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COMPOSITION OF SOME SINGULAR
FOURIER INTEGRAL OPERATORS

AND ESTIMATES FOR RESTRICTED
AT-RAY TRANSFORMS

by A. GREENLEAF (*) and G. UHLMANN (**)

0. Introduction.

Let X and Y be C00 manifolds of dimension n and
C c= (T*jr\0) x (r*r\0) a canonical relation; that is, C is conic,
smooth of dimension In and the product symplectic form P*G)^ — 7r*(0y
vanishes identically on TC. (Here, ayy, coy are the canonical symplectic
forms on T*X, T*r, respectively, and p : T*X x r*y -^ T*^,
TT : r*JT x T* y -^ T* Y are the projections onto the first and second
factors.) To C is associated the class ^(C'.X.Y) of Fourier integral
operators (FIOs) of order m from ^(7) to 2'(X) ([18].) Composition
calculi and sharp L2 estimates for FIOs are only known under certain
geometric conditions on the canonical relation(s). Most importantly, the
transverse intersection calculus of Hormander [18] implies that if
A^e /^(C^jr.r), A^e I^C^Z.X) with C\ and €2 local canonical
graphs, then A^ e /^^(Cz o Ci;Z, V). In particular, if C\ is a
canonical graph, ^4*^4i e /^(A-^y; F, V) is a pseudodifferential operator
and thus A,: H^(Y)-^ H^(X) continuously, V s e R . Later, this
composition calculus was extended by Duistermaat and Guillemin [9]
and Weinstein [32] to the case of clean intersection.

(*) Partially supported by NSF Grant DMS-8601534.
(**) Partially supported by NSF Grant DMS-8800153.
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A.M.S. Classification : 58G15| - 53G65.
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For L2 estimates, the following more general result holds ([18]). If
the differentials of the mappings p and n drop rank by at most k , for
some k < n, there is an estimate with a loss of k / 2 derivatives :
A'. ^omp(^) -> H^'^X). This can be refined in the following way
([19], p. 30). Since C is a canonical relation, on C we have a closed
2-form ©c = p*®x = TT*O)Y, which is nondegenerate (i.e ; symplectic) iff
C is a local canonical graph. If r is.the co-rank of C(=2n—rank (Oc^2A;),
then A : H^(Y) -> H^'^X). These results are sharp in that there
are examples, such as the case when C c {T^X\0) x (T*y\0) is the
flowout of a codimension k involutive submanifold of T* 7\0, where
one cannot do better. For canonical relations C for which n and p
become singular in specific ways, however, one expects there to be a

r k
sharp value 0 < So = 5o(C) ^ . ^ . such that A: H^(Y) ->

H^'^W, V s e R . A result of this nature is contained in the work
of Melrose and Taylor [25] on folding canonical relations, for which n
and p have at most Whitney folds, so that k = 1, r = 2 and ©c is a
folded symplectic form. Via canonical transformations of T*A^O and
T* F\0, C can be conjugated (microlocally) to a single normal form ;
on the operator level, A can be conjugated by elliptic FIOs to an Airy
operator on R", from which the sharp boundedness A: H^^(Y) ->
Hi^-'i^X) can be read off.

The purpose of the present work is to establish a composition

calculus and obtain sharp L2 estimates, with a loss of - derivative, for

a somewhat more singular class of canonical relations, the fibered
folding canonical relations (FFCRs), for which again 71 is a Whitney
fold and ©c is a folded symplectic form but for which p is a « blow-
down » (^ polar coordinates in two variables). These canonical relations
arise naturally in integral geometry and were described independently
in Greenleaf and Uhlmann [12] and Guillemin [15]. A specific canonical
relation of this type had already been analyzed in considerable detail
by Melrose [23]. Related operators are in Boutet de Monvel [3]. An
unfortunate feature of FFCRs is that they cannot be conjugated to a
single normal form. There are already obstructions to a formal power
series attempt to derive a normal form (cf. [12]). Alternatively, as shown
in [15], the canonical involution of T*X\p(L), where L c= C is the
fold hypersurface for TC, induced by the 2 — 1 nature of n near L,
may or may not extend smoothly past p(L). In any event, it is not
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possible to give exactly a phase function <() that parametrizes a general
FFCR. A somewhat remarkable fact is that this difficulty disappears
when one composes an A e ^(C'.X.Y) with its adjoint. Our main result
is

THEOREM 0.1. - Let C c= {T*X\Q) x (T*y\0) be a nonradial fibered
folding canonical relation and A 6 ^(QX, 7), B e I " " (C^Y.X) properly
supported Fourier integral operators. Then BA e /""^''"(A^^A^)).

Here, A^y is the diagonal of (T*y\0) x (r*7\0), n(L) c T*y\0
is the image of the fold hypersurface and A^) its flowout, and /^(A.A)
is the space of oscillatory integrals («pseudodifferential operators with
singular symbols ») associated to the intersecting Lagrangians A and A
by Melrose and Uhlmann[26] and Guillemin and Uhlmann[16]. Using
the estimates for elements of 7^ (A, A) given in Greenleaf and
Uhlmann [13], we obtain

COROLLARY 0.2. - For A as above, A : H\Y) -> H^'^X) continuously,
V5 6 R .

It should be remarked that the composition AB is of a completely
different nature, with the absence of a normal form for C introducing
serious analytical difficulties; this is discussed in Guillemin [15].

A special case of the theorem and corollary was proved in [13] for
the restricted A^-ray transform. If (M,g) is an n-dimensional riemannian
manifold for which the space M of (oriented) geodesies is a smooth
(2n — 2)-dimensional manifold (e.g., R" with the standard metric or a
sufficiently small ball in any riemannian manifold), then the A^ray
transform ^ : <T(M) -> 2'(M) is given by

(0.3) ^/(Y)- f/(y(5))rf5, ye^,

y(s) any unit-velocity parametrization of y . In the absence of conjugate

points, ^ is an FIO of order — . associated with a canonical relation

satisfying the Bolker condition [14] and so ^: H^(M) -> TOC^O,
generalizing (locally) the result of Smith and Solmon [28] on R". (See
also Strichartz [30] for the case of hyperbolic space.) Following Gelfand,
one is also interested in the restriction of ^f to n-dimensional
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submanifolds ^ c= J( (geodesic complexes); denote ^f\^ by ^f. Of
particular interest are those ^'s which are admissible for reconstruction
of / from ^/ in that they satisfy a generalization of Gelfand's
criterion [11]; in [12] it was shown that, with appropriate curvature

assumptions, for such a ^, ̂  is an FIO of order - - associated with

a FFCR. In this case the Schwartz kernel of ^^ is quite explicit
and was shown in [13] to belong to /"^(A^, A^)), yielding the

boundedness of ̂  : H^(M) -. H5^), s ^ - 1

To prove local U estimates for admissible geodesic complexes, we
extend ̂  to an analytic family R^ e/'^'^C^M); application of
analytic interpolation then requires L2 estimates for general elements of
7(C;^,M), for which the argument of [13] is insufficient. We prove

THEOREM 0.4. — Let ^ cz M be an admissible geodesic complex and
let P(x,D) be a zeroth order pseudodijferential operator on M such that
^P e /(C^.M) with C a fibered folding canonical relation. Then
^P:Z^omp(W -> Uoc(^) for p , q satisfying either of the following
conditions :

, . , 4n - 3 1 2n + 1 1(a) 1 < p ^ .———^ - ̂  ——— - — ;
2n — 1 q 2np In

- 4n - 3 1 2n - 1
(b) .———. ^ p < co , - ̂  ———.2n - 1 q 2np

For the full X-ray transform in R", global U estimates have been
proven by Drury [6] [7] and refined by Christ [5] to mixed If - L1

norms (see also [30], Oberlin and Stein [27]); however, even in R" our
estimates do not seem to be retrievable from theirs because of the high
codimension of ^ in J i . Wang[31], using variations of the techniques
of [5] [6] [7], has established global U estimates for some special line
complexes in R".

There is a gap between the estimates in (0.4) and the expected
optimal ones. Furthermore, one expects that, just as for the L2 estimates
[13], for general (nonadmissible) ^ cz M, better estimates hold, reflecting
the more singular way in which C sits in T*^ x T*M when ^ is
admissible. This is confirmed below for a particularly nice class of
inadmissible ^'s, for which C is a folding canonical relation.
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The paper is organized as follows. In §1! we give a precise definition
of FFCRs and recall the symplectic geometry needed to conjugate a
FFCR into a position where it has a generating function S ( x , y n , r [ ' ) .
The geometry of C then allows us to put a S in a weak normal form.
The relevant facts concerning /^(A.A), including the iterated regularity
characterization given in [13], are recalled in §2. In §3 we prove (0.1)
by computing BA, simplifying the phase, and then applying first order
pseudodifferential operators to verify the iterated regularity condition.
The applications to the restricted A^-ray transform are given in § 4.

The first author would like to thank the Mathematical Sciences
Research Institute, Berkeley, where a portion of this work was done,
for its hospitality and support.

1. Weak normal form and phase functions.

Consider on W1 x W1 x (HT'^O) the phase function

(1.1) ^(x,y,Q1) = (x7-/).^ + ^Oi, |6J ^ c|9|, ̂  ^ 0,

where we write x = (x\Xn) = (x^,x",Xn) e 1R". Calculating the critical
set {{x,y,Q'): dQ'^o=0} and computing the map

(x,^,(|/) -^ (x.^o; y , - d y ^ o ) ,

we find that <^o parametrizes the canonical relation

C / 2 2 \

(1.2) Co=^^-^/^X,,T^^X^n,;^,T1 /,-^j:

(x^.rOeR^lThl^clTV ,^^0^

C/ y2^ Y2 \
1 / f i v i "nyn 11 vi ^v. \= ^x,^,x^i;Xi+——.x ,^ ,^ , -y^ i l :

(x^.^e^M^l^c ^\,y^0]>.

Denoting, as before, the projections Co -> T*[R"\0 onto the first and
second factors by p and TT, respectively, one sees immediately that Co
is a local canonical graph away from L = {x^=0}, where n has a
Whitney fold (defined below); n(L) = {r^=0} c: rW\0 is an embedded



448 A. GREENLEAF AND G. UHLMANN

hypersurface. At L, p is more singular: p(L) = {x^=^=0} <= FW\0
Tt

is embedded, codimension 2, and symplectic (i.e. ^d^/\dxj\^) is
i

nondegenerate), and p «blows up» p(L), having 1-dimensional fibers

with tangents ,—• Co is an example of a fibered folding canonical

relation; we recall from [12] and [15] the general definition of a FFCR
and then show that any such can be conjugated sufficiently close to Co
so that it has a phase similar to (j)o

DEFINITION 1.3. — Let M and N be n-dimensional manifolds ; f :
M-^NC^.

a) / is a Whitney fold if near each mo e M, / is either a local
diffeomorphism or df drops rank simply by 1 at mo, so that L = {m e M :
rank (df(m))=n— 1} is a smooth hypersurface through mo, and
ker (df(mo)) ^ Tm^L.

b) / is a blow-down along a smooth hypersurface K c: M if f is a
local diffeomorphism away from K, while df drops rank simply by 1 at
K, where Hess / = 0 and ker (df) c= TK, so that f\s has 1-dimensional
fibers ; furthermore, letting, for Wo e K,

~df: rWmo)) -^ Gn-i,n(Tf^N)

be the map sending m to the hyperplane df(m)(TmM) c: 7^ ) N , we
demand that d(df)(v) + 0, v e ker (df(mo))\0.

Remark. — In [12], a blow-down was called a fibered fold. Since
this terminology is apparently not standard, we have dropped it.

DEFINITION 1.4. — Let X and Y be n-dimensional C°° manifolds and
C c= (T*r\0) x (T*7\0) a canonical relation. C is a (nonradial) fibered
folding canonical relation if

a) TC : C -> r*r\0 is a Whitney fold, with fold hypersurface L, and
7i (L) an embedded nonradial hypersurface;

b) p : C -> T*X\0 is a blow-down (necessarily along L), with p(L)
embedded, nonradial and symplectic, and p : C\L -> T*X\0 is 1 - 1.

In [12], an additional compatibility condition was imposed; namely,
that the fibers p [ ^ be the lifts by K of the bicharacteristic curves of
7i(L). It was shown by Guillemin [15] that this is automatically satisfied.
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By suitable choice of coordinate systems, the projections n and p
may each be put into normal form ; the lack of a normal form for
FFCRs stems from the inability to reconcile these coordinate systems
in general. We recall

PROPOSITION 1.5 (Melrose, [20]). — Let M and N be conic manifolds
of dimension In, mth N symplectic. Suppose f: M -> N has a Whitney
fold along L 9 Wo and f{L) is non radial at f(mo).

Then there exist canonical coordinates on N near f(mo) and coordinates
(5,0) near m^ on M, homogeneous of degrees 0 and 1, respectively, \vith

/ 2 \

5/mo) = 8^,o,(mo) = §1,, V/, such that /(5,o) = ( s , a ' --a7L).
\ 2^!/

PROPOSITION 1.6. — Let M and N be as above. Suppose g : M -. N
is a blo^-down along L 9 mo and g(L) is nonradial and symplectic near
g(mo). Then there exist canonical coordinates on N near g(mo) and
coordinates (t,x) near mo on M, homogeneous of degrees 0 and 1
respectively, mth t,(m,) = 0, T,(mo) = 8,, + 5,,, V/, such that
g{t,x) = (r.T^T,).

Proof. — Without the homogeneity, this is Theorem 4.5 of [12]; the
proof there is easily adapted to the conic setting using the version of
Darboux' theorem in [21].

Now let C be a FFCR and apply (1.5), (1.6) to / = TT, g = p,
respectively, to obtain canonical coordinates on T*y\0,r*Z\0 and
homogeneous coordinates (s,cr), (t,x) near c^eL c C. Let

T.=s,-^ T^=^ and ^ = T",
la! CTi Ti

so that with respect to the homogeneous coordinate systems
(T^T^s",s^a') and ( t ^ ' S n ) near Co,

(1.7) K(T,,T^S",S^^) == (^ +^,^,a^-^a,V

(L8) P(^^)=(r,T',^TO;

(1.9) ^ = da, A dT, + da" A ds" + T^s,da,+a,dSn) A dT,
== d ^ ' A dt' + r,(^Ti+T^,) A dt,,

and
(L10) ^ = { ^ = 0 } = { r , = 0 } .
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A function /eC°°(C) has a (singular) Hamiltonian vector field with
respect to the folded symplectic form C0c, which expressed in the
(Ti, Tn, s " , Sn, a7) coordinates is

run ^ - ( ^ - s n 8 f } 8 + 1 8f 8
f \8c, c,8sj8T, TnO,8s,8T^

^''y9j_^_8f__9_
~ 8 ( j j 8 s j 9 s j 8 < j j

+ f^^-J_-^A- ̂ JL.
\a,9T, T,a,STjSs, S T . S a , '

On L, {5^=1} has the form {Sn=l^F(T^s" .cQ}, so we let

/(7\,T^,^,c/) == - 0^(^,5", a7) ̂ 7I.

Then there is a smooth function on T*y\0, which we denote by
n^f, such that K*(n^f) = /; of course, H^f is a C00 vector field on

T* V\0, with ̂ f = exp (H^f) a canonical transformation. On the other

hand, Hf = F— + 0(T^) and is C^ by (1.11), and the oOc-morphism
QSn

^ = exp (Hf) is of the form

^(T^r,,^,^,^) = (r^T^^'.^^+^T^s'.a7),^) + (9(H).

Changing variables on C and T*y\0 simultaneously, we retain (1.7)
and (1.9), but now have {T^=s^-l=0} = {^=5^-1=0} near C o ;
denote this smooth (2n — 2)- dimensional manifold by Lo and let i:
LQ c-̂ . C be the inclusion map. From (1.9), we have

f*c0c = da, A dT, + rfa' A ds" = dr' A d t ' .

By Darboux we can find a canonical transformation /o of tR2""2 such
that ^(Ti^.a7) = (^^T7) . Extending 5Co to be independent of T^ and
5^, we obtain an (Dc-morphism / such that

Z*(Ti,^,a') = (r-.T') + O(^) + 0(^-1), z*5, = 1
+ ^ + 0((^-1)2)+ 0(Q
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and t*T, = bt, with a 1- 0, b ̂  0 near Co. On the other hand, by
simultaneously applying ̂  in the (y',T}') variables, we preserve (1.7)
Thus, we have p*(x) = t,n*(y,) = s, and 7i*(ri') = o' forming local
coordinates on C near Co; furthermore, L = {x,=0} in these coordinates
n(L) = {^,r|):ri,,=0} and p(Z)={(x,Q : ̂ =^=0}, and rip^J ̂  0.

Since (x,^,ri') form coordinates on C, there exists a generating
function ^(x,^,r|') for C([18j): 5 is C°°, homogeneous of degree 1
in T|', and

(1.12) C = {(x,d^;d'^S,y,,r]',d^S):(x,y,,r}')eU}

near Co, where (7 is a conic neighborhood of x = 0, y^ = 1, T)' = dy
and (t)(x,y,r|') = S ( x , y ^ , r [ ' ) - v'.r|' parametrizes C near Co. The fact
that C is a FFCR imposes several conditions on S , which we next
derive.

^ ^f
That n(L)={^=0} implies that ^-(x',0,^,r)') = 0, whence

5|^.o, is independent of y,: S(x',0,y,,f)') = S^x',r[") for some
smooth, homogeneous 5o. Since p(L) = {^=^=0}, we have
55'
-^-{x',0,y^,r\') = 0, so that

(1.13) 5(x,^,r|') = So(x',r|') + ̂ (x,̂ .,r|'),

where 5'2 is smooth and homogeneous of degree 1 in T|'. The matrix
representing dn is

(1.14) dn =

d^S d^S d^.S-l
| 0 1 0

0 0 /„_,
W d^s d^,s

By the above comments, at x,, = 0 the ^,-row and the ^-column
vanish; but since n is a fold, dn\^,, has rank 2n - 1, and thus
det (d^^S) ^0 at Xn = 0, i.e.,

(1.15) 5'o(x',r(') is a nondegenerate generating function,
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in (n-1) variables. Also, ket(dn) = R— at x, = 0. Additionally,

(1.16) dp=

—

In-.

0. • •0

d l ' ^ ' s
0- • •0

0

0

1
0

: d^S d\,S
0

d^S

0

': 0
0

0

0 0

The nondegeneracy of d ^ ' ^ ' S yields (at x^=0)

( ( ^ ^"-l a a2o a f a ^n~l'i
/i n\ T / j \ I ° I ° 00 ° 0 I(1.17) lm(dp)= spsiti«—\ , — + — J I[[axj,.i ^ ^a^ l̂ ,j,.j
From dp*(d^n) ^ 0 it follows that

S^i(x',o,^,n') = 5'2(x',o,^,T)') ^o ;(1.18)
5jc

on the other hand, the nondegeneracy of the blow-down implies that

(1.19) g^x'.o.^.n') 8S,
-—^—=^(x'o'^^()•

Conversely, one can easily show that any generating function of the
x2

form S ^ x ' , ^ ' ) + —5'2(x,3^,r0, with 50 satisfying (1.15) and S^

satisfying (1.18) and (1.19) gives rise to a FFCR. We have now proven

THEOREM 1.20. - A canonical relation C c= (T*X\0) x (T*y\0) is
a fiber'ed folding canonical relation near a point (xo,^o,yo,r[o), critical
for n (or p), iff there exist canonical transformations ̂ : T^R^O -> T*7\0,
X ^ : T*X\0-^ T*R"\0, mth Xi((0, . . . ,0,1), (1,0, . . . ,0)) = (^o^o),
72^0^0) = ( (0 , . . . , 0 ) , (1 ,0 , . . . , 0,1)), such that Gr^)oCoGr(^)
is parametrized by a phase function of the form

(1.21) ^x,y,r}') = S,(x1^1) - /< + -^S,(x^^')

mth SQ and S^ satisfying (1.15), (1.18) and (1.19).
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2. /^(A.A) and iterated regularity.

We now review the spaces of distributions associated with
two cleanly intersecting Lagrangians [26], [16]; their characterization
by means of iterated regularity [13]; and the L2 estimates for
operators whose Schwartz kernels are of this type [13]. Since only
codimension 1 intersection is relevant to this paper, we will restrict our
attention to that case. In the model case A =
A^pn, A = {(^ ,x„ ,^ ,0 ;x^^ ,^ ,0) :xeR^^eR ^ - l \0 ,^eR}=the
flowout of {^n=0}, F^(A',A.1) is defined to be the space of all sums
of ^8P functions and distributions on R" x R" of the form

(2.1) u(x,y) = [^^-^^^^-^-^^^^(x.^^^o)^^^

where a is a product type symbol of order p ' = p - ^ + . ,
1f = <f — -^-> satisfying

(2.2) IWL.^1 ^ C^l+l^-'^l+lair-^1

on each compact K c: R^ x R^ x R^. In general, for a canonical relation
A c: (T*y\0) x (T*y\0) that intersects A^y cleanly in codimension 1,
one can find microlocally a canonical transformation %:
(T*r\0) x (T*Y\0) -> (T^R^O) x (T^R^O) taking the pair (A,A) to
(A, A); 7^ (A', A') is defined as the space of all microlocally finite sums
of distributions F^,, with u, of the form (2.1) and
^e/^G'rOc^R^xR^rx Y) for such a x. ^(A,A) is then the class
of operators with Schwartz kernel in /^(A'.A'); microlocally if
re7^(A,A), TeF^^^Y) and Tel^A^Y). Furthermore, the
principal symbol of T on A\A lies in the space T^'z defined in [16]

and has a conormal singularity of order ^ — ^ at A. The leading term

of this singularity belongs to the space ^(FX y;A,AnA) of [16] and
is denoted by cTo(T), the principal symbol of T as an element of
7^(A,A).

The oscillatory representation (2.1) can be difficult to verify directly.
Instead, we make use of the following characterization of /^(A^A')
from [13], which is a variant of the iterated regularity characterizations
given by Melrose [22], [24] for various classes of distributions.
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PROPOSITION 2.3. - Let A <= (r*y\0) x (r*7\0) be a canonical
relation cleanly intersecting the diagonal A in codimension 1. Then
u e /^(A^A') for some p , ^ eR iff for some So e R and all k ^ 0, anrf
all first order pseudodijferential operators P ^ ( z , D z , y , D y ) ,
P ^ ( z , D z , y , D y ) , . . . , "whose principal symbols vanish on A' u A',

(2.4) P, . . . P,ueHS,UYXY).

In the model case (&,A), the principal symbol of a first order
P ( z , D z , y , D y ) , characteristic for A ' u A 7 , can be written (via the
preparation theorem)

n n— 1

(2.5) p(^,C^r|)=^ p/^.+ri,.) + ^ ^(^-^)+^(^-r|J(z^-^)
j=i j= i

where the p j , qj and q^ are homogeneous of degrees 0,1 and 0,
respectively.

Finally, the following estimates are proven in [13], using the functional
calculus of Antoniano and Uhlmann [1] and Jiang and Melrose
(unpublished).

THEOREM 2.6. — Let S c T*y\0 be a smooth, conic, codimension 1
submanifold and A c= (T*y\0) x (T*y\0) its flo^out. Then, if
re/^(A,A), T'.H^(Y) -^ H^Y), V s e R , if

(2.7) max(p+^p+<n ^ So.

3. Composition and loss of --derivative.4

Let C c= (T*Z\0) x (T*y\0) be a FFCR and A e ^(C.X.Y),
BEr'^C^Y.X) properly supported FIOs.

Let A = A^) be the flowout of n(L) in (T*y\0) x (r*7\0). By
a microlocal partition of unity, we may write A and B as locally finite
sums of operators A = ^^,, B = ^^, such that on each ^FQ4,y
or WF{Bj)\ either C is a canonical graph or Theorem 1.20 applies.

Furthermore, if WF(Bj)' o WF{Ay a A (i.e., there is no contribution
from the diagonal), then the clean intersection calculus of [9] and [32]
applies, with excess e = 0, to give BjA, e /^^(A; V, Y) c:



SINGULAR FOURIER INTEGRAL OPERATORS 455

/^''"•(A.Aiy.y). ̂  ̂ y ^^ restrict our attention to a composition
BA, where ^ e Z'»(C; R", R"), 5 6 /"" (C'; R", R") with
C c= (7-R"\0) x (r*R"\0) parametrized by a phase function

<K^e')=^9')-/.9'+^(x,^,9'), S, and 5, satisfying

(1.15), (1.18) and (1.19) in a conic neighborhood of x = 0, y^ = \,
e' = (1 ,0 , . . . , 0). By Hormander's theorem [18], A has an oscillatory
representation

(3.1) Af(x) = j'.(so(x••e')-/•6•+"-<-">9•»a(x,,,9')/(,) dQ'dy

modulo a smoothing operator, where ae 5'";;5(R" x R" x (P"-1^)) is
supported on a suitably small conic neighborhood of x = (0 0)
y = (0, . . . ,0,1), 0' = (1,0, . . . ,0). S ^ x ' , Q ' ) is. by (1.15), the generating
lunction of a canonical transformation ^° • ^*R"-1\0-> ^*R"-1\0
which we denote by (^(x',^), ^(x',^')); we may assume that
X°(0,e?) = (0,e?). Then x = X0 0 Id: r*R"\0 - T^R^O is a canonical
transformation. Let F be a zeroth order FIO associated with y-1

elliptic on p(C). F has the representation

^-(w) = J^<-so<x'•to')+""•"'+<"''>-^•^c(x,w,(o)/(x) rfw Ac,

ce5';,o(R"xR"x(R"\0)).

We compute the composition FA, applying as usual stationary phase
in the x , co variables. The critical points are given by co' = 9' +
X2

y^iO^^n,.)^^), g^ smooth R""1-valued and homogeneous of degree

1. co, = 0, x» = w,, and ^ determined by w' = ^o(^,<», so that
v-2

x/ = X^OO") + y^ofy,^,}^), ^o smooth and homogeneous of

degree 0. We thus have an oscillatory expression for FA with symbol

of order m - _ and phase

(3.3) (v/-/).9- + ̂ (S^x'^y^Q') + ̂ (-^W^+HQ).

Since both rfe^o and \v' vanish at w = 0, j; = (0, . . . o 1)
Q' = (1 ,0 , . . . ,0) , conditions (1.18) and (1.19) are'still satisfied (if'the
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conic support of A has been chosen suitably small to start with).
Relabeling w by x, one obtains

(3.4) FAf{x) == J^'-^ •9'+^2(^n'9')a(x,^y)^) dff d y ,

with 5z satisfying (1.18) and (1.19) and a e S ^ , a refinement on the
operator level of (1.21).

F*F is a zeroth order pseudodifferential operator P, elliptic on
p(C); let Q be a property supported parametrix, so that QP == I mod C°°
on distributions with wave-front set in p(C). Then BQ e /^(C^R^R")
and by repeating the above argument we obtain for BQF* an oscillatory
representation adjoint to (3.4), with symbol FeS^. Hence, modulo a
smooth kernel, (cf. [8] [18]) the Schwartz kernel of BA has the following
representation as an oscillatory integral :

(3.5) K^y) = f^^-')-6'-^-')^^^^^')-^^.^'))^ ̂  ̂  ^ ^

where c e Sy~1 is a-S cutoff to be supported in { I G ' I ^ la ' l} .

Now, since the gradient of the phase ^(z,y,x^\a') =

(x7-/).^ - ( x ' - z ' ) ^ ' + ^(^(x,^,y) - ^(x.z^.a-)) in all the va-

riables is + 0, integration by parts a finite number of times shows that
all expressions of the form (3.5), with amplitude in .S'^7"'"1, lie in a
fixed Sobolev space ^o°c(R"x R"); in fact, we may take So to be any
number < - (3n+m+w'-4) (cf., [18], p. 90).

PROPOSITION 3.6. - For Xn sufficiently small, there are smooth functions
C(y,z,x,Q',a') and D(y,z,x,W^'), taking values in W and Horn (R"*,R"-1)
and homogeneous of degrees - 1 and 0, respectively, such that

(3.7) ^-^)^=C.<(^)

and

(3.8) (o'-e'^^DO^).

Proof. - Vanishing as it does at {^=^,o'=9'}, S^(x,y^Q')
- §s(x,Zn,a') may be written as (Zn-yn)A(z,y,x,Q',a')
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4- B(z,y,x,Qf,al)•(al-Qf), where A and B are smooth, R-and Re-
valued and homogeneous of degrees 1 and 0, respectively. By (1.19),
A ^ 0 near z = y , Xn = 0, 9' = a ' . Then we have

(3.9) d^ = xLz^-yn)(A^d^A\ + (a /-9').^+^^^V

and

(3.10) d^ = Q' - o' + ^((z^-y^A + (a'-O-).^).

Solving (3.10), we have

(3.11) (l-^d^B\^-ff) = - d^ + ^(z.-^Xc^,

and combining this with (3.9) we have, for x^ small,

(3.12) x,(z,-^)
1 / / v2 V1*/ x2 \ \

=- xjz-^^ ^4-^^^ .^o+^d),
A \ \ Z y \ Z / /

where

^ = A + frf^ + ̂ fz-^^) 1 (B+^d^B\d^A ̂  0.
L L \ L J \ Z /

implying (3.7). From this and the step following (3.11) we obtain (3.8).

We are now in a position to verify that KQA eZ^A^A'), for some
p, ^ e R , using iterated regularity. Given a first order P(z,D^y,Dy),
characteristic for A' uA' , we recall from (2.5) that its principal symbol
may be written

n n— 1

p(z^y,V{) = Spy(^-+r|,) 4- ^ ^(z,-^.) + ̂ (^-^)Kn-r|J.
i i

By (3.5), we have (cf. [8])

(3.13) PK^y)= [^^•^^•^^(z.^O.^^^+ri^e^a^,
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with d E S y 1 ' 1 . Since d^ + dy^ = a' - 9\ if we let
p ' = Q?i, . . . , p» - i ) , the ^•(^+r|7) term of PK^ is

[^•(a'-e^crfydCT^x = [^(^^•^cde^cr'dx

= I^^O/c)^^^

by (3.8); but because D is homogeneous of degree 0,
d^^'^eSy1'1 and this is of the form (3.5). For the ^(^+T|J
term, note that

^0 + d^O = ̂ ((Zn-yn)d^d^A) + (a/-y)•(^4-^)),

leading to

f^d^fc*fx"j^c(^A+^)) + D^^d^B^dy^dQ'da'dx,
v \ \ / /

which is again of the form (3.5). Similarly, noting

^<D + dy<S> = z'-y' +^((Zn-yn)(d.'A +dyA)+(a'-Q')-d,,B+dyB)),

we find that

(3.14) ( z ' - y ' y 9 = i-\d,,+d9.y9 - ̂  (d,,A + dyA)C • d^

-^D^d^B+d^.d^

n-1

and thus the ^ (lj(Zj~yj) term of PA^ is of the form (3.5). Finally,
i

^ -d^
=x^x^A+x^^-y^A-d^A)+x^(a'-6')•(d^B-d^B)\

so that the qn(.Zn-yn)^n-T[n) term of PA:̂  is

| e'9 d^ • C* (XnA + . . . ) d Q ' d^,dx,
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again an oscillatory integral of the form (3.5) with symbol in
S ^ ' Q " 1 1 ' 1 . By induction, for any first order operators P i , . . . , J \ ,
characteristic for A7 u A', Pi, . . . , P^KBA is of this form, and hence in
-^(R"x R") ^ the comment above.

Prop. 2.3 yields KBA e P ' ^ A ' ^ A ' ) and hence BA e7^(A,A), for some
p , ^ e R .

To determine the orders p and <f , note that away from L the
composition is covered by Hormander's calculus and hence
BAeI^^^^Y.Y) microlocally so that p + <f = m + m . Further-
more, the calculation of the principal symbol of BA in [18] is still valid
away from n{L). If a is the principal symbol of A, considered as a

.-density on C, we may express a as a* l^*®^!^2. Since 7t*o)y = ©c is

folded sympletic, TC*O)^ vanishes to first order at L and thus a has a

conormal singularity of order — - at L.

Similarly, the principal symbol of B is b = ?• \n*w^'\112 with p

having a conormal singularity of order — ^ at L1 (here V denotes the

second copy of V). Thus P - a | y y / x A / r y x r * y ^s a conormal singularity* l ̂ .x

of order — 1 above n(L); when pushed down by the Whitney fold TT,

this gives rise to a conormal singularity of order — - at L, in the

principal symbol b x a of BA (cf. [12]). Hence, ^ — ^ = — , ? and

p = m + m 7 , < f = 0 , finishing the proof of Theorem 0.1. In addition,
we see that the principal symbol Oo(BA) is the image of b x a in
^^(vx r;A,7i;(L)).

To prove Corollary 0.2, suppose A e ^(C'.X, Y) is properly supported,
with C a FFCR. Then A* A G/^^A.A^) ; V.V) and is properly
supported and so maps H^(Y) -> H^-112^) by Theorem 2.6. This

yields Corollary 0.2 for 5 = m + -, For general seR, we simply apply

this result to PAQ, where P and Q are elliptic pseudodifferential

operators on X and Y of orders — 5 + m + - and s — m — -?4 4
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respectively. As shown by an example in [13], one does not lose less

than . derivative in general.

It is also possible to give sharp estimates for A in terms of
nonisotropic Sobolev spaces. Let ^(Z) denote the pseudodifferential
operators of order m and type 1,0 on a manifold Z. Then, for s e R ,

(3.15) HW) = {v e 2\X) : Q, . . . Q,v e H^(X)
for all Q^^\X) with ̂ {Q^ = 0,V/}

is the nonisotropic Sobolev space of [3]; defined initially for k e Z+,
one uses interpolation and duality to extend the definition to k e R.
Since p(L) is symplectic, we have H[^(X) c-̂  H^^W '-> microlocally
away from p(L), of course, H^(X) c-^ H^W. For 5 e R , set

(3.16) HW) = {ue^\Y):P,... P,ueH^(Y)
for all P,e^\Y) with ap^(P,)|^ = 0,^},

again extended to k e R by interpolation and duality. (For n(L) the
characteristic variety of the wave operator, this space has been widely
used in the study of nonlinear problems.) One can then show that if
^e/^C^y) is properly supported, with C a FFCR,

(3.17) A: HW) ^ ^-m-l/2•2A+l/2(jO,

giving a sharper form of (0.2). The main point in the proof is to show
that if gi, 02 ? e^W are characteristic for p(L), then there are
operators Pi, P^e^^Y) characteristic for n(L) and A^, A^,
A^eI^^C-^X^Y) such that Q^Q^A = AA + ^2^2 + ^3. This is done
by splitting p*(aprin(6i)^prin(62)) into its even and odd components
with respect to the fold involution of C. The details are left to the
reader.

4. L9 estimates for restricted A-ray transforms.

Let (M,g) be an n-dimensional riemannian manifold. The hamiltonian
function H(x,!y) = g(x,!,)112 generates the geodesic flow on T*M\0,
which preserves S^M = {(x,^) iJ^x,^)^}. Suppose M is such that
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S*M modded out by this flow is a smooth, (In — 2)-dimensional
manifold, J ( . This holds, for example, if the action of R on S*M
given by the geodesic flow is free and proper, as is the case if M is
geodesically convex (e.g., R" with the standard metric). J( is also
smooth if M is a compact, rank one symmetric space [2]. One identifies
M with the space of oriented geodesies on M and then defines the
X-ray transform (cf. Helgason [27])

(4.1) ^/(y) == | /(y(5)) ds, f e CS°(M), y e M ,
JR

where y(5) is any unit-velocity parametrization of y. ^ is a generalized
Radon transform in the sense of Guillemin, satisfying the Bolker
condition, and hence the clean intersection calculus applies, yielding
that 31*3^ is a pseudodifferential operator of order — 1 on At [14].
Thus, ^T^ompW^^1^), generalizing (locally) the result of
Smith and Solmon[28] for the X-ray transform inR".

One now considers the restriction of S^f to n-dimensional submanifolds
(geodesic complexes) ^ c= J ( , and the question of reconstructing / from
^f = ^f\v (The following is a summary of the discussion in [12], to
which the reader is referred for more details.) To even define ^f for
/ 6<r(M), we have to impose a restriction on the wave-front set of/ .
Let

(4.2) Z^={(Y,x)e^M:xey}

be the point-geodesic relation of ^; the Schwartz kernel of ^ is a
smooth multiple of the delta function on Z<^. Let Crit (^) be the
critical values of the projection from Z<^ to M\ by Sard's theorem, this
is nowhere dense and of measure 0. There is a closed conic set
KQ cz T*M\0, whose complement sits over Crit(^), such that for

/e^(M)={/er(M): WF(f)czK,}, ̂ fe^)

is well-defined. Shrinking Ko to a somewhat smaller K in order to
avoid the nonfold critical points of n: C = N*Z'^ -> T*M\0, in [12]
it was shown that if ^ satisfies a generalization of Gelfand's admis-
sibility criterion [II], then, over K, C is a FFCR and we have
^e/'^^Q^M). Using an explicit description of the integral kernel
of ^l^f, it was also shown that ̂ ^e I~1'0(^T M^K(L))^ where K(L)
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is the boundary of the support of the Crofton symbol, allowing the
construction of a relative left-parametrix for ^. From Theorem 2.6 it
then followed that

(4.3) Wll^i/4^ ^ CJI/H^, fe^s ̂  -^

Cs depending on 5 and the support of /. It now follows directly
from (0.2) that (4.3) holds for all s e R ; furthermore, by (3.17),
^: H^W-^H^1'4'21'^). Moreover, (0.2) can be applied to an
analytic continuation of ^ to obtain Theorem 0.4.

First, we derive necessary conditions for local boundedness

(4.4) ^ : L^(M) -> L^)

by considering, in R", the following two families of functions. If
x e R"\Crit (^), i.e., the projection from Z^ to R" is a submersion at
X o , then if we set f, = ^B(X^), we have \\f^\\Lp - c^ while ^f, ̂  cs
on a rectangle in ^ of dimensions^ 1 x 8 x s""1, so that

l+nzl 1 1 111^/Jlz,^ ^ c£ q , (4.4) then implies that - ̂  (n/n-1)- - ——-• Ifq p n - 1
0 = XQ e Yo = Xi — axis and 7^ E = Xi — Xg plane, where

s= u
XQ { y e ^ - . x ^ e y }

is a two-dimensional cone with vertex at XQ and 7^ ̂  is its tangent
XQ

plane along Yo, we may set/g = 7[- i . i ]xi-e ,e]x[-e2g2^ x [ - e 2 g 2 , , obtaining

ll/elL? ^ s-"—— while ||^/|L<? ^ cs-"——» so that (4.4) implies that
P ^

- ^ (2n—3)/(2n—2).-- Thus, a necessary condition for (4.4) to hold is
q <?
that (- '-) lie in the convex hull of (0,0), (1,1) and

\P ^ )
( , . (2n-3)/(3n-3))- Our positive results, (0.4 a) and (0.4 b), are only

for ( - ' - ) lying in a proper subset of this region and so are probably
\P ^ )

not sharp.
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The proof of Theorem 0.4 is straightforward, given Theorem 0.2.
Let pi(y,x), . . . , p^v^e^C^xM) be defining functions for Z^.
Consider the entire, distribution-valued family

(4.5) K^y,x)=r(^\ IpCY^r^'^y^aeC,

—>
where p = (pi, . . . ,p^-i) and \|/e C^C^xM) is = 1 on Z^ over the
support of / and supported close to Z^. If we denote the operator
with Schwartz kernel K^ by ^a, then ^e/^-^C^M). Fur-
thermore, if P(x,D) is a zeroth order pseudodifferential operator on
M, elliptic on a subcone A^i c= ^ and smoothing outside of K, then
^°=^P acting on <T^. By (0.2), we have ^P: L^(M) -^

Z^ocW for Re (a) = - -• On the other hand, for Re (a) = n - 1, we

clearly have ^P\ H1 -> Z^c, where H1 is the Hardy space onM([29]).
By the Fefferman-Stein interpolation theorem [10],

^ 1 1\ /2n-l 2n-2') • T PQ —*. /' ^o• ^comp "- ^coicomp ^^o ^7 ^4n-3 4n-3/
(A word is needed about the dependence of the L2 bounds on Im(a)

for Re (a) = — - • To obtain estimates on any finite number of derivatives

of the product-type symbol of ^^^^/-^^"^(A.A), only a finite
number of applications of first order pseudodifferential operators (as
in (2.3)) have to be made. However, the dependence of L2 bounds for
elements of /"^'"(A.A) on only a finite number of derivatives of the
product-type symbols is not clear in the proof presented in [13], § 3,
since that proof uses the full functional calculus for /(A, A). An alternate
proof may be given, though, in which this dependence is clear. There
are fixed elliptic FIOs F^F^ such that T" = F^^F, e /-^'"(A.A)
has the representation (cf. [13], § 1).

r^^ f^(2/-/K/+^-^K")a,(z,y;^^J/(/,^)e^^/^

where a^ is a symbol-valued symbol of order M = 0, M' = 0. We
may consider this as a pseudodifierential operator, of order 0 and
type 1,0, acting on L2(Rn~l', (L^R)), whose symbol is the pseudodif-
ferential operator on R with symbol ^(z7,-,/,-;^')? which is of order
0 and type 1,0. By the standard proofs of L2 boundedness for operators
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of type 1,0, we only need the S^o estimates for a finite number (say,
n) of derivatives. Thus, the L2 bounds for ^a grow at most exponentially

in |Im(a)[ for Re(a) == - 1).

On compact sets away from Crit(^), supJ[A^(-,;c)|| and
sup^||A^^(y,-)|| are bounded, where ||dp,|| is the total variation of a
complex measure d[i, and hence ̂  : Z^omp -> -^foc 1 ̂  P ^ 00 » acting
on functions supported away from Crit (^), and hence ^^P '. Z^omp -^
^foc 1 < p ^ oo. Interpolating between these estimates, we obtain
Theorem 0.4. Of course, if we can take K = T*M\0, then the
microlocalization P(x,D) is unnecessary and (0.4) holds for p = 1,
p = oo as well.

Just as with the L2 estimates in [13], one expects the estimates for
^ for a general ^ to be better than those in (0.4). For instance, it
was shown in [13] that for an open set of ^'s in three variables,
N*Z'^ is a folding canonical relation in the sense of Melrose and

Taylor[25], so that there is a loss of only -? rather than -? derivatives6 4
on L2. Incorporating the L2 estimates of [25] into the above interpolation
argument, one obtains

THEOREM 4.6. - Let ^ c: M be a geodesic complex and let P(x,D)
be a zeroth order pseudodifferential operator on M such that
C = N*Z^ is a folding canonical relation over the conic support of P .
Then ̂ P: Z^omp(X) -> ^foc(^) for p , q satisfying either of the following
conditions :

1 3n - 1 (\ 1 \ , 2(3n-2)
(a) ^3n^(p-2(3n^2)} 1 " ̂  -3n^T ;1^1, w-̂ ,,.̂ .

q 3n - 1 p 3n-l

As described in [13], examples of ^'s to which Theorem 4.6 applies
are given by equipping R3 with the Heisenberg group structure with
Planck's constant e ^ 0 suitably small and taking ^g to be all light
rays through the origin and their left translates. Because of the stability
of Whitney folds, Theorem 4.6 also applies to small perturbations of
these in the C°° topology.
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