRt 2z; C Wiy € W. According to [N1] I1.12,
we find a function f € C*(G) such that f'(g) € int W* for all g € G.
Let f fom, where 7 : G — G is the canonical projection. Then clearly

f'(g) € int W* for all g € G and therefore

f1) = £1) = flespd) = F1) + [ (Plexplta), dyar

This proves that (f(1),d) = 0 and therefore d = 0.

=7 : Let D' N ER*2; = {0}. According to Lemma 3.14 we have
D' C @227&1, then Lemma 3.15 shows that spanD’ N £R*z; = {0} and
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we find a linear functional w € Zg vanishing on D’ and taking positive
m

values on all elements z;. If w = 251‘21 and §; >0fori=1,...,m we set

=1
m
w= Z 6;u; and V W+ K 4 +w? N Zk. Using our hypothesis, Corollary

=1
3.8 and Lemma 2.19, we have

GeY Wr=W" and GeW NHV) =V~
=1

Let Tdéf(expaV). Then Proposition 3.4 applies and shows that V is not
controllable in G and L; ¢ H (L(S)) for i = 1,...,m because all numbers
6; are positive. The fact that W is generating in L shows that n =m, i.e.,
there are no compact ideals in L. Hence L(T') contains no ideal of L. Let
p: G-G=G /D be the covering homomorphism.*From

D=%kerpCexpD' CexpV CT

we conclude that L(T') is global in G ([N1] IIL.8). Setting Sdéf(expc w)
we have

L($) € L((expgL(T))) = L(T).

Consequently L(S) is an invariant wedge in L (Lemma 1.2) which contains
no ideal of L. Hence L(S) is pointed. Now Proposition 3.1 in [N1] shows
that W is global in G. ]

CoOROLLARY 3.17. — Let G be a simple Lie group, L = L(G) and
W C L be an invariant pointed, generating cone which is global in G and
contains Wyy,. Then 71(G) is finite.

Proof. — Set D = m(G) C g where G is the universal covering
group of G. Then W is global in G ([N1] IIL7). If D is infinite, then
D Nexpy(Zk) # {1} because D C Z(expzKn) = Z(expzKy)expz(Zk)
and Z(expzK}y) is finite. Consequently D’ def exp (D) N Zg # {0}. Now
Zk = Rz together with Theorem 3.16 shows that W is not global in G. O

Open problems : Two of the most interesting open questions related
to this subjects are :

1) Given an invariant wedge W in the semisimple Lie algebra L, when
is W global in the associated simply connected group ?
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2) Classify the maximal global Lie wedges W # L(G) in the Lie
algebra of a simply connected simple Lie group G (see [N2| for G =

SI(2,R)").

(BD]

[Fal]
[Fa2]

[Fo]
[HawE]
[HarC1]
[HarC2]
(He]
[HiHoL]

[HiLPy)

[Ho]
[Hu]
(L]

M]

(N1]
(N2]
(01]

(02]
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