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GLOBALITY IN SEMISIMPLE
LIE GROUPS

by Karl-Hermann NEEB (*)

0. Introduction.

One of the most essential facts in the theory of Lie groups is that,
given a Lie group C?, there is a one-to-one correspondence between the
analytic subgroups of G and the Lie subalgebra of L((7), the Lie algebra
of G. We are interested in the corresponding situation in the Lie theory of
semigroups.

Semigroups in connection with Lie groups became increasingly impor-
tant in recent years in such contexts as representation theory (OPshanskil
[01], [02], Howe [Fo]), harmonic analysis (Faraut [Fal], [Fa2]) and system
theory (Kupka [HiLPy]). For further references see [HiHoL] and [HLP89].

Firstly one has to look for a suitable class of subsemigroups of Lie
groups generalizing the analytic subgroups. These are the subsemigroups
S of a Lie group G for which the group G(S) ^ (S U 6'"1) generated by S
is an analytic subgroup of G. We call this subsemigroups preanalytic. As
is described in detail in [HiHoL] V, it is possible to define a tangent wedge
for such semigroups S of G by

L(5) = {x € L(G) : exp^rr) C cl^)5}

where the closure has to be understood with respect to the Lie group
topology of G(S). This generalizes the notion of a tangent algebra of an

(*) The author thanks Prof. Dr. Karl H. Hofmann for his support.
Key-words ; Semisimple Lie algebras - Lie semigroups - Semisimple Lie groups - Control
theory - Controllability.
A.M.S. Classification : 17B20 - 20M99 - 22E46 - 93B05.
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analytic subgroup. Let us call a closed convex cone W in a finite dimensional
vector space L a wedge and H{W)d^{W D (-W) the edge of the wedge,
i.e., the largest vector space contained in W. The suitable generalization
of the Lie subalgebras of L((7) are the Lie wedges. These are the wedges
W C L((7) with the additional property that

e&dhW=W for all h C H(W).

Notice that the Lie wedges which are vector spaces are exactly the sub-
algebras of L(C?). This definition is justified by the fact that for every
preanalytic subsemigroup S of a Lie group G the set L(5) is a Lie wedge
([HiHoL] V.1.6). It is also true that, given a Lie wedge W C L(G), we
find a local subsemigroup U C G having W as its tangent wedge in some
local sense, but the circle is a simple example of a Lie group such that
L(G') •==- R contains a Lie wedge iy = IR+ which is not the tangent wedge
of a subsemigroup of G. This shows that the correspondence between the
subsemigroups of the Lie group G and the Lie wedges in L(G) is far from
being surjective as is true in the group case where every subalgebra is the
tangent object of a subgroup. We call the Lie wedges W C L(G) which
occur as tangent wedges of subsemigroups of G global in G. If W -^ L(G')
is global in G, we clearly have S = (exp W) ^ G. These Lie wedges are
said to be not controllable in G. This definition has a control theoretic
interpretation : if W is interpreted as the set of controls, then S == (exp W)
is the set of points in the state space G attainable by the system whose
trajectories are obtained by piecewise constant steering functions.

To avoid technical difficulties in our formulations and proofs we often
restrict our attention to subsemigroups S C G for which G{S) = G and
Lie wedges W C L(G) which are Lie generating in L((7), i.e., L(G) is the
smallest subalgebra containing W. One knows from [HiHoL] that this is no
loss in generality but it guarantees that all semigroups S = (exp TV) have
dense interior and the same interior as S ([HiHoL] V.I. 16).

We trivialize the tangent bundle of G with the mapping

^ : L x G - > r(G), (x,g) ̂  d\g(l)x.

If V is a finite dimensional vector space and / : G —> V a differentiable
function we define f'.G—> Hom(L, V) by

(ff{g)^}=(df(g)^d\g(l)x) for all x € L.

For a wedge W of a finite dimensional vector space L we define the dual
TV* ^ {a; € L : {uj,x} ^ 0 for all x C W}. This set is always a wedge in
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L. We also set algint W = miw-w^V' According to [HiHoL] 1.2.2, we find
that

algint W* = {uj e L : {uj, x) > 0 for all x e W \ H(W)}.

Our main tool will be the concept of W-positive functions. These are the
real functions / on G which are contained in the set

Pos (W) ̂ {f e C°°(G) : f'{x) C IV* for all x C G}.

A principal resul in [Nl] 11.12, states that W is global in G if and only if
Pos(lV) contains a function / with

f(g)e algint TV* for all g C G.

Furthermore it is shown in [Nl] 11.13, that Pos(W) contains a non-constant
function if and only if W is not controllable in G.

Using these results, we give a characterization of those Lie wedges
W in L = s ,̂!?^ which are invariant under the maximal torus of the
adjoint group and which are controllable in the associated simply connected
Lie group G = SI.IR)^ (Theorem 1.3). The rest of Section 1 is dedicated
to a more detailed analysis of this situation. In Section 2 we develop
some algebraic tools concerning real root decompositions with respect to
compactly embedded Cartan algebras and invariant cones in semisimple
Lie algebras. To every invariant cone W in the semisimple Lie algebra L
we associate the bigger Lie wedge V ^ W + K^ where KH is a maximal
compactly embedded subalgebra of L. An inspection of the orthogonal
projection along K^ yields some useful information about the intersections
of V with sl(2, H)"1 subalgebras of L (Lemma 2.23). In Section 3 this allows
us to reduce the controllability problem for invariant cones in semisimple
Lie groups to the controllability problem for Lie wedges in sl(2, IR)772 which
are invariant under a maximal torus of the adjoint group. Combined with
the results from Section 1, we get a characterization of the invariant cones in
a semisimple Lie algebra L which are controllable in the associated simply
connected Lie group G (Theorem 3.5). If L is simple, much more is known.
We even get a characterization of those e^ KH -invariant wedges W C L
with H(W) = K^ which are global in G (Theorem 3.7). We conclude with
a criterion for globality in the non-simply connected case.
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1. Globality in S1(2,R)^.

In this section we consider the simply connected group G = Sl(2, R)^
and its Lie algebra L = L(C?) = sl(2,R)n. We use the following notations
for the elements of sl(2,R) :

. (\ 0\ - /O 1 \ , -, / 0 1 \
A =^ -lj5 B=[l o j - and u=[-l o j -

These matrices satisfy the relations

(1) [U, B] = 2A, [£/, A] = -25, and [A, B] = 2(7.

We denote the elements of the ideal L, = {0}'~1 x sl(2,R) x {O}71"' with
a subscript i and write T ^ span {Uz -\- Ai^Bz : z = 1,..., n} for the Borel
subalgebra of L, N ^ span {Ui -\- Ai : i = 1,.. . , n} for its commutator
algebra, K ^ span {Ui: i = 1,..., n} for the maximal compactly embedded
subalgebra and P =^ span {A^, Bi : i = 1,... , n}. Then L = K + T is an
Iwasawa decomposition and L = P + K a Cartan decomposition of L. We
identify L with its dual L using the non-degenerate symmetric bilinear form
—k, where k is the normalized Cartan Killing form with

n n

k(X)d^k(X,X)=^a]+b2-x] for X == ^a,A, + &A + ̂ .
1=1 Z=l

LEMMA 1.1. — Le^ g(z) == ^(1 - e"^)""1 for z e C \ (2ml \ {0}) and
a € R. Then the linear operator g(a,daA) on sl(2,R) is well defined (adA
has only real eigenvalues) and may be expressed as

/ I 0 0 \
0 -(——0 -G- a

^(ad aA) = tanha

0 a\ tanh a /

wi^A respect to the base (A,B,U) ofsl(2,R).

Proof. — From (1) we get

[A, B + U] = 2(B + (7), [A, B - U] = -2(B - U) and [A, A] = 0.
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Another simple computation shows that

_(g(2a)+g(-2a))=-a— and ^ (g(2a) - g(-2a)) = a.
2. tanha 2

We conclude that <y(adaA)A = A,

^(adaA)B = ̂ (adaA)(B + £7) -h p(adaA)(B - (7))

= , (g{2a)(B + (7) + ̂ (-2a)(B - U)) == —a— B + aU,
^ tanh a

and

^(adaA)(7 = _(^(adaA)(B -h U) 4- ^(adaA)(J3 - (7))

= ^ (^(2a)(B + £7) + g(-2a)(B - U)) = aB + —a— (7.
^ tanh a

For later reference we record the following simple fact :

LEMMA 1.2. — If the Lie generating wedge W in the Lie algebra
L(G) of the Lie group G is invariant under the differential d^(l) of the
automorphism 7 of G, then the Lie wedge V^L^expW)) is invariant
under d^(l).

Proof. — For v € V we have

exp(R+d7(l)v) = 7(exp(R+^;)) C ̂ ((expW})

C 7((expW}) = (expd7(l)W) = (expW).

This shows that d^(l)v e V and that V is invariant under ^7(1). n

THEOREM 1.3. — Let W C L be a Lie wedge with non-empty interior
which is invariant under e^ K. Then Wis not controllable in G if and only if

TV* n N / {0}.

Proof. — "=^5 : We assume that W is not controllable in G. Then
r d e f ,V=L({expW}) = L((expT^}) ^ L

is a global Lie generating Lie wedge which contains W ([Nel] 11.13).
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Therefore V has inner points. We see with Lemma 1.2 that e^KV = V
so it suffices to prove that V* n N ^ {0} because V* C W\ According
to Theorem 11.12 and Proposition III.4 in [Nel] we find / € Pos(V) with
f(g) C algint V* for all g e G and / o /expfc = / for all k e K. We define
f : L - ^ R b y f ^ f o expc.. Using the formula for the differential of the
exponential function from [He] p. 105, we see that

/'(expp) = ^/(expp)dAexpp(l) == df(expp)dexp(p)g(8idp)

= df(p)g(aidp) e algint V* for all p c P.

The operator g(a.dp) is well defined for every p ^P because adp has only
real eigenvalues for p e P. Furthermore we have /oe^ = /for all A; C ̂ .

n

^ a^A^ with ai
i=l

For p = ̂ a,A, with a, ^ 0, this leads to

0 = ̂  Ae^'^p) = df(p) [ - J U^] = df(p)B^ = 0.

Hence we may represent df(p) with a = (a^..., an) C IR" as
n

^7(P) = ̂  a,(a)A, + A(a)^.
1=1

With (2) we get
n

^(^^/(^(adp) = ̂ a,(a)A,
2=1

+A(a)(-a^+-^(3) +A(a) ( - a,B, + -^- ^) e algint V*v tanha, /v tanh ai

for all a C R71. The averaging operator p '. L -^ K == L^ of the
action of the torus group e^^ on L agrees with the orthogonal projection
onto K along P. Using the assumption that int W == 0, we find that

n

0 + 7r(int W) C int W D ̂  contains an element £/o d^ ̂  Wi with ^ ^ 0

for all i = 1, . . . , n. Now (3) leads to

-A:(^(a), £/o) = V ̂ A(a) -^- > 0
^ tanh a^

for all a e R71. Hence the element ^(a) ̂  ——1-——- ̂ (a) is contained
-k(uj(a),Uo)
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in the compact base C^{uj e W* : uj(Uo} = 1} of the pointed cone
V*. Setting dm J^ (m,?n,. . . ,m) we find a cluster point of the sequence
^(^m) ^ C, i.e., c<;o = lim o;(a^,). We claim that {ujQ^Ui — Bi} = 0 for

A—coo
z = 1,.. . , n. If /3i(amk) = 0 for almost all k G N, this is clear. Therefore we
may assume that /^(a^.) / 0 for all k C N. Now we have

(u;(am,,),Bi) __ {^(a^,),Bi) , , .
^(a^.^^-Ma^,),^)-^1111^^

which tends to 1 for k —>• oo. Combining both cases completes the proof of
n

our claim. Using this information, we represent c<;o as ^ ^ aiAi-^-f3i(Ui—Bi).
2=1

Application of a suitable element 7 € e^6 K leads to
n ______

7(^o) = ̂  sgn (A)^/a?+/3?A, + A^z € C C V*
1=1

71

because (7o and therefore (7 is invariant under e a ' d K . The element V^ ̂ (A^+
1=1

n

(7^) lies on the line segment between 7(0^0) and 7r(7(ci;o)) = 5 .A^5 hence
i==i

is contained i n C ' n A ^ c y * n A ^ \ {0}.
n

"<=" : Let LJ = ^A(Az + ̂ ) € W* n A^ \ {0}. We know from
1=1

[He] p.270, that G == (expr)exp(T^) is a product decomposition in the
sense of [Nl] IV.7. This means that the mapping (expT) x exp(K) —^ G,
(x,y) i-̂  xy is a diffeomorphism. We know, in addition, that uj € N =
[T.r]-1 = ([r,T] C [^^])-L which allows us to apply Proposition IV. 11
in [Nl] to find a function / C C°°(G) such that /'(I) = uj ^ 0 and
/'(^) € Ad(expAT^ = (e&dK)^ C W*. Using again Corollary 11.13 in
[Nl] we have proved that W is not controllable in G. a

Remark 1.4. — One should notice that for n > 1 there are Lie
generating e^ ̂ -invariant wedges in L without inner points. To see this,
let

n
^def 'C' d ^{^a ,A,+&A:a?+^ ^1 for z = l , . . . , n }

1=1
,defand W^R-^t/i+C).
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Then e&dKC = (7. Hence W is e^^-invariant, pointed, and contained in
the hyperplane U^. Every subalgebra containing W must contain L\ and
therefore C. Then it contains also P{ 4- [Pi, Pi} = Li and agrees with L.
Consequently W is Lie generating, n

COROLLARY 1.5. — Let n = 1, G = Sl(2,Rf, L = sl(2,R) and
Ws^{aA + bB + xU : x ^ 0,a2 + b2 ^ 52^2}. Then the e"^'invariant
wedge Ws is global in G if and only ifs ^ 1.

Proof. — We have N = T = R(A -h U) and TV; = Wi. Therefore
H^* n N ^ {0} if and only if U + A € W^*, which is equivalent to 5 ^ 1.
Using Theorem 1.3, we see that Ws is controllable in G if and only if s > 1.
If Ws is global, then it is not controllable and if Ws is not controllable, then
it is contained in a global W'g (Lemma 1.2) which shows that s ^ s ' ^ 1. n

Remark 1.6. — If we compare the proof of Theorem 1.3 with the
proof of Proposition 11.7 in [N2], it is remarkable that we did not use any
explicit parametrization of G to prove Theorem 1.3. The difficulties arise
from the great variety of e^ ̂ -invariant cones for n > 1. For n = 1 the
proof is much easier. From W = Ws and u(o) e Wg = Wi. for all a C IR,
we may conclude that

a(a)2 -^(a)^2 ^ \ /3(a)2 ————— + 0.
s tanh (a)

This shows that s2 < ——, ' ) , . for all a € R, hence 5^1. atanh (a)

LEMMA 1.7. — Let F C L be a subalgebra with [F,K\ C F and
I^ii-.FnPi^W}. Then

F=(FnK)+^Li.
id

Proof. — The Lie algebra L is a J^-module under the adjoint action
n

and L = K © ^^Pi ls tne decomposition into isotypical components.
1=1

Consequently F decomposes as
n

F = (F n K) e (j) Pz n F = (F n K) ® ̂  P, n F.
»=i iei
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The K-mod\i\es P, are simple, hence P, C F for i e J. But F is also a
subalgebra which leads to L, = [P,, P,] + P, C F for i e J. n

COROLLARY 1.8. — Let W C L = ̂ (2^ be an e^ K-invariant Lie
wedge containing W^. Then W is not controllable in G = S1(2,R)7^ iff
there exist numbers f3i € R~^~ such that

n

(4) ^ f^A(A/+;70cTV*\{0}.
i=l

If (4) is fulfilled, we have

H(L({exp W})) C ̂  n K C ̂  L,.
/3,=0

Proof. — Let W be controllable in G. Then, using Theorem 1.3, we
n

find an element cj = ^A(A^ + Uz) e TV* \ {0}. But (7, e Wf C W and
^=i

therefore
^,^}=-fc(A^^z)=A^o.

The other implication is trivial from Theorem 1.3. Let us assume that (4)
is fulfilled. Then V^L^expW)) is an e^ K -in variant global Lie wedge
in L (Lemma 1.2) with W C V and H(V) is a subalgebra of L with
[K,H(V)\ C H(V). The function / e Pos(V) C Pos(W) constructed in
the proof of Theorem 1.3 satisfies /'(I) = uj and therefore uj C V* C W*.
Especially we find that H(V) C uj1-. Let I = [i : H(V) HP, ^ {0}}. It
follows from Lemma 1.7 that i ̂  I for /?, / 0. Hence

H{V) C (H(V) n ̂ ) C ^L, C ( K n ^ ) ( B ̂  L,.
^=0 ^=0

PROPOSITION 1.9. — Let W C L = sl(2, R)^1 be an e^ K-invariant Lie
n

wedge containing W^ with H(W) = ̂ -L n K for uj = V A,(C7, + A,) and

\i > 0. Then W is global in G = Sl(2,R)^ifai2d only'Tfu; e W\

Proof. — "=^" : Let W be global in G. Then W is not controllable in G
n

and Corollary 1.8 provides /?, e R^ with ̂ ^^^(^ + A,) C TV* \ {0}.
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Then S vanishes on H(W) = uj1- 0 K. Hence S \K is a positive scalar
multiple of ci; |^. Consequently /^ = /^ for i = 1,..., n and p. > 0.

"<=" : Assume that u C TV*. We apply Corollary 1.8 to see that

H(L((expW))) C ^ n ^ ) ® ̂  Z^c^nJ^^Ty).
A,=0

This proves that W is global ([N1] III.l). D

LEMMA 1.10. — Let W C L be a Lie wedge and F C L a subalgebra
with

gad FW =,w and W H F C H(W).

Then V^W 4- F is a Lie wedge with H(V) = H(W) + F and V* =
W^F1.

Proof. — Firstly we observe that W D F = -W n F = ^(W) H F is
a vector space. Then [HiHoL] 1.2.32, implies that V is closed and therefore
a wedge. Clearly H(W) + F is contained in the edge H(V) of V. If for
v = w 4- f with / C F and w € TV the element —i; is also in V, hence
—w — f = w' -h // with w' € H^ and // e F. Consequently w + w' C
F n TV C i:f(TV) which proves that even w C Jf(TV) because ^(TV) is the
unit group of the additive semigroup W, hence H(V) = H (W) + F. For
/ € F and h € ^(WQ we get [h,f] € Jf(^) because e^-^HQ = ^(T^)
for all < € R. Therefore

gad/y ̂  e^iy+e^F = W+F = V and e^V = e^^T^+e^^F = V.

We conclude that e^^^Y = V and therefore V is a Lie wedge. That
V* = VF* n F1- is clear because a linear functional is non-negative on V if
and only if it is non-negative on W and vanishes on F. D

COROLLARY 1.11. — Let W C L = sl(2,R)71 be a pointed e^1^-
n

invariant Lie wedge containing W^ with uj = ^^ \(Ui -h A^) 6 TV*, A^ > 0
?=i

and ̂ ± n K nW = {0}. Then W is gtobaJ in G.

Proof. — Let E = (J1 C\K. Then V == IV + E is a Lie wedge because
EnW = {0} (Lemma 1.10). It is also invariant under ea'dK because this is
true for W and E separately. It follows from Proposition 1.9 that V is global
in G because uj € F* = W H E ^ . The fact that WnH(V) = WnE = {0}
allows us to apply [Nl] III.l, to complete the proof. D
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We conclude this section with some facts about the subsemigroups
5' = {expW) of G where W is an e^K -invariant wedge in L.

PROPOSITION 1.12. — Let S C G = 81(2,^)^ be a subsemigroup
which is invariant under all inner automorphisms Ik with k e K^ = (exp K}
and q : G = 2^>exp(P) -^ K" the projection onto K " . Then

{q(s)2 : s e S } C S ^ K < > Cq(S).

Proof. — It is clear that S D K^ C q(S) because q fixes the elements
of K " . Let s = fcexp(p) e 6' with p € P and k € K " . Then Ad(A/)p = -p

n

for fc' == exp ^ , ̂  Ui j as can be easily seen from a direct computation
i-=l

using (1). This leads to

q(s2) == kk =• kexp(p)exp(-p)k' = sklk-i (exp(-p))
= sklk-i oj^(exp(p)) = 54-i^(^exp(p)) = s l k - i k ' ( s ) ^ SS = 5,

which completes the proof, n

If the conditions of Corollary 1.11 are not satisfied, we get more
information about the semigroup S :

PROPOSITION 1.13. Let W C L = s ,̂!̂  be an e^K-invariant
n

Lie wedge containing W^ with uj = ^A,(£7, + Ai) ^ W*, A, > 0 and
i=l

uj1- n K n W = {0}. Suppose that z ^ , . . . , Zn-i e ^-L H K is a base of this
vector space. Then

G = exp (Z^i C ... C ~3-Zn-\}S for S = (exp W}

and K" = exp(Z^i C ... C lzn-i)(S H K " ) .

Proof. — To get a contradiction, we assume that G ̂  5d£fexp(Zzl C
... C Z2;n^i)5. The semigroup 5 has dense interior ([HiHoL] V.I.10), and
therefore ~S ^ G ([HiHoL] V.5.14, V.5.16). Then [Nl] 1.5 provides a non-
constant function

/ € Mon(5) = {/ € C°°(G) : f(gs) ̂  f(g) for all g € G, s 6 S} C Pos(lV).

Let Zd^fexp(Z^l © . . . © Z^_i) and Ki d^fexp(^-L H J^)/Z the associated
torus group. The function / is constant on the cosets g Z , hence it factors



504 KARL-HERMANN NEEB

to a function /: G/Z —r R. The group JC0 acts by right multiplication on
G/Z and Z acts trivially. So the torus K\ acts on G / Z . If m is normalized
Haar measure on K\ and TT : G —> G/Z the quotient homorphism, then the
function

h : g ^ I f(7r(g) . k)dm(k) = ( f(gk)dm(k)
JKi JKi

is smooth and satisfies the conditions

1) h(g,) > h(g^) if f(g,) > f(g^

2) h(gs) ^ h(g) for g € G, 5 e 5, and

3) A(^fci) = h(g) for all A; € K^

This shows that /i € Pos(V) for the Lie wedge V = W -{• ̂  Ft K
(Lemma 1.10). The fact that h is not constant implies that V is not
controllable in G ([Nl], 11.13). Now Corollary 1.8 provides real numbers

71

ft € R-^ such that ^ = ]^AW + A,) ,€ V* \ {0}. We conclude that
i=l

n n

^f3iUi C V* n K = R-^^A^y This proves that ^ 6 R4-^ C V* C
1=1 i=i
W*, a contradiction. D

2. Invariant cones in semisimple
Lie algebras.

In this section we denote with L a real semisimple Lie algebra and
n

with L = Q^ Li its decomposition into simple constituents such that Li
i=l

is non-compact for i ^ m and compact for i > m. We assume that L
contains a pointed Lie generating wedge W which is invariant under the
adjoint action, an invariant cone for short. We fix a compactly embedded
Cartan algebra H of L ([HiHoL] III.2.14) and denote the unique maximal
compactly embedded subalgebra containing H with KH and its center

n

with ZK ([HiHoL] A.2.40). Then H = (f)^ where Hid^H n Li is

1=1
n

a compactly embedded Cartan algebra in Li and KH = ^^^^ ^h
z=i

KHi == ^ for i > m because Li is compact for i > m. We need the real
root decomposition of L with respect to H :
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THEOREM 2.1 ([HiHoL] III.6.5). — Let L be a finite dimensional Lie
algebra with compactly embedded Cartan algebra H and A be the set of
roots ofZ/c with respect to H^. These are all purely imaginery on H. We
set

^{-zAI^AcA} and L^ = L-^^L H (L^ C L^) for uj = -i\\n.

Any choice of a closed halfspace E in H whose boundary meets the finite set
fl, only in {0} allows us to represent fl, as Q = n"*" U Q~ where ̂ + = E H Q
and n~ = -^. We shall call ̂ + a set of positive roots. For each choice of a
set of positive roots there is a unique complex structure I : H^ —> H^~ with
I2 = —id^+ and a direct decomposition of L into isotypic H-submodules
under the adjoint action

(5) L = H ( B H + , H+= Q) Z/^
o^a/e^-1-

where the action of H is described by

(6) [h, x\ = UJ(K)IX for all h € H, x € L^.

The complexification ofL^ is L^ 9 L^, where A is the unique complex
extension of iuj. We have

(7) [2^, L^] C L^' + L^~^'

and ifq is any invariant symmetric bilinear form on L x L, then

(8) q(x, I x ) = 0 and q(x) = q{Ix) for all x € L^.

Proof. — In view of [HiHoL] III.6.5/8, it only remains to show (7).
This follows easily :

[L^L"] = [L H (L^ C L^),L H (L^ © L^')}

cLn^eL^.L^L^}
c L n (^+v © ̂ c^^ e ̂ "^ e JL^-A)
= L n (z^+^ e zL^^' e L^-^' © z'L^-^')
= L^^' e L^^' .
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DEFINITION 2.2. — A root ^ e Q is said to he compact if L^ C K H .
The set of compact roots is denoted with Q^. We write Q^ for the set of
non-compact roots and

PH^ Q L-.
^e^

According to [HiHoL] IH.6.38, we get a Cartan decomposition
L = KH C PH of L and

K H = ̂  L^HO (]) L".
^e^ o^o/e^

We get a disjoint decomposition

^=U^")
such that

{^ : ̂  e ̂ (z)}

are the non-compact roots of L, with respect to Hi ([HiHoL] III.9). For
x € H^ we set Q(x) ^ [ I x , x ] and for uj € f^ we choose an element
^ € L^ such that cj(Q(^)) = 1 and for ^ (E 0^ an element ̂  e L^
with o;((3(^)) = -1. The following lemma shows that this is possible.

LEMMA 2.3. — Let L be a semisimple Lie algebra with the compactly
embedded Cartan algebra H , uj e ̂ + andx C L^\{0}, then uj[Q(x^)} / 0.

(i) (x) = Rx © RIx C RQ(a;) ^ sl(2, R) iff^(Q(^)) > 0 iffu; C Q^
and

(ii) (x) = R^ C RJa; C RO(rc) ^ su(2) iff^(Q(x^) < 0 iffo; € ̂ .

Proof. — Using [Hu] p.37 and Theorem 2.1, we see that the complexi-
fication (x)c of (x) is isomorphic to sl(2, C). Consequently {x} is a real form
of sl(2, C) and therefore a simple Lie algebra. An application of [HiHoL]
III.6.12, shows that u[Q(x)} ^ 0 and that (x) ^ sl(2,R) \i uj{Q{x)} > 0
and (re) ^ su(2) otherwise. The rest follows from [HiHoL], III.6.16. D

LEMMA 2.4. — For i = 1,... ,m we have dimZ^ D L, = 1 and the
Ru-module PH H L, is irreducible. We may choose ^+ and z € ZK such
that uj(z) = 1 for all u e fl~p.
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Proof. — It follows from [HiHoL] p.249, that, for i ^ m, the ideal L, is
hermitean, i.e., Z(KH,) / {0}. Consequently it is an irreducible symmetric
Lie algebra ([He] pp. 377, 379) and the KH, -module PH HL, is irreducible.
It follows from ([He], p.382) that dimZ(JQ^) = dimZ^ H L, = 1 and that
ZK^LI acts on PH^LI as scalar multiples of the identity (Schur's Lemma).
Hence \uJ(zz)\ = c ̂  0 for a ^ € ZK H L, and all cj € Q^(z'). Therefore we
may choose ^+ such that uj(zi) = 1 for all uj € n^(z) and z = l , . . . ,m

772

(cf. [HiHoL] HI.6.37). Then z = ̂  z, is the desired element, a
2=1

In the following we denote the Cartan-Killing form of L with B and
set A-^ = {A e A : -z'A|^ C ^-4.

LEMMA 2.5. — For A € A+ we choose t\ e HC such that \(h) =
B(tx,h) for all h € H and define (A.A')^^,^) for A,A ' € A. If
^ = —zA|i-f and u j 1 = —iX'\H we get

(9) h = ~^^'1Y^X') = ̂ l̂̂  ̂ W^ = -B(Q(x.),h).U\^^) £>\X^i )

Proof. — The last formula follows immediately from

cj(/i) • B(x^) = B(x^^(h)x^) = B(x^, [h - Ix^})
= B(^, [Ix^.h]) = B([x^,Ix^h) = -B(Q(x^),h).

Consequently we have the relation

xW=i.(k)=-^B(Q(x^
B(x^)

for A € A+ and h € H. This proves the formula for t\. The scalar product
of two complex roots A, A' can be computed as follows :

(A,V) » B(,̂ ,) » .^)_0^)) . "W^.
B(x^)B(x^) B{x^)

D

LEMMA 2.6. — Let uj,(jj' C ̂ , uj / ± u j ' , uj = -i\\H, ^1 = -i^^H,
h\ = 2t\l\(t\) and h\i = 2^ //A'(^ /)• Suppose that p and q are the
greatest integers such that A + pA' and A — q\' respectively uj + puj' and
uj — quj' are roots. Then

(10) ^0^,))=^=^)=^- for ^ ' e ^
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and

P - 9 _ ^/v (A^)
^---^^-"(A^V)(11) ^ (Q(^) )= p g =- ,A(^)=- v ^- for a/e^.

Proof. — According to [Hu] p.39 we have q — p = A(/i;v) for
/iy = 2 t ^ / \ f ( t x ' ) [Hu] p.37. Consequently

q ~ p \d \l\'a ^ \( ^^{x^\/\f( i^^\——— = A(^)/A (^ /) = A - p. v /A - - /——r2 \^ ^(^/) / \ B{x^) J
= ̂ (0(^))/^(Q(^/)) = ±o;(Q(^))

where the minus sign is valid if and only if uj' is compact (Lemma 2.3). D

THEOREM 2.7. — Suppose that L is simple, / ^ i , . . . , fii is a basis of the
root system A"1" and ujj = —i/^|^. Then the following assertions hold :

1) There is a unique non-compact base root, we may assume uj\, and
every positive root uj may be written as

i i
uj = uj^ + V^ rjiUJi if uj C ^t~p and uj = V^ ̂ ^ if uj C ^^.

%=2 i=2

2) The sum of two positive non-compact roots is never a root.

3) There is a system 11 = =^ {v\,..., f/^} of roots in ̂  such that

a) Two roots v ^ v ' € II are strongly orthogonal, i.e., y ± y ' ^ fl.

b) v\ = uj\ is the non-compact base-root.

c) Vi is a minimal non-compact positive root which is strongly
orthogonal to v\,..., V{-\.

d) D ^ span [Ixy : v C II} is a maximal abelian subspace of
PH.

4) Let H -^ span {Q(x^) : v C 11}. For a compact root uj € 0^ there
are three mutually exclusive possibilities :

a) uj is strongly orthogonal to all v € II, i.e., uj\^ = 0.

b) There exists one v € II such that uj[Q{x^}) = ~^^H ^)r

u, G 11, uj -\- v is a root and uj is strongly orthogonal to all
other roots in II.
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c) There exist two roots v / v ' 6 11 such that uj + v and uj — y '

are roots, uj[Q{x^)} = g(<^ - ̂ ) for /A € H, and ^ is

strongly orthogonal to all other roots in II.

5) For a non-compact root uj C ̂  there are three mutually exclusive
possibilities :

a) uj e n.

b) There exists one v C II such that(jj[Q(x^)) = _<^ for ^ e II,

v — uj is a root and uj is strongly orthogonal to all other roots
in n.

c) There exist two roots v / v ' e 11 such that v — uj and v ' — uj

are roots, uj{Q{x^)) = ^(^'^ + ̂ ) for fi e 11, and uj is

strongly orthogonal to all other roots in II.

6) Let a C ^t and v C II. Then v ± a are not both roots.

Proof. — 1) See [M] p.359 and [HarCl] p. 761.

2) This follows immediately from 1).

3) This is proved in [HarC2] pp.581-583.

4) This follows from [HarC2] p.586, [M] p.359 and Lemma 2.5.

5) See [HarC2] pp.587-588 and Lemma 2.5.

6) See [HarC2] p.585. D

Remark 2.8. — Theorem 2.7.2)-6) clearly may be generalized to
n

the semisimple case L = V^^z- Then a basis of the root system A

contains exactly m non-compact roots, one for each non-compact ideal
Z/^, z = l , . . . , m. D

COROLLARY 2.9. The following assertions hold for uj C ^p :

1) For uj' C n^ wa have

^(Q(^))=j^o,

where q is the greatest integer such that uj — quj' is a root,
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2) uj{Q(x^)) <= {0,j} for all v € II and u; i 11, aad

3)^(^Q(^))e{1 ! } .
^en

Proof. — 1) This follows from Lemma 2.6 and Theorem 2.7.2.

2), 3) These are consequences of Theorem 2.7.5. D

PROPOSITION 2.10. — For v,^i e n we have

(i) ^(Q(x,))=6^,

(ii) [Ixv,x^\ = Q{x^) • ̂ , and

(iii) [J^,Q(^)] =^-^.

Proof. — For v ^ fi c II neither ^ 4- ^ nor i/ - /^ is a root.
Therefore v{Q{x,)} .7^ = [Q(x^x^] = [ [ I x ^ x ^ x ^ ] = [[Ix^x^x,}+
[lx^[x^Xy\} = 0 because [2^,1^] = 0 (Theorem 2.1). This gives i)
because the elements Xy were chosen such that v({Q(xv)} = 1. The second
assertion follows from the definition of Q(x^) and [Z^, L^] = {0} for v / /^.
With [Ja^, Q(^)] = -^(Q(^))JJa;^ = Xy ' 6^ we prove iii). D

COROLLARY 2.11. — Let k = card(II) and S^ Q)(x^). Then S ^

s\(2,H)k with

U^ = 2Q(^), A^ = 27a;̂  and ^ = 2a;^.

Proof. — With Lemma 2.3 we see that (x^} = HIx^eHx^@RQ(x^ ^
sl(2,R), because i/(Q(x^)) = 1 for every v e n and from Proposition 2.10
that S is a direct sum of these ideals. In addition we have

[U^B^] = [2Q(^),2^] = Mx^ = 2A^
[U^ A^\ = [2Q(x^), 21xv} = -4^ = -2B^ and
[Ay,B^\ = [2Ix^2xy\ = 4Q(^) = 2^.

This completes the proof. Q
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For a subalgebra A of the Lie algebra L we define

Imu(A) = (e^) and INN^(A) = Inn^A).

We usually omit the subscript if no confusion is possible. For every pointed
generating invariant cone W C L we have, according to [HiHoL] III.2.15,
that

(12) int W = (Inn L)algint(^ H W).

If N(11)^ {g e INNL : Jg(lNN^Jf) = INN^} is the normalizer of the
maximal torus INN^AT in INNL, then N ( H ) C INN^A^ and the quotient
group N(H)/IWLH is finite ([HiHoL], III.5.6). We call it the Weyl group
W{H, L) = W of L. For v C W with v = T^INN^), n C A^) and h e H
we have

(13) v'h=-n{h) and e^^ = n o e^ o n-1.

It can be shown ([S] p.151) that the Weyl group agrees with the group WK
of automorphisms of H generated by the reflections on the hyperplanes
ker uj for uj e 0^.

From now on we identify the duals of L and H with L and H
respectively using the non-degenerate symmetric bilinear form —B where B
is the Cartan Killing form of L. Then —B is positive definite on H ([HiHoL]
III.6.8). Consequently we set for a cone W C L and a cone C C H :

W" ̂ {x € L : B(x, y ) ^ 0 for all y e W}

and

C" ̂ {h e H : B(h, c) ^ 0 for all c e C}.

The next Lemma was already proved in [Pa] and [01] for simple Lie
algebras but the same proof works in the general case.

LEMMA 2.12. — Let W C L be a pointed generating invariant cone,
then

{W n H)" = w" n H.

Proof. — That IV* H H C (W D H)" is clear. Let p : L -> H be the
orthogonal projection. Then p is the averaging operator for the action of
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the compact group INNIL Consequently p(W) = W D H. If ft € (TV Ft .HV
and a* C IV, we get

B(x,h)=B(p(x),h) ^0

because p(.r) — x is orthogonal to Jf. D

DEFINITION 2.13. — The following two cones play the role of a minimal
and a maximal trace of an invariant cone in H :

Cmin^ Y, ^Q(x^ and
^e^

C m a x d ^ f ^ i n = { A € ^ : ^ ( / l ) ^ 0 for all ^C^}.

That Cmm = [h e H : uj(k) ^ 0 for all uj C H^} follows from Lemma 2.5.
One knows from [HiHoL] III.9.15, that these two cones are invariant under
the Weyl group, that Cmin is generating and that Cmax is pointed because
L is semisimple. The fact that Cmin c Cmax (Corollary 2.9) implies that
both are pointed and generating.

THEOREM 2.14 (Classification of Invariant Cones). — Let W C L be
a pointed generating invariant cone. Then there exists a choice of positive
roots ^+ C ^ such that the cone C ^= W D H is invariant under the Weyl
group and satisfies

(14) Cmin C C C Cmax.

Conversely, ifCCH is a pointed generating cone which is invariant under
the Weyl group and satisfies (14), then there exists a pointed generating
invariant cone W C L with W H H = C.

Proof. — Let C == W D H for a pointed generating cone W C L. We
know from ([HiHoL] III.9.18) that C is invariant under the Weyl group and
uj{C)Q(x^) C C for every non-compact root uj because the set (^(C)Q(x^)
does not depend on the choice of positive roots. If one replaces uj by -cj,
one has to change the complex structure I\L^ which leads to a replacement
of Q(x^) by -Q(x^). Therefore uj[C) / IR for all ^ C Q^. Hence C*
contains either uj or —uj. If E C H is a half space which contains C,
satisfies C D 9E = {0} and no compact root lies on its boundary, we set
^ d£f n H E. Then o/(C) = R-^ for all uj e fl~p. This implies that C C Cmax
and Q(x^) C C. This leads to Cmin c C and completes the proof of the
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first part. Conversely (14) implies that (j^(C) = R"^ for every uj € f^, hence

^(C)Q(x^) = R^Q(x^) C C^n C C.

Now a further application of [HiHoL] III.9.18, completes the proof. D

We say that a root a; € 0^ is long if the associated complex root
A 6 A'1" with uj == —i\\H is long.

PROPOSITION 2.15. — Suppose that L is simple. Then the following
assertions hold :

1) All roots i /cll are long.

2) If(jj € f^ is short, then there are two long roots v ^ v ' G ^p such
that Q(x^) = Q(x^) + Q(x^).

3) All long roots in Q^ are conjugate under the Weyl group W.

Proof. — 1) See [Pa], p.219.

2) Let uj € ^p be a short root and uj = -2^|jf for f3 e A"^. With [Pa]

p.219, we find two long roots A, A' e A"^ with /? = ^(A -h A'). For h e H,

v = —i\\H^ sind ^/ = —zA'l jy we have

B(h,Q(x^} = -^h)B(x^) = ^(A+A')(/i)B(^)

^_B(x^ ^^^^^^^^^Q(^^Q(^)^
^ ZiU\^Xy)

because v and ^/ are long. One checks easily that A cannot be of type G^,
hence (A, A) = 2(/3,/3) ([Hu] pp.58,59). This implies with Lemma 2.5 that

B^)=B(x^)=lB(x^=——=-r-r,
2 v "/ (A, A) (A7, A') 2(/3,/3)

Therefore Q(x^) = Q(x^) + Q(x^).
3) We choose the minimal root v\ € II and assume that not all long

roots uj € 0^ are conjugate to v\. Let ^ € f^ be minimal with this
property. Firstly we assume that there exists v C 11 with uj — v € Hji? \ {0}.
Then v is long and lower than uj^ consequently it is conjugate to v\. The
fact that u; is long implies with Lemma 2.5 and Theorem 2.7.c) that

^=^(Q(^))=^(0(^)).
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Now Lemma 2.6 and Theorem 2.7 show that i/+2(c<;-^) = 2uj-v is no root
and the reflection generated by uj — v interchanges v and a;, a contradiction
to the fact that uj is not conjugate to v^. Consequently we may assume
that uj - y ^ ^p \ {0} for all v e II. We choose vi € II minimal with the
property that ^ -uj C ̂  (Theorem 2.7.5). Then uj is strongly orthogonal
to all roots uj C II with j < i. If i = 1, we get 1/1=0; (Theorem 2.7.1)
which contradicts our hypothesis. Iti > 1, we get uj = vi (Theorem 2.7.3.c)
and we find a baseroot a C 0^ with uj — a G ri~p, hence u 4- a ^ f^
(Theorem 2.7). The other end c<; — pa of the a-string through uj is positive
(Theorem 2.7.1) and conjugate to <jj under the reflection Sa on ker a which
is contained in W = Wj<, a final contradiction, n

COROLLARY 2.16. — We have

Cmm = ̂  IR^c^Q^)) for every long root v C 0^.
wCW

Proof. — This follows from the definition of Cmm and Proposi-
tion 2.15. D

We know from Theorem 2.14 and Definition 2.13 that, if L is simple,
there are invariant cones TVmin and TVmax in L with TVmin H H = Cmm and

n

Wmax H Jf = Cniax. Now let L = ̂  LI be semisimple. The fact that the
1=1

cones Cniin and Cmax are adapted to the decomposition of L implies that
there are invariant wedges

m n m

Wmax = ̂  Wmax,. + ^ £, and Wmin = ̂  ^min,,
t=l 1=771+1 t==l

where the cones with subscript i are the mininal and maximal cones in the
non-compact simple Lie algebras Li for i ̂  m.

With respect to the maximal abelian subalgebra D == d£ span{J:z^ :
v C II} C P^ we get a real root of decomposition of L :

L=DO ^ L^e(^)nL^),
peEo\{o}

where E^ denotes the set of linear functionals on D such that

L^ = [x C L : [a, x\ = p(a)x for all a C D} ^ {0}.
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We define the functionals py € D by p y ( I x ^ ) = 6y^ for all /A e II and
choose a positive system S^ C S^ which contains functionals. Then

T^De^L^
P^D

is a Borel algebra of L.

DEFINITION 2.17. — We fix the notations for the following special
elements in L :

b^Y^x^ u^z+b and l^ z - Q(b) = z - ̂  Q(x^)
^en ^en

where z C ZK is chosen such that uj(z) == 1 for all uj e 0^. We write the
corresponding elements in the ideals Li with a subscript i. a

LEMMA 2.18. — For v e II and Xy € V the following assertions hold :
1) Xy + Q(x^) € L^, ̂  - Q{x^) e L^, and

2)l=z-^Q(x^eL°DnH.
i^en

Proof. — 1) follows immediately from Proposition 2.10 and 2) from

[ I x ^ , 1} = [ I x ^ , z] - ̂  Sy^Xy = ~^{z)IIx^ - x^ = 0.
i^en

D

LEMMA 2.19. — JzL is simple, we have

u1- = KH C T = {x e L: B(x, u) = 0}.

Proof (See also [V] p. 10). — The space PH is orthogonal to K H ,
therefore B(z, [k, k'}) = B([z, k], k1) = 0 which leads to

B ^ K H ) = B ( Z ^ K H ) = W .

For p + p ' / 0 the associated root of spaces are orthogonal ([S] p.151).
Therefore

B(u,T)=B(l^^(Q(x^^x^T)
i/en

CB^r}KH+ ̂  L^,D+ ^ L^)CB{KH,D)={O}.
pes^ p'es^
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Consequently the hyperplane K^ © T agrees with u1-. a

DEFINITION 2.20. — The following cone plays an essential role for
the globality of invariant cones in simple Lie groups (Section 3 and [02],
p.311). We define the cone CQ by its dual

C^C^ + ̂  H^w(l) = conv(Gn,in + WR^).
wew

PROPOSITION 2.21. — Let L be simple. Then the following assertions
hold :

1) ^ e Go* C Cn,ax and I e S^ for S = Q)(x^).
i^en

2) Q(xv) ± xy e W^in tor all v e ^p.

3) In L exists an invariant pointed generating cone Wo with WQ nH =
Co.

4) u € WQ C W,^.

Proof. — 1) (Cf. [V] p.9). Corollary 2.9.3) implies for every uj e ̂
that

^(l) = uj{z) - uj(Q(b)) = 1 - uj[Q(b)} ̂  0.

Therefore / e G^ax and Q C Cmax because Gmax is invariant under the
Weyl group (Definition 2.13). For uj C II we have uj(l) = 0 (Proposition
2.10), hence B(l,Q(x^)) = 0 (Lemma 2.5). This proves that

l e S - L r \ H = F) kero;.
u;en

2) With Proposition 2.10 we see that [Ix^,Q(x^)] = Xy. For t (E R this
leads to

e^^-Q^) = cosh(t)Q(x^) ± sinh(^)^ e W^n.

The closedness of Wmm now shows that

""o sin )̂ e±tad/a;^(a;-) = Q^ ± ̂  ^ W,,,.

3) This follows from 1) and Theorem 2.14.

4) With 1) and 2) we see that

u = I + Q(b) + b € Wy + W^ C Wo C W,^.
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D

LEMMA 2.22. — Let q : L -^ P(H) C ZK be the orthogonal projection
with ker q = K^, then we have, for h € Hi, that

(15) ,(/,)=^)^ ^ ̂ ))--^.,
^y^i) D\Zi)

If x = ̂  t^Xy, we get :
i/en

(16) e^xh=h^Y^ ^(/i)((cosh^ - l)Q(xy) - sinh^Jrr,) and
i^eUi

(17) (^e^)

= -D——( 1^ ^(/i)5(a-^)(cosh(^) - l)B(/i,2,)) - \" (/(/i)sinh(^)Za-^.
v t/ '/en. / ^gn.

Proof. — (15) : The first part follows directly from

B(h- )zt Zi,Zi\ =0 and kergn H, = z^- n H, = K'^ D H,.
^y^i) /

In view of Lemma 2.5, for v € II we have

a(0(x }} - B^xv^zi) ~ ^i)B(x^ B(x^
q{Q(x^ - B^) zt = ———B^ zt = -^) zt-

(16) : The subspace ID = ^ Rx^ C Pn is abelian. By successive
^en

application of e^^^-z for vi C n we find with [HiHoL] III.7.8, that

^ada;^ ^ ^ad^a^i . ^ _ . g^^fc, ^^fc, ^

= /i + ̂  ^(/i) ((cosh ̂  - l)Q(x^) - sinht ̂ Ja:^.
i/en,

(17) : This follows by combining 1) and 2). n

LEMMA 2.23. — Let W C L be a pointed generating invariant cone
containing IVmin?

U^2^Q(x^ A^2^>., 5^2^,
^en, veiii i^eUi
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Ed^sp^{Ui,Ai,B^i=^...,m} and V^^W+K^^E. Suppose that
there exist numbers 6i C R4" with

m

^((7,+A,)ey*,
1=1

then
m

^<Uelv*
1=1

r\c

for 6i = ~D/j~\- The subalgebra E is isomorphic to sl(2)m.

Proof. — Using Corollary 2.11 we see that E ^ sl(2)771. We set
m m m

^{i : 6, / 0}, U =^U^A = ̂ A^ B=^B, and
1=1 i=i i=i

6 261 = 61
1 B(B,) ~2^B(^) '

^en,
m

To get a contradiction, we assume that V^(^ ^ W*. Firstly we find an
1=1

m

element h e W with B{h, ̂  <^) > 0. For v e n we have B(li, Q(x^)) = 0
i=i

for i = l , . . . ,n (Lemma 2.21.1) and Q(x^) € Wniin C W. Adding scalar
multiples of the Q{xy) to h and rescaling, we may assume that uj(h) == 1
for all a; € II. The invariance of W implies that e^tBh € W for all t C R.
Using the previous lemma, we see that the following element is contained
in q(W) :
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q^ ad Bh)=-^ ——— ( E ^.)(cosh(2^) - 1) - B(/i, ̂ ))
z=i Ju^ \en, /

- y^ sinh(2t)J^
^en
m __ __

= -ER^( E 5(^)cosh(2f)+ ̂  B{Q(^),h)
i=i D^ \en. ^n,

-B^,))-8^

= -E ̂ (^W0081'!2') -SC1.'.)) - '"'y2t) -*•^l -O^^J v-l: / z

We have, according to Lemma 2.22, that

^^w^---^^.---1,^,..
The fact that q(etadBh) € W + K'^ implies that the following element is
contained in V = (W + K'^) D E because its image under q agrees with
^(e'^/i).

^E^) U^B(B^osh(2t) - B(h,^) - slah^A

_ cosh(2t) sinh(2^) ^ 2B{h,k)
-——^-U-——^A-^-^B^U^•

m

According to our assumption Y = ^ V^(L^+A^) e V * . This shows that
1=1

there exists A > 0 such that
1 m m 9A nfh 1 \

AB(X, Y)=—^ (cosh(^) + sinh(2,)) + ̂  ——^-2

z z=l z=l ^V^J
-i 771 771

=-,^^+^(/i,^^) ^0
1=1 t==l

for all y € R. For ^ —>• —oo this leads to
m

B(h^6,h) ^0,
i=i

a contradiction, n
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PROPOSITION 2.24. — Let W be a pointed generating invariant cone
which contains W^m in the semisimple Lie algebra L. Then the following
assertions are equivalent :

i^n^er^^o}.
^ m

2) There exists 6i ^ 0, i = 1,. . . , m such that Y^ 6zUi e W* \ {0} and
^ z=l
6i ^ O f o r i e I C {!,..., m}.

m

3) There exist ̂  ^ 0, i = 1, . . . , m such that ̂  6ih € TV* D H \ {0}

and S i ^ O f o r i e I C {1,... ,m}.

m

Proof. — 1) =^ 2) : From Lemma 2.19 we get (K'n C T)^ = ^RIA,

because Rui = (J<r^ C T^)-1- D L^. Therefore every non-zero element
uj e IV* n (^ C T)-1 may be written as

771

uj = ̂ SiUi.
i=l

From Zi e IVmin C IV for % = 1 , . . . , m and B(u,, z,) < 0 we find that

(uj.Zi) = -6iB(ui,Zi) = -6iB(zi) ̂  0,

which proves that 6i ^ 0.

2) =^ 3) ^Let V ^ W + ̂ , then V is a Inn ^-invariant Lie wedge
in L with H(V) = K^ (Lemma 1.10) because W H K^ = {0} ([HiHoL]
III.5.16). Therefore

yn

^6^ ew^K'H- =v\
i=l

We set V ̂ VnE with E as in Lemma 2.23. The elements k are orthogonal
to E (Proposition 2.21), hence

m m

2 Y,6,(u, - I,) = ̂  6i(Ui + Bi) e (V* + £-L) n E C V\
1=1 !=1
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m
From the invariance of V under Inn(^ RUi) we get that V <^((7, -+- A,) € .

^ z=i
771

V* and with Lemma 2.23 that ^^Jz € TV* for
1=1

6 26i1 B(B,Y
3) =^ 2) : With the notations from above we find with Lemma 2.21

that

^ 6,u, = ̂  6, (l, + ̂  (Q(;c,) + a-,))
t t i/€ll,

€ ̂ 6ik + W^in C W* + TVniin C W*.
t

D

3. Globality of invariant cones
in semisimple Lie groups.

PROPOSITION 3.1. — Let G be a Lie group, K C G a compact
subgroup, L = L(G), W C L a pointed generating Ad(K)-invariant cone
with L(K) H W = {0} and V^W -h L(K). Then the following assertions
hold :

1) W is global in G if and only ifV is global in G.

2) W is controllable in G if and only ifV is controllable in G.

Proof. — 1) This follows from Proposition III.5 in [Nl].

2) If W is controllable in G, it is clear that V is controllable in G, too.
Let us assume that W is not controllable in G, i.e., S^^xpW) -^ G. Then
V = L(5) / L is a wedge which is global in G (Lemma 1.2). Applying [Nl],
III.5, we see that V-{-L(K) is global in G. So we are done if we can show that
V+L(K) + L. If this is false, we have H(V+L(K)) =H{V)+L(K) = L.
This leads to

VnL(K)<^H(V),

a contradiction to [Nl] III.5. n
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Remark 3.2. — If K^^expK'ff) is the subgroup of G with Lie
algebra K^, then K is a compact semisimple group and Proposition 3.1 is
applicable with V = W+K^ because WnK^ = {0} ([HiHoL] III.5.16). D

COROLLARY 3.3. — Let L be a semisimple Lie algebra, W C L an
invariant generating cone, Lj the sum of the non-compact ideals and Ln
the sum of the compact ideals. The simply connected Lie group G with
L(G) = L is a direct product G = GixGn withL(Gi) = Lj, L(Gu) = Ln
and the Lie wedge W is global [controllable] in G if and only if the projection
dpi(l)W == WnLi is global [controllable] in Gi, where pi is the projection
G —> Gi onto the first factor.

Proof. — We want to apply Proposition 3.1 with K = Gu and
V == W + LH. It follows from Lemma III.8 in [Nl] that V is global in
G if and only if dpi(l)V = dpi(l)W is global in Gi. The Lie algebra L is a
G'77-module under the adjoint action with Lfix = Li and dpi(l) : L —^ Lj
is the averaging operator. Therefore dpi(l)W =WnLi.].i remains to show
that V is controllable in G if and only if V H Lj = dpi(l)V is controllable
in Gj, but this follows directly from

(exp V) = (exp((V n Lj) + Ln)) = (exp(V n Li))Gu.

This semigroup agrees with G if and only if (exp(V D L/)) agrees with G I .

a

PROPOSITION 3.4. — Let G be a semisimple simply connected Lie
group with L(G) = L. Suppose that W C L is an e a ' d K H -in variant
wedge and TV* n (K^ C T)1- / {0}, Then W is not controllable in G.
J f c j e T y * D (KH © T)1- with oj(Lj) ^ {0}, then Lj g H(L(S)), where
S = (exp TV).

Proof (Cf. [V] p.7, where the same idea is used in the simple case
for invariant cones). — Let u e TV* H (K^ © T)1- \ {0}, T0 = (expT)
and K^ = (expJ^). According to [He] p.270, the mapping T0 x K" -^ G,
(t, k) ^—> tk is a diffeomorphism. Therefore T0 and K^ are simply connected
and we may apply Lemmas IV. 10 and IV. 11 in [Nl] to find a function
/ e C°°(G) with f(tk) = uo Ad(k) for all t e T0 and k C K^. The
function / is non-constant and TV-positive because W is invariant under
^<\Kn ̂  ^ ^ j-/^ ^ ^* r^^ ̂  assertion follows from the fact that
/ is constant on the unit group H ( S ) of S and ^(Lj) / {0} implies that
df(l) does not vanishes on Lj. a
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THEOREM 3.5 (Controllability Theorem). — Let W be a pointed
generating invariant wedge with Wmin c W in the semisimple Lie algebra
L. Then the following are equivalent :

1) W is not controllable in the simply connected Lie group G with
L(G) = L.

2) w^n^eTV^o}.
Proof. — 1) ==^2) : According to Remark 3.2 the controllability of W is

equivalent to the controllability of V = W -\-K^ in G. We use the notations
of Lemma 2.23 to show that V d£f V H E is not controllable in E" ̂ (expE}.
We assume that this is false and set S = {expV). The invariance of V under
^dKfi implies that L(S') is an e^ KH -invariant wedge containing E because
(expVnE) =E<> C S . We show that F^ H(L(S)) = L. The simplicity of
the ideals Li implies the irreducibility of the KH -module PH D Li (Lemma
2.4), but the A^-module F contains Bz e PH H L,, hence PH C F. The
fact that the edge of the Lie wedge L(5) is a subalgebra shows that

m

[PH,PH}=Y,KH^\L,CF
i=l

and therefore

f^+^=f^+ ^ L,=LCF.
i=l i=l i=777.+l

This proves that V is not controllable in E^. From
m

KH n E c ̂  KH n nu, == {0}
z=l

772

we see that V is a pointed, e^ y ^ R Uz -invariant wedge in E which contains
1=1

all elements U^ + Ai (Proposition 2.21) and therefore the product W{1 of
the Cartan Killing cones in the sl(2,IR)-subalgebras span{L^,A^£^}. Now

m

Corollary 1.8 provides A (E IR4" with ^A(^z + A,) € V* \ {0} and an
1=1

application of Lemma 2.23 and Proposition 2.24 completes the proof.

2) => 1) : This follows from Proposition 3.4. n

Theorem 3.5 is our main result on controllability in semisimple Lie
groups. Now we shall see that much more can be said about simple Lie
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groups. See also [02], where it is proved that an invariant cone W in a
simple Lie algebra L with W^\n C W is global in the associated simply
connected group if and only if W is contained in Wo (see Corollary 3.8).

LEMMA 3.6. — Suppose that L is simple and I ^ 0, then Q(x^) -^-Xy €
T" for all v C n.

Proof. — We claim that -^py e E^ for every v € n. Since I / 0, Hs

not contained in H(Cn^) = {0} and, according to Proposition 2.21.1 and
Theorem 2.7.5. we find ^ € ^p with uj{l) = 1 - uj[h) > 0. Now Corollary

2.9 implies that there is exactly one v € II with ci;(Q(^)) = -^ for

^ C II. It follows from [M] p.362, that we find for every y ' € II an

a;' e O^ with uj'{Q(x^}) = _(^ for ^ e II. Using Lemma III.9.5 and

III.9.7 in [HiHoL] we see that we find an inner automorphism a of I/c
with a~l(IxI,) == —iQ(xy) and the function A ^ A o a"1!^ : A —^ Ep is
surjective. Taking A C A"^ such that uj = -i\\H, we see that

_p^(Ix^) = ̂ ^ = cc;(Q(^)) = A o a~^{Ix^

and therefore _pi. e ED. Hence ,p^ € E^. We know from Lemma 2.18

that Q{xy) + Xy e L^, so it is enough to show that

T " = ^ L^
pe^+^

It is clear that T ' = ^ L^. We consider the complexification LC of L.
P^D

According to [He] p.530, we may extend DC to a Cartan algebra HC of
I/C. Let A be the system of roots of Z/c with respect to H^. For p e E^)
we have

^-(^cnL^^L^nL
AeAp

for Ap = {A € A : A|^ = p}. It remains to show that L^ C T^ for all
A € A^. We choose A € Ai^ and a lexicographic ordering on A such that
A ^ 0 whenever A o a~1 \o € S^ and A - 2A^ ^ 0. Then A cannot be a base
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root with respect to A. Therefore there exist roots Ai, As with A = Ai 4-As.
From [Hu] p.39, we get that

[L^^L^C^^L^cCT^

THEOREM 3.7 (Globability in Simple Lie Groups). — Let G be a
simply connected simple Lie group and V C L = L(G) be an e^1^11-
invariant Lie generating Lie wedge with H(V) = K^ which contains z.
Then the following are equivalent :

1) V is global in G.

2) V is not controllable in G.

3) For all subalgebras E ^ sl^ of L, the wedge V D E is global in
E<>=(expE).

4) u=z+J^x^ CV* .
i/en

5) int V n T = 0.

6 ) i n t y n T ' = 0 .

Ifl^ 0, these assertions are equivalent to

7) i n tynr"=0 .
8) For all nilpotent subalgebras N C L, the wedge V UN is global in

TV0 =exp7V.

Proof. — 1) ̂  2) : If V is global in G, then it is not controllable in G.
Conservely we assume that V is not controllable in G and set S^^xpV}.
Hence L(5) ^ L and we have to show that the assumption L(5) -f- V leads
to a contradiction. Then F^ H(L(S)} ̂  H(V) = K^ ([N1] III.l) and F
is an JQ^-submodule of L (Lemma 1.2). Consequently

F = F n PH e KH © F n Zj<.
IfFriP^ / {0}, the irreducibility of PH (Lemma 2.4) implies that PH C F
and therefore L = PH + [PH.PH] = PH + KH C F because F is a
subalgebra, a contradiction to F / L. Hence F H PH = {0}. Now F / K'^
yields F = K H - The Lie wedge L(5') is Lie generating and cannot be
contained in K H ' Consequently L(5) D PH must be an e^KH -invariant
pointed cone. This is impossible since —idp^ = (adz)2]?^ would imply
that L(5) n PH = -L(5) H P^.
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1) =^ 3) : If S a closed subsemigroup of the simply connected Lie
group G with L(S) = V, then S H E° is a closed subsemigroup of E° with

L(5 H E") = {x € E : exp(R+a;) C S H E"} = L(5) H E = V n E.

3) =>- 4) : We know from Lemma 2.19 that K^^T = u-1. Therefore we
have to show that u e V* because B(ZA, 2;) = B(z) < 0. If this is not true,
we find an element z-\-p in the compact base C = {p+z : p-\-z e V,p € P^}
of the pointed cone V d^ V H (ZK © Pj^) with <^ dlf B(n, p + 2;) > 0 because
V = V 4- ̂ and ̂  C u^. We set Md ± fmax{B(p):p+^ e G}. The set
of elements b = ̂  a^a;i,, whose centralizer in P^ is I D , is dense in 7JD

i/en
because these are exactly the elements in ID for which the one-parameter
group e^^6 is dense in the torus e1^ D C Aut(Lc) ([He] pp.247, 248, [BD]
p.38). Consequently we find such an b with

^-"'s^r
In the compact set lw(Kff)(p + ^) there exists an element 7o(p + z) such
that the function ^ \-^ B[z ^-ft*,^? + z)) attains its maximum at 70. For
k € KH this implies for pi = 70 (?) that

0= d B(et&dkp^z^^b)=B([k,p^b])=B(k^b}).dt 1=0

But Bis negative definite on KH ([He] p. 184) and [pi,&] e ̂  which leads
to [pi,b] == {0} and therefore pi € JD because the centralizer o f & i n PH is
7Z). Now we get

B(pi + ^,21) ^ B(pi -h ̂ ^ +6) - |B(pi -h ^,6-&)|

^ B(pi + z,z + b) - V\B(p^z)\^/B(b-b)

I c2 c
^ B(pi + z,z +b) - \/M. / _ - > B(pi + z,^ 4-6) -

V 9M 3

^B(p-h2;,z+b)- , ,^B(p+2;,^)- 2 = ^ >0.
o 3 3

This shows that pi -h 2; e (JD+ -z) H V and

(18) B(pi + z, u) = B (?i, ̂  rc^) + B(^) > 0.
i/en
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We choose the subalgebra E^ s^m[xy,IXy,Q(xy) : v C 11} ^ 81(2,1^
with [/i, = 2Q(;r^), Ai/ = 27a:i, and By = 2a;^. According to our assumption,
V H E is global in £'°. To apply Theorem 1.3 we have to show that V has
inner points with respect to E. As for H(L(S)) in- 1) <^ 2) we see that
V — V == L because V is a Lie generating and invariant under e^ K H , hence
V has inner points and must contain z in its interior because ZK == ^/fix
for the action of the compact group INN K H ' The orthogonal projection
q\ L -^ ZK^PH maps the element Q(:z^) C £' onto a positive multiple of z
(Lemma 2.22), therefore Q(x^) € int V^E C int^ynE) because z e int V.
Using Theorem 1.3 we find an element a = ̂  A.(Q(^)+^) e (YDE)*.

^en
All differences Q(a^) - Q(x^) are contained in ^-L D ft C J^ and
B(a,Q(^)-Q(^)) = (/3.-^)B(Q(^)-Q(^)) = 0, hence ̂  = f3 > 0
forall^enanda^^^+Q^) e (VHE)*. In q-^pi + z) C V we

i/en

find, according to Lemma 2.22, the element pi - -—z— Q(x^) C V H E.
tf{Xi/)

Applying a yields

H-l̂ 0)- '̂-" '̂
=jB(pi,&)+B(z) ^0,

a contradiction to B(pi,6) + -B(^) = B(p\ + z^u) > 0.

4) ̂  5) : According to the separation theorems ofHahn Banach, the
existence of a functional uj e V*Tl T-1 is equivalent to intY H T = 0. But

y* n T1 = y* n (J^)-10^=^*0 (x^ e r)^ = y* n Rn.
A glance at Lemma 2.19 completes the proof.

5) => 6) => 7) : This is trivial.

6), 7) => 4) : From 6) or 7) (if ^ -^ 0) and Lemma 3.6 we see that

F n int V = 0, where F^span^a^) + Xy : v e n}.

Let q : L —> PH ^ ZK be the orthogonal projection. To get a contradiction
to intV D F = 0, it is enough to show that intY n q(F) / 0. According to
Lemma 2.22 we have

q{Q(xy) -h Xy} = Xy - —^— Z for all v e n
5(2;)
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and with Lemma 2.5 we find that

B(u,q{Q(x^)-}-x^)) =B(u,Q(x^^-x^) =-B(x^) + B(x^) = 0.

Therefore ^(F) C u^ H (JD © Z^). The element q[Q(x^) + a^) are linearly
independent, therefore

q ( F ) = u - L n ( I D ^ Z K )

because the dimensions are equal (Lemma 2.19). We assume that 4) is false.
Then we find pi e PH with pi 4- z e mtV such that B(pi + z,u) > 0
(see 3) => 4)). Using the invariance of V under INN^, we see that
-p^z= e^^pi + 2:) C V, too. But ̂ ,pi + z) = B(z) + B(b,p^) > 0
and

B(-pi 4- z, u) = B(z) - B(pi, b) < B(z) + B(z) = 2B(z) < 0.

Consequently the line segment from pi+zto -pi -hz, which lies completely
in the interior of V, intersects u1- D (ID C Z K ) = q(F).

4) => 2) : This is a consequence of Proposition 3.4.

1) =^ 8) : This is the same proof as in 1) =^ 3).

8) =^ 7) : The subalgebra N ^ T ' of L is nilpotent. We assume
that int V H T11 = mtV H A^' ^ 0. Then the Lie wedge V^VnN is
global in the simply connected covering group N" of 7V° ([N1] III.7) and
int TV V H TV' -^ 0. We show that this is impossible. Firstly we observe that
V has non-empty interior and therefore is Lie generating in N and the
semigroup S ^{exp^V) has inner points. Using [HiHoL] V.5.40, we see
that V is contained in a half space F C N such that QF is a subalgebra
of codimension 1. A look at the classification theorem in [Ho] p.638 shows
that QF has to be an ideal of N which contains the commutator algebra.
This is a contradiction to intY C int F and N ' C QF. n

COROLLARY 3.8. —Let L be simple, W C L an invariant pointed
generating cone containing l^niin and G the simply connected group with
L(G)= L. Then the following are equivalent :

1) W is global in G.

2) W is not controllable in G.

3) WC Wo, i.e.,u^ W\
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There are invariant cones in W which are not global in the simply
connected group G with L(G) == L if and only if I / 0.

Proof. — 1 ) ^ 2 ) : This is clear from the definitions because W ^ L.

2) =^ 3) : It follows from Remark 3.2 and Theorem 3.7 that u e W*.
Proposition 2.24 implies that / € (W H H)* = W" H H. Therefore
Co C (W H H)* and W H H C Co. Now Theorem 2.14 yields W C Wo.

3) ^ 1) : It is clear that I e WQ n H C W\ Now Proposition 2.24
together with Remark 3.2 and Theorem 3.6 imply that u € TV* H ̂  =
(V + K'ffY and that TV is global in G.

We prove the last assertion. If / = 0, we have Wo = W^x and every
invariant cone containing Wnun is contained in TVmax. If / ^ 0, we set
/^^(fc) - z. Then h C Cn.ax (Corollary 2.9) and B(l,h) = -B(^) > 0.
Therefore the W-invariant cone

C'^fCn.n+ ̂  R+w(/l)

wCW

is the trace of an invariant cone W m L which contains Wmm but which is
not contained in Wo and therefore not global in G. D

Remark 3.9. — The simple Lie algebras containing invariant cones
are the following ([Pa]) :

1) su(p,g),p^ q ^ l , l = 0 ^ p = q .

2)so(p,2),p^3,Z=0.

3) sp(n,R),n ^ 3, / =0 .

4) so*(27i),n ̂  3, ( = 0 ̂  n € 2Z.

5) e6(-i4), < /O.

6) e7(_25), ^ = 0. n

With Lemma 3.10 to Remark 3.13 we demonstrate how Theorem 3.6
can be used in special cases to prove the globability of certain Lie wedges.

LEMMA 3.10. — For an lwKn-invariant Lie wedge V in the semisim-
ple Lie algebra L with H(V) = K^ we have

q(V) = V H (PH C Z K ) = lnnKn{V n D © Zj<)),

where q : L —> PH © ZK is the orthogonal projection.
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Proof. — It is clear that

q(V) = (v 4- KH) n (P^e z^) = ̂  n (PH e z;<)

because -^(VQ = -ft^ = kerg. The invariance of q(V) under InnJQy shows
that the set on the right is contained in q(V). Conversely, ifv= ?4-p € q(V)
with ? e ZK and p € P^r, we find with [He] p.247, an element 7 € Inn JFQf
with 7(p) € J9 and therefore v e 7~1 (V H (D © Zx)). a

Example 3.11. — We consider the special case L = su(p, 1). These are
exactly the simple Lie algebras containing non-degenerate invariant cones
with D = 1 and II = {c^i} for an 0:1 € ^t~p. The set of all Inn-K^-invariant
Lie wedges V with H(V) = KH is a one-parameter family. For r > 0 we
define Vr by (Lemma 3.10)

Vr r } ( D + z ) = { z - ^ - \Ix^ : B(XIx^) ^ -r2B(z)}.

Then
g(K) = {/xz +p : B(p) ^ -r^B^z}^ ̂  0}.

Then ZA == z -h a'i and therefore

u € Vy* ̂  B(z + o-i, z 4- Aa-i) $ 0 for all z -h Aa-i € K
^ B(^) + AB(a-i) ^ 0 for all \ with B(z)r2 + A2B(rrl) ^ 0

^B(z)^^^l^rB(x,)^0

2 ^ -JB^)<"•<^,)-
As explicit inspection of su(j), 1) shows, we have

B(z) = -2p and B(.r^) = j?+1.

We set ro^ \ ~ , ) = \i—p—' Then we see with Theorem 3.6 that Vr
V B(a;i) \ p + l

is global in the associated simply connected group SU(p, 1)̂  if and only if
r ^ ro.

For p = 1 we have L = su(l, 1) = sl(2, R), TQ = 1 and Vr agrees with
the cones Wr (see Corollary 1.5). Therefore Corollary 1.5 is a special case
of the result above. D



GLOBALITY IN SEMISIMPLE LIE GROUPS 531

PROPOSITION 3.12. — Let L be simple and Vo = {x € PH © Zk :
B(x) ^ 0,B(x,z) ^ 0} 4- AT^. TAen Vo is an InnA f̂ -in variant Lie wedge
with H(Vo) = K'ff and q(VQ) is the Lorentzian cone in PH (B ZK, which
contains z and which is associated to the Inn KH -in variant Lorentzian form
B\PH@ZK- ^ne wedge Vo is global in the simply connected group G with
L(G) = L.

Proof. — It only remains to prove the last statement. Using Theorem
3.6, we have to show that u € V^. Let x = p+ z € q(Vo) with p € P H ' Our
assumption implies that B(p + z) = B(p) 4- B(z) $ 0 and B(b) ^ —B(z)
follows from

-B(z) = -B(l) - B(Q(b)) = -B{1) + B(b).

Therefore

B(x, u) = B(z) + B(b,p) ̂  B(z) + ^/B(V)^B{p)
^ B(z) + ̂ /-B(z)^/-B(z} = B(z) - B(z) ̂  0.

Hence u^V^. D

Remark 3.13.— Among the Lie wedges V C L with H(V) = K^ and
z € V which are global in the simply connected group G with Lie algebra
L, there is a maximal one :

Vg\ob = n 7^*.
76lnni<(^)

where IA* is the half space {x € L : B(x,u) ^ 0}. With u1- 3 ^'(I:f) we
see that K^H) C H(V^) and from B(^z,u) = B(z,u) < 0 it follows
that ^ € intYglob, hence ff(lgiob) = K H ' We may apply Theorem 3.7 to
see that Vgiob is global in G. If V C L is an e^ KH -invariant Lie wedge
with H(V) = K H , it follows from Theorem 3.7 that V C ZA*, therefore
V C Vgiob. In general the wedge VQ from Proposition 3.12 is different from
Vgiob. For L = su (p, 1) (Example 3.11), we have

Vglob = T4o and Vo = V\

with ro > 1 for p > 1 (Example 3.11). a

We conclude this section, and also this paper, with a result on the
non-simply connected case (Theorem 3.16). We need two lemmas to prepare
the proof.
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LEMMA 3.14. — Let G be the simply connected Lie group with
L(G) = L and ^^(expZ^}. As in Section 2 we choose z, C ZK H L,
such that uj(zi} = 1 for all ^ € ̂  C f^. Then

Z° H Z(G) = exp (27r(Z^ C ... Z^)).

m

Proof. — For a = V^ A^ we have
1=1

Ad(exp a) = e^ a = e^ ad 21 e^2 ad 22 . . . e^" adzm

7?

and this element is the identity on L = Vj^ if and only if A^ e 27rZ
z=i

because Spec(ad^) = {0,z}. The lemma follows from Z(G) H Z° =
ker(Ad) n Z°. n

LEMMA 3.15. — Let W = (R-^)71 C R71 and D C T1 C ̂  a discrete
subgroup with W n D = {0}. Then

W n span D = {0}.

Proof. — We give a proof with induction over decreasing codimension
n = rankD of the grid D. For n = rankD there is nothing to show
because only D = {0} is possible. We assume that the lemma holds for
n - ranjcD ^ m - 1 and that n - rankD = m. Suppose, in addition, that
we find an element v ^ 0 in W D span D and choose the dimension n as
small as possible such that the lemma does not hold. We consider the sup-

k
norm |H| = max,=i,.J^| on R71. Let D = Q)Uj and M^max.H^H. If

j=i
k

v € int TV, there exists a A > 0 such that min,(A^) > kM. If \v = V A^d^,
j=i

^ k

we get ||Av-^[A^|| ^ kM and d = ]^[A^ C J9. Hence d € Dnint W,
J=i j=i

a contradiction. Therefore we may assume that v C QW and w.l.o.g. that
Vn = 0. Let TT : Rn -^ {O}71-1 x R C R71 be the orthogonal projection. There
are two cases to consider.

Case 1 : The group D is contained in ker TT. Then D H (R^)71-1 = {0}
and n - 1 - rankD = m - 1, a contradiction to the induction hypothesis.
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Case 2 : The group D is not contained in ker TT. Then, according to
the Rank-Theorem for finitely generated abelian groups,

rank7r(D) -I- rank(ker7r D D) == rankD

and therefore
rank(Z) D ker 71-) = rankD - 1,

because 7r(D) is a non-trivial subgroup of Z and has rank 1. Now we find
linearly independant elements d'i,...,< e D with d'i,...,<_i C kerpr
and d!^ ^ kerTT. Consequently the d^-coefficient of v in the representation
with respect to the basis of spanD vanishes. Thus we have reduced the
dimension of the problem :

n-l

^'=Q)Z^, Df^(R+)n-l={0}^ and 0 ̂  v € spanD' H (R^^.
2=1

This is a contradiction to the minimality of n which completes the proof
for n — rank D = m.

THEOREM 3.16. — Suppose that the wedges Wi C Li are invariant
n

pointed generating and that W d^ ̂  Wi is global in the simply connected
i=l

Lie group G with L(G) = L and contains l^nim. Let Z°dlf exp ZK ,
D C Z° n Z{G) be a discrete central subgroup and D' ^exp'^D) n Z K .
Then W is global in G dlf G / D iff

(19) D'H^R^^O}.
i

Proof. — "^ : If W is global in G and d € (SR-^,) H D9, then
exp(d) e exp W because ER"^^ C W^m C W. According to [Nl] 11.12,
we find a function / e C°°(G) such that f ' ( g ) € int IV* for all g C G.
Let / = / o TT, where TT : G —> G is the canonical projection. Then clearly
f ' ( g ) e int W* for all g C G and therefore

7(1) = /(I) = /(exprf) = /(I) + / (7/(exp(^)),d}^.
Jo

This proves that { / ' ( l ^ d ) = 0 and therefore d = 0.

"=^" : Let D' n SR^, = {0}. According to Lemma 3.14 we have
Df c @l<27^z^^ then Lemma 3.15 shows that spanD' H SR-^^ = {0} and
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we find a linear functional ^ C ZK vanishing on Df and taking positive
771

values on all elements zi. If uj = ̂  <^ and ^ > 0 for i = 1,..., m we set
1=1

s = ̂  Si^i and V d£f TV -h K^ -\-^^\ZK' Using our hypothesis, Corollary
1=1

3.8 and Lemma 2.19, we have

UJ C^iy;=lV* and S eW n H(V)-L =V\
i=l

^def,
Let T ^(expgV). Then Proposition 3.4 applies and shows that V is not
controllable in G and L, g H(L(S)) for i = 1,... ,m because all numbers
^ are positive. The fact that W is generating in L shows that n = m, i.e.,
there are no compact ideals in L. Hence L(T) contains no ideal of L. Let
p : G —> G = G/J9 be the covering homomorphism.'From

D == kerp C exp D' C exp V CT

we conclude that L(T) is global in G ([N1] III.8). Setting S^^exp^W)
we have

L(5)CL((exp^L(r)))=L(r).

Consequently L(5) is an invariant wedge in L (Lemma 1.2) which contains
no ideal of L. Hence L(S) is pointed. Now Proposition 3.1 in [Nl] shows
that W is global in G. n

COROLLARY 3.17. — Let G be a simple Lie group, L = L(G) and
W C L be an invariant pointed, generating cone which is global in G and
contains tVmin. Then TT^(G) is finite.

Proof. — Set D = 71-1(0?) C G where G is the universal covering
group of G. Then W is global in G ([N1] III.7). If D is infinite, then
Dnexpg(ZK) ̂  {1} because DC Z(exp^^) = Z(exp^^)expg(ZK)
and Z(exp^J^) is finite. Consequently D'^exp-1^) H ZK / {0}. Now
Z;< = Rz together with Theorem 3.16 shows that W is not global in G. D

Open problems : Two of the most interesting open questions related
to this subjects are :

1) Given an invariant wedge W in the semisimple Lie algebra L, when
is W global in the associated simply connected group ?
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2) Classify the maximal global Lie wedges W ^ L(G') in the Lie
algebra of a simply connected simple Lie group G (see [N2] for G =
S1(2,RD.
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