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ON THE GENERIC SPECTRUM
OF A RIEMANNIAN COVER

by Steven ZELDITCH

This paper has two related purposes. The first is to analyze the
spectrum of the generic Laplacian on certain finite C^ riemannian
covers. The second is to give applications to isospectral theory: in
particular, to construct isospectral pairs (Mi,^i), (M^,g^) with simple
eigenvalue spectra.

The model for problems on generic properties of spectra is the work
of J. Albert, K. Uhlenbeck and others on the eigenvalues and eigen-
functions of generic Laplacians on a riemannian manifold ([Al], [U],
[Bel], [BaUr]). A typical result of their work is that the generic spectrum
is simple (all eigenvalues have multiplicity one). In this paper, we will
consider what happens in the case of a finite riemannian co-
ver p : (M,g)-> (Mo, go) (p*(go)=g). When p is a normal cover, with
covering group G, it is evident that the real eigenspaces E^ of the
Laplacian A^ on M are orthogonal representations of G. A natural
(and apparently common [Wig]) conjecture is that, for the generic g o ,
the E^ should be irreducible. Our first main result (Theorem A) is a
proof of this conjecture under a «high dimension-low degree»
assumption : namely, that dim M > deg (a) for all orthogonal irreducibles
a of G (*). Our method of proof breaks down at every step without
this hypothesis, and it is far from clear at present if the conjecture is
true without it.

Theorem A has a fairly straightforward generalization to covers
which are not necessarily normal. Such covers arise often in isospectral
theory (cf. [Su]). To state the result, let p i : Mi -> Mo be a given finite

Key-words : Laplacian with symmetries - Generic spectrum - Multiplicity-free represen-
tations - Isospectral manifolds - Simple eigenvalue spectra.

A.M.S. Classification: 58 - 35 - 53.
(*) We thank G. Besson for pointing out that our result holds as well if dim

M ^ deg CT for all CT.
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cover, and let G be its monodromy group. A straightforward construction
produces a tower M -> Mi -> Mo of finite covers, with M ->• Mi normal
( z = 0 , l ) and with G equal to the covering group of p:M->Mo. We
will refer to p as the « normal closure » of pi. Then the properties of
the generic spectrum of (Mi,p*(^o)) are determined by the structure of
the G-space L\GIH,R), where H is the group of M-^Mi. Of
particular interest in this paper are cases where the eigenvalues of the
generic Laplacian of (Mi,p*(go)) are simple. It turns out that two
assumptions are necessary and sufficient for this property : first, that
^ ( G I H , R) be multiplicity free (each orthogonal irreducible a of G
occurs in it at most once); and second that it be « completely of real
type » (each occurring a must be of real type). We then have Theorem B :
Let j? i : Mi -> Mo be a given finite cover, and let p : M -> Mo be its
normal closure. If

(i) p satisfies the « high dimension-low degree » hypothesis.
(ii) L2(G/H, [R) is multiplicity free, and completely of real type;

then :
spec (Mi,p*(^o)) is generically simple.

Theorem B can be combined with Sunada's method for constructing
isospectral pairs of riemannian manifolds to produce a « simple isospectral
pair»: a pair (Mi.gi), (Mg,^) with spec (Mi, g,) = spec(M^g^, and
with spec(Mt,^i) simple. Sunada's method is to search for isospectral
pairs among commensurate pairs : that is, among pairs Mi, Mz which
fit into a diagram of finite covers :

(1.0) Mi G M,

Here, M -> M,0"=0,l,2) are normal covers, with covering groups as
shown. Sunada observed that if L\G/H^) ^ L^G/H^) as real
G-modules, then for any metric go on Mo, spec (Mi,p*(^o)) =
spec (Ma.pT^o)); typically, these pairs are not isometric. To construct
a simple isospectral pair, we need a diagram satisfying this condition
and also the conditions of Theorem B. Fortunately, an example due to
Brooks [Bro] has all these properties. This gives our Theorem C : there
exist (non-isometric) simple-isospectral pairs.
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The interest of Theorem C (at least to us) is that, at present,
Sunada's method is the only systematic method for constructing
isospectral pairs. Since his pairs always have a common quotient, it
was far from clear that they could have simple spectra : hence, that
any isospectral pairs could be simple.

Remarks and Acknowledgements.

(1) Dual to the problem of constructing simple isospectral pairs is
that of constructing isospectral pairs with simple length spectra (the
length spectrum being the set of lengths of closed geodesies). Under
certain conditions, simple length spectrum implies that a riemannian
manifold is not a nontrivial cover. Hence, Sunada's method can never
produce such examples. It seems quite doubtful that any such examples
can exist in the Fourier Integral category [Z].

(2) This paper leaves open many interesting cases of the generic
irreducibility question for Laplace eigenspaces on a normal, riemannian
cover. In particular, it does not touch the case of graphs, and barely
touches a few examples of surfaces. Moreover, the methods fail
completely to extend to principal bundles with non-discrete structure
groups : in particular, on a manifold with a positive degree of symmetry,
does the generic invariant Laplacian have irreducible eigenspaces?

(3) Finally, we would like to thank the many mathematicians with
whom we discussed this work as it evolved. Special thanks are due to
B. Brooks, H. Duistermaat and G. Mess for suggestions that significantly
improved this paper. It is also a pleasure to thank MSRI and in
particular the organizers of the symplectic geometry program for financial
and other support and a good atmosphere while this work was done.

1. PRELIMINARIES

Our purpose in this section is to prepare the way for § 2, in which
we will prove the generic irreducibility of Laplace eigenspaces on a
normal riemannian cover. Here we will set up notation and background
for:

(a) Perturbation theory of general Laplacians.
(b) Harmonic analysis on a normal, riemannian cover.
(c) Perturbation theory on a normal riemannian cover.
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la. Perturbation theory of general Laplacians.

The material we summarize here is all well-known. A very detailed
and readable account of it can be found in [BaUr], and we will closely
follow the notation and terminology of that paper. Other references
include [U], [Al], [BIWilJJBel].

Let X denote a compact, C00 manifold of dimension n. We let S(X)
denote the Frechet space of C00 symmetric co variant 2-tensors on
X : h e S(X) if, locally,

n

(1.1) / 2 = ^ ^ d x , ® ^ . , h,=h^, ^eC".
u=i

S(X) carries a Frechet norm | . |, obtained by suitably summing
.local Ck norms [BaUr]. Let p' denote the resulting complete metric
on S(X).

Next, we let M = J/(X) denote the Frechet space of C00 riemannian
metrics on X. J^(X) also carries a complete metric p, for which the
metric and C°° topologies coincide ([BaUr]). Indeed, let Px(X) be the
cone of positive definite elements of S^ (X). A complete metric p^ may
be defined on Py by setting :

(1.2) P;(<)),^) = mf{6>0:e~^<^<e^}.

One then sets: p"(h^h^) = sup p^(hi(x),/Z2(x)), and p = p' + p". For
further details, see [BaUr].

Recall that a subset of M is called residual if it contains a countable
intersection of open dense sets. Residual subsets of complete metric
spaces are dense. A property of metrics in M will be called generic if
it holds on a residual subset.

Now let go e Ji . A real analytic deformation of go is a real analytic
curve g ( t ) : (- s,s) -> M with g(0) = g o . Only linear deformations
<?(0 = go + tn^ heS(X), need to be considered in this paper.

The Laplacian A(g) of ge^ is the essentially self-adjoint operator
on C^^X) given in local coordinates by:

d.3) A(^) = - — i —fy^i^—Vyi^i u=i^\ ux^
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where g = (^), (^)~1 = (g^) and |^[ = det(^). The sign convention
in (1.3) implies that A(g) ^ 0. The spectrum spec (X,g) of the riemannian
manifold (X,g) is the spectrum of A(§-): i.e. the eigenvalues
0 = ^o(§) < ̂ i(g) ^ ^C?)- The corresponding normalized real-valued
eigenfunctions will be denoted by (p/c(g):

(1.4) jA(g)(p^) = V^)(p^)
\^(g)eC-(X,R), ((p.,(p^= a,,.

Here the inner product ((p,\|/)^ is of course that of L2 (X,dvolg).

We will let E^(g) denote the real eigenspace of real-valued
eigenfunctions of eigenvalue ^- The complex eigenspace will be written
E^(g). Of course, E^ = E^ 00 C. The multiplicity m(k^g} of the k^
eigenvalue ^(^) is the dimension (over R) of E^(g).

The reader should reflect at this point on the fact that complex
eigenspaces of normal riemannian covers cannot generally be split into
unitary irreducibles by metric perturbations. This will be discussed
further in § c. For the time being, it should explain the close attention
we pay to real versus complex eigenspaces.

One always has the orthogonal decompositions :
(1.5i) L^X^dvol,)^ (SE^(g)

(1.5ii) Z^A^dvoV^ © E^g).

Now let g(t) be a real analytic deformation of g . The Laplacian of
g(t) will be denoted A(^). If ^ is a simple eigenvalue of A(0) (i.e.
mult (^.^o)^)? ^en there are real analytic functions X^(r), (p/,(0 of
r e ( — 8 , e ) for some c so that A(r)(pA(0 = ^(O^O- The eigenfunction
H>k(t) is real-valued and (cp/,(0,(p/,(0)^=l. If ^ is a multiple eigenvalue,
say mult(^,^o) = ^ ? then there always exists an orthonormal basis of
E^(go) which extends analytically along g ( t ) . More precisely, there exist
8, and real analytic ^4(0 and (pUO? so that

(l.6i) A(t)(pUO = ^(0(pi(0, r < £, f = l , . . . , ^ ;
(1.6ii) ^(0) = ^/,(^), {(pU^)} ls an orthonormal basis of E^;

(1.6iii) (cpUr),(pl(0).=^.

The initial basis {cp^(O)} is sometimes called a Kato basis for £'^,(go)
and for the deformation g(t) [PSa]). To emphasize that the (pi(Q are
real-valued we will call it a real Kato basis.
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Taking the r-derivative at t = 0 of (1.6i) we get the variational
formula :

(1.7) , ' (A-H)(pi+(A-^)(p^=0.

For simplicity, we do not put either g(0) or the infinitesimal deformation
g(Q) explicitly into the notation.

The infinitesimal deformations A of the Laplacian are given by the
following well-known formulae ([U], p. 1075-6, [BaUr], Lemma 4.4)

(1.8a) When g(t) = (1 +tr)g (r e C°°(T)) is a conformal deformation,

then A = - n rA + (n- l) div (rV).

(1.8b) When g(t) is volume preserving, then

A=-—E^f^r^V^ITi^i^v ^7
Here (g^) is a traceless, contra variant symmetric 2-tensor: ^^y^^O.

U

Ib. Harmonic analysis on a normal, riemannian cover.

Let p : M -> My be a finite normal cover, with covering group G.
In other words: a principal G-bundle over My, where G' is a finite
group.

Let J^o = J^(Mo) be the C°° metrics on Afo, let p*J^o c= ^(M) be
their pullbacks to M and let MG be the G-in variant metric on M.
Normality of p implies :

(1.9) ^=P*^o.

When M and Mo are equipped with metrics g and gQ, p is said to
be riemannian precisely when p*(go) = g . This terminology of course
makes sense for any cover, normal or not. Only such metrics will be
considered on covers M in this paper.

Given /eL^M.dvolg), we let /° denote its projection to
^(Mo.dvoy

(1.10) rOc)^ S f(gx).
geG
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Here we expect no confusion to arise between the notation g for group
elements and for metrics. We also note that in (1.10) we have tacitly
identified elements of Ll(Mo) with G-invariant elements of L^M). We
also will use the notation :

(1.11) /^(x)^—/0^), |G| = cardG.
\(J\

Now let g = p * ( g o ) , and let < ,> be the inner product on
L^M.^dvoy. We then have:

(1.12) <f.j2>= f (/J;)°dvol^(x).
JMQ

Of course (f\f<i)°(x) is the inner product on L2(G) of the functions
def

f^(g) = fi(gx). Formula (1.12) accounts for all the special features
distinguishing analysis on normal covers from that on non-normal ones.

When g == p*(^o)? lt ls clear that the real eigenspaces E^g), resp.
the complex eigenspaces E^(g) are orthogonal, resp. unitary represen-
tations of G. In general they are reducible. Thus, we have G-
isomorphisms:

(1.13a) E^(g)^ @m^^g}W.
a

(1.13b) E^(s)^em(\,p;g')V,
P

where : (i) (a, Wy) runs over the set Go of (equivalence classes of) real,
orthogonal irreducibles of G; (ii) (p, Fp) runs over the set Gu of unitary
irreducibles; (iii) m(k,<j,g) is the multiplicity of (a, Wy) in E^ (likewise
for G,).

Under a fixed isomorphism in (1.13a), E^(g) is decomposed into an
orthogonal sum of isotypic summands :

(1.14) J^= ©^ (ere Go).
<7

E^ is the subspace of eigenfunctions «transforming according to a ».
Note that we have dropped explicit mention of IR and g in the notation
for £^, and will continue to do so when no confusion seems likely. A
similar decomposition to (1.14) of course holds for E^.

Let us also set:

(1.151) Z^(M,R;dvo4)= ©^,
\
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so that

(L15ii)

STEVEN ZELDITCH

L\M)= @Ll.

Our main problem in §2 will be to show that under our «high
dimension-low degree » hypothesis, generically E^(g) is irreducible for
all ^ e spec (M,g). It will clarify matters considerably if we now translate
this problem in terms of equivariant eigenvectors for the Laplacian on
M. To facilitate their definition, we will give some more terminology
regarding the decomposition in (1.13a) and also to distinguish certain
special kinds of bases for E^.

First, we obviously have :

(1.16) E^m^o)W,.

Let us call a fixed isomorphism in (1.16) a splitting of E^ (into
irreducibles). We then let W^j denote the irreducible subspaces of E^
coming from the splitting, so that:

m(k,a)

(1.17) E^ = C W\̂ J'
J = l

Second, we distinguish certain orthonormal bases for the W^j. To
do this, we begin by selecting from each equivalence class in Go a
specific representative, or model, (a,^). This is of course a specific
matrix representation a: G-^O(IR^) , p = d e g ( 7 . Let (<7y(^)) be the
matrix of o relative to the standard basis ^ of W.

We then say :

(1.18) DEFINITION. - {(p^-.i, • • •,(p?,.p} is a normalized a-basis of
^j y:

(i) <PL;^)= E^z^X^W,

(ii) ((pL;,,<^) = 8,,.

Equivalently, the isomorphism: W^j^^ taking (p?^ to ^ is a
G-isomorphism to the model. Note also that (ii) is redundant by the
Schur orthogonality relations (see the Appendix to this section).
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We now introduce equivariant vectors :

(1.19) DEFINITION. - 7f(a,^) is the model above, let ^ = e^M.R)
be the space of:

to: M -> w, mi < oo
[^(ag) == o(g)^(g)

f
where: p = d e g < 7 , anrf ||0||j = <(D(x),(D(x)> dvolg, < . > denoting

JM
/i^r^ ?/^ mn^r product on ̂ .

If we write <D = ((pi, . . . , (pp/, with (py: M -> (R, then the equi variance
conditions means exactly that the (p^ transform according to (1.181).

It is obvious that the Laplacian is essentially self-adjoint on C^ n E",
and hence we get an orthogonal decomposition

(1.20) 80 = © £?
x

into spaces of equivariant eigenvectors :

(1.21) £; = {(Dee^-AO = ^}.

The choices above in (1.17) and (1.18) of splittings and a-bases
correspond to the choices of certain orthonormal bases for s?. To
describe them, we need to recall some elementary facts about real,
orthogonal representations [BroT-D], [Ad], [K]).

First, for an orthogonal irreducible representation a : G-^ 0(11^),
let

(1.22) K(a) = {AeEnd(RP)•.Aa(g)=a(g)A,\/geG}.

K(<J) is the intertwinning algebra, or centralizer, of the a-action. For
such a e GQ , K((J) is a division algebra, i.e. 1R or C or H (the
quaternions), a is said to be of real, complex of quaternionic type
accordingly (the letter « K » is supposed to suggest « field »).

An equivalent description of types is in terms of the complexification
(7c of a. Letting p denote a unitary irreducible of degree p, one has :

(1.23i) <7c = p, CT of R-iype

(1.23ii) <7c = p © p, a of C-type
(1.23iii) ac = p © p, a of H-type.
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Let us then define :

(1.24) DEFINITION. - Let K = K ( v ) . A set {<D?,i , . . . ,<D^} of
equivariant eigenvectors is called a normalized K-basis of e^ if :
. (i) <(D^,(D^.>=p5J.

771

(ii) 8?= © K^,.
i= i

Our main result in this section is the following.

(1.25) PROPOSITION. — There is a 1 — 1 correspondence between
m(k,(j)

(a) a choice of splitting E^ = © H .̂ together mth a choice of
j= i

normalized o-basis for each W^j, and
(b) a choice of orthonormal K(a)-basis for e^.

Proof. - Of course, the proof is just to confirm that the
correspondence 0 = ((pi, . . . , (pp) i-̂  { (p i , . . . , (pp} between equivariant
vectors and a-bases carries the data of (a) to (b) and vice-versa.

First, by the Schur orthogonality relations for real, orthogonal
representations (cf. the Appendix to this section), the a-basis {(pi , . . ., (pp}
is automatically orthonormal if | |<D| |^ = p .

Now, suppose {(D^i , . . .,0^} is an orthonormal ^-basis of s^. To
each 0^ we may associate the irreducible subspace £'(0?^) of E^
spanned by its components :

(1.24) EW,) dlf © R(p^.
/c=l

Obviously E(^) 1 ^(0?,,) if j ^ k . Further, {<,;,: k= 1, . . . ,p} is a
normalized a-basis for £'(0?j) by the remark above. To show that
{ O ^ i , . . . ,0\,^} determines a complete splitting of £'j7, and a normalized
a-basis for each irreducible, we only have to show that m = m(?i,a).
But obviously m^m(^ , a ) . Suppose then that m < m(?i,a), and let

TO

W^Q be a irreducible in E^ which is orthogonal to ®£'(^>^).
^=1

Let{\|/i, . . .,\)/^} be a normalized a-basis for W^, and let ^F be the
m

corresponding equivariant eigenvector. By assumption, ^ = ^^0^,
TO j = l

with ^,e^. This clearly implies that W^ c: © £'(0?,), a contradiction.
7=1
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m

So m = m ( ? i , C T ) , © £'(0?j) is a complete splitting of £^, and the
7=1

components of the 0's give the a-bases for their summand.

Conversely, given the data of (a), we use the a-bases of W^j to -
form equivariant eigenvectors {O^i, . . . ,0?,mL where now it is clear
that m = m(A,,a). We need to show that {0?j} is a A^-basis of c^. By
orthogonality of the W^, it follows that for any A e E n d f W ) ,
<^40^, 0?j> = 0 (i^j). This applies in particular if A e K . So
m

© ^0?j is an orthogonal sum in e^, and {0^} is a normalized basis
^
for it. If it doesn't equal e^, there is a ^F e 8? with ^F 1 ® K^j. Then

7= 1

the components {\)/i, . . . ,\)/p} of T form a a-basis for an irreducible
m

subspace £'(^) of ^. By assumption, E^ = © £'(0^), so there are
7=1

constants (A^ (j= 1, . . . ,m ; k,l= 1, . . . ,p) with \[/, == ^ (^7)^;,.
-^

Equivalently : ^F = ^ ^J^)^. We reach a contradiction if Aj e K . But
7-1

a^)-1^^) = ^ implies that ^ [cT^)-1^^^)-^7]^^ = 0. By an
7

obvious orthogonality (used above), we must have that
aC^r^a^) - Aj'' = 0 for all j. So A3 e K , concluding the proof. D

(1.25) COROLLARY. — dims^ = (dim^ K(a))m(k,a).
The proposition allows us to restate our criterion on irreducibility

of eigenspaces :
(1.26) The eigenspace E^(g) is irreducible if and only i f :
(i) There is at most one a e Go so that e? 7^ {0}.

(ii) If £? ^ {0}, then s? = A:(a)0? for some 0?.

Finally, we end this section by explaining our earlier remark on the
non-splittability of complex eigenspace. To do so, we reconsider (1.23).
Suppose that a e Go is of C- or H-type. As is well-known (cf. [Do]),
for any metric g , there is non-zero proportion of eigenvalues ^ for
which E^ -^ (j). With no real loss of generality, we may therefore
assume E^g) = £?(^). Then we recall that E^(g) = E^(g) ® C, i.e.
E^g) consists of the real and imaginary parts of elements of E^. It
follows that no metric perturbation can split up the unitary irreducibles
of E^ corresponding to (1.23ii-iii).
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Ic. Appendix.

In this appendix we state and sketch the proof of the Schur
orthogonality relations for real, orthogonal irreducibles a e Go. We have
already needed these in (1.18) and Proposition (1.25). Unfortunately, we
were unable to find a standard reference for them.

Since the orthogonality relations depend on the type of representation,
we will organize this appendix accordingly.

(1) a of real type (deg a = p ) . Then

(1A.1) ^S^te)^te)=§S?^^'

(The proof is exactly as for unitary irreducibles.)

(2) o- of C-type ( d e g < j = p ) ; then K(cr) = {a+^}, where:
^e<9(^); ^2 == - id; a . b e U .

Since C acts non-trivially on R^, we must have p == 2m.
Let {^ i , . .. ,^,/\, . . . ,/„,} be a symplectic basis for the form go (^ \ ' ) ,
go being the Euclidean metric on [R^. Then ^ has matrix

where / is the m x m identity matrix. Since a(^) commutes with J^, it
has matrix

A B

- B\ A
with A, B e End (HT).

We claim :

(1A.2) (i) 7^E^.^(g)a^(^)=
1 ^ 1 G\

I.b^(g)b^(g)=
Ĵ2

(it) E^(^-2^) = ° (^1^2JlJ2).
g

Here fly(resp. foy) are the matrix elements of A(resp. B).
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Indeed, for any MeEndfW) , we set:

(1A.3) M° ^ —EcT^Ma^),

Then M°eK(a), so M° == a + b J ^ . Clearly a = TrM, !? = - TrJ^M.
Now let

jr o
M=

L o I o
with ZeEnd(BT).

As a(g)~1 = <7(^y, we get:

, ̂ _ , , r AtxA ^^B}
^^^[-B^B B-XB [(1A.4) a(gyMc

Then M° = (tr X)I, hence

(1A.5) (i) ——YA^XA^) = ̂ -^B(gYXB(g) = t r X I

(ii) ^A(gYXB(g) = ̂ B(gYXA(g) = 0.

Plugging in X = E11-'1 (1 in the (i\Ji)-position and zero elsewhere), we
get (A 1.2) above.

(3) a of H-type.

By an argument similar to (2), p = 4m and

K(o) = {^4-^+c^+^Jf},

where ^ , / , JT generate the quaternions. One can choose a basis of
(R^ so that :

0 1
1 0

(1A.6) (i) ^ =
0 1

- i oJ
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(ii)

(iii) Jf =
- 1

0

From the fact that o commutes with K(a), one gets that the matrix
of CT for this basis is :

(1A.7) <-^)=

A
- B

- C
- D

B
A

D
- C

C
- D

A
- B

D~
C

B
A

Letting M e End (W), we find that:

( 1A .8 )
M° = (TrM)/ + (-TrJ^M)^ + (-Tr /M)/ + (-TrJfMpf.

If we let
X
0

0
0 0

M=

with X = E11^ as before, we get

(1A.8) ^S^te)^^)"^5^ J^?
where r^j are the matrix elements of any of A, B, C, D. Further, the
elements of any distinct pair from A, B, C, D are orthogonal.

This completes the discussion of the Schur relations. We now show
that the elements of a a-basis are always orthonormal. The proof is
well-illustrated with the care of o of C-type ; the general case is left
to the reader.
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Suppose then that o has C-type. We write W = R^ (g) R2 and let
EO = (1,0), £i = (0,1) be the standard basis of R2 . Then any veW
may be written : v = v^ ® £1 + i^ ® £2? ^h ^ e ^w- So an equivariant
eigenvector <D : M -> ̂ p is 0 == Oo ® So + ^i ® £1 • The equivariance
condition is :

(1A.9) ^>o(^) = A(g)(S>,(x) + 5(g)<^(x)
<D^x) = - B(g)(S>,(x) + ^)a>i(x).

Let 0o = (<Poi» • • • . (pop), ^i = (^Pii, • • • , <Pip) • Then our claim is :
<(PO»<P(V> = 8vl|(poJlL <cpo. ,(Pv> = 0, <(pi,,cp^-> = §y||(pi,||L We do only
the first. But by (1.12):

r /
(1A.10) <(PO»(POJ> = (Z<Pot(^)(Po7(^))^» .

jMo\g

Then (1A.9) combines with (1A.2) to give the stated result.

Id. Perturbation theory on a normal riemannian cover.

We now adapt the material of § la, and some other material from
[BaUr], to the situation of a normal, riemannian cover.

Suppose, then, that g = p * ( g o ) . Let g(t) = g + tp*(h), where
heS(Mo). According to (1.6), there is a real Kato basis for E^g)
along g(t). In fact, the proof in (say) [BaUr] shows more. Namely, if
^(g) = © E^(g), then each E^(g) has its own real Kato basis along

CT

g( t ) . Indeed, one just applies the same proof to the deformation A(r)
on Z4. So let {(p^'} be the real Kato basis of E^(g). It is then clear
that £'((p^(0) is a real analytic family of irreducible eigenspaces of
A(t). Let us say :

m(k,a)

(1.27) DEFINITION. - A splitting £? = © W^j is a Kate-splitting
y = i

(along g(t)), if the irreducibles W^j extend to a real analytic family
W^j(t) of eigenspaces for A(r).

m(k,a)

Thus, ® EW'W) is a Kato splitting of E^(g).



422 STEVEN ZELDITCH

We now remark that any orthonormal basis for the summands
W^j of a Kato splitting will form a Kato basis along g(t). Indeed,
this follows from the irreducibility of the W^j. We may therefore fix
a real a-basis for each W^ which extends analytically along g ( t ) . We
will call such a basis a real Kato a-basis (for g(t}).

Such a real Kato a-basis is equivalent to a K(a)-Kato basis for
E? ; i.e. a normalized ^(cj)-basis {0^} of s? which extends analytically
to {0^(0} along g(t). The proof is immediate from Proposition (1.25).
Summing up, we have

(1.28) PROPOSITION. - Let g(t) = g + ^*(/i). TTien /or a« o e G o ,
and feeZ^ ^re ^m^s 8 and real analytic ^[(t), ^'(t)^ w so that :

(i) A(r)or(0 = 4(00^(0;
(ii) ^(0) - ^.(g);

(iii) {(D^'(O)} is a normalized K-basis of s? (g) ;
(iv) <(D^(0, (D^ J(0>=(dega)8j .

Our second order of business in this part is to recall (and adapt to
our setting) some material on the continuity of eigenvalues and upper
semi-continuity of multiplicities. Our reference for this is (again) [BaUr].

To begin with, let us define

(1.29) DEFINITION. - (i) U,(go) = { g o ( = ^ o : p ( g ^ g ' o ) < G }
(ii) V^g,) = {go£^o:P^o^o)<s} (cf. (1.2), (1.9)).

We then have (following [BaUr], theorem 2.2):

(1.30) PROPOSITION. - g'o^ V,(go) implies, for all k e Z+ ,

^-a!+l)£ ^ ^(^*(go))/^(p*(go)) ^ ^+1)£.

Proof. — Precisely as in [BaUr]. For completeness, we give some
details. The main point is to use the mini-max characterization of
eigenvalues :

(1.31) ^(g) = inf A,(L,^)
Lk+l

where L^+i is a (A;+l)-dimensional subspace of C^M), and where (in
an obvious notation)

(1.32) A,(^i)=sup{||rf/||^/||/||^0^/eL^J.
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To compare ^(p*(go)) ^d ^/c(p*(^o))» one thus only needs to
compare the ratios | \df\ |^/| |/| |̂  for g = /?*(go) and ^ = ;?*(go). By the
assumption that go ^ ^(go) -> one has :

(1.33) e-\g^) ̂  (g,,) ^ e\g'^

(in some coordinate chart X). Obviously (1.33) lifts to p*(go)u ^d
P*feo)y I1 follows that for any / supported in the p~l(X):

(1 34) e~(n+ l)e ^^*(gQ) ^ ^^^*<gQ) ^ ^("+1)61^^*^.
ll/ll^*(^o) ll^ll^*(5o) 11/11^*(4)

(Compare [BaUr], pp. 161-162).

The proposition now follows from (1.32). D

A small modification of the proposition allows us to relativize it to
a representation a. In other words, let ^(a,go) be the k^ eigenvalue
of A(p*(go)) in Ll(M,R), and let spec (M,p*(go), cr) be the set of these.
We obviously have :

(1.35) ^(o,go) = inf A^(^)(L^)
Lk+l

where Z^+i runs over (k+ l)-dimensional subspaces of C^ n L^. Following
thru (1.30), we get:

(1.36) COROLLARY. — g o E V^go) implies, for all k e Z"^ :

^-(n+l)e ^ ^(^go) ^ ^(/z+De

^ ^(<7,go) ^

Proposition (1.30) and Corollary (1.36) immediately imply some
useful results on upper semi-continuity of eigenvalues.

(1.37) PROPOSITION (Compare [BaUr], Corollary 2.3).

(a) (Vgo e ^o)(V^)(3c): g, e V^g,) implies :

^(^P*C?o)) ^ ^(^,P*(^o))

(b) (V^e^o)(Va)(Vk)(3e): g'.eV^) implies :

m(^,cr,p*(go)) ^ m(^,c?,p*(go)).
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Proof. - (a) Write ^ for ^(p*(go)) and ^ for ^(p*^o)). Then,
if m(k'k) > m(X^), there must exist ko so that ^ = X^, ^ +1 > ^,

^o = ̂  ^1 = ̂  Hence : 1 < ̂  = ̂ 11^ ^2n+l)£. We get
^o ^kQ+i^ko

a contradiction if we can let c -> 0.

(b) Similar. D

2. GENERIC SPECTRUM OF A NORMAL COVER

Our object in this section is the proof of:

(2.1) THEOREM A. — Let p : M -> MQ be a normal cover, mth
covering group G. Assume that p satisfies the following « high dimension
— tow degree » hypothesis :

(2.2) (HDLD) 0 dim M > max {deg CT, a e Go}.

Then for the generic G-invariant Laplacian on M, all eigenspaces
are irreducible.

Proof. - We begin by stating the conclusion more precisely. Let us
make the

(2.3) DEFINITION. - S = teoe^o: (Vfe=0, l ,2 , . . . ) ^*feo)) is an
irreducible, real G-module}.

Equivalently (by Proposition (L25) and (1.28)):

(2.4) 5' = {go e M^. (Vfe=0,l,2,. . . ) : e^ ^ {0} for at most one most
one a e Go, and then E?^ =^(0)0^}.

Our claim is that 5' is residual in ^o-
Now, it is clear that

(2.5) S = [ } S , ,
k

0 G. Besson has pointed out that all the results of this section are valid if only
dim M ^ max {deg a, CT e &o}.
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where

(2.6) Sk = {go e J^o: £?//?* (go)) is irreducible for 7=0,1, . . .,k}.

Hence we need to show that each Sk is open and dense.

Open-ness of Sk

This is quite straightforward, and can be adapted from the similar
assertion in [BaUr] (Theorem 3.2). First, let us set:

(2.7i) S(a) = {go e J^o: E^(g) is irreducible (Vfe)}

= {go e ̂ o: E^(g) = ^(a)O^(Vfe)}

(2.7ii) 5^(o) = {go e M^: E^(g) is irreducible for j=0,1,.. .,fe}.

Precisely as in [BaUr], p. 164], it follows directly from Proposition
(1.37b) that:

(2-8) (Vgo e ̂ (a))(3e): V^go) c= ^(a).

Evidently ^(o) is open (Vfee N). We can now prove :

(2.9) PROPOSITION. - Sk is open (Vfe e ^J).

Proof. - Obviously, ^ c Q ̂ (a) (o e Go). Suppose then that
^o e 5'A. One has : CT

(2.101) (V/^)(Va): m(^,, a,p*(go)) ^ 1
(2.10ii) (V/^fe)(3 !a): m(^,a,p*(^o)) ^ 0.

By upper semi-continuity of eigenvalues (Proposition (1.37b)), one
has:

(2.11) (y/^fe)(Va)3e(/,CT): goC ^ea.a)teo) implies (2.10i-ii) hold for
go. Then Q ^o,a)(^o) ^ ̂ .

(J^k,a)

It follows that 5'̂  is open. Q

Denseness of S^

It will suffice to show that ^ is dense in 5^-n. So suppose ^e5'^
Then, for all j^k, E^ (p*(g,)) is irreducible. Suppose that £•? (p*(g,))

m(^+i,a) f t + l

= C^ and that ^^ = ® ^^^. the ^^., being irre-
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ducible). We must show that there is a g o ^ S k + i arbitrarily close to g o .
By an obvious inductive argument, it is enough to show :

(2.12) (Ve>0) (3^e^) :
(a) (VaeGo)m(^+i,a ,^o) ^ m(^+i,a,^o), and
(b) If g o ^ S h + - , , then ^ c r ^ G o : m(^+i,a,^>) < m(kk+i,o,go).
In other words, if £^ (p*(^o)) is reducible, then there are arbitrarily

small deformations in 5^ which split off at least one irreducible from
the eigenspace. The equivalent version in terms of the equivariant
eigenspace e^(p*(go)) = @^i ls'• there are arbitrarily small defor-

<7

mations in S^ which split off a summand A:(CT)<I>^.

Assume not. Then let g(t) = g + th be an analytic deformation of
§ = P*(go) in S k . Choose a A:(a)-Kato-basis {^^J for each 8?^
along ^(t). Then of course :

(2.13i) A(r)(I)^(0 = ^^\(0<I>^,(0 (Va.Q
(2.13ii) (A-^^)0^^+(A-^0(t)^^=0 (Va.O.

If the deformation fails to split of a ^(a)<I)^, then:

(2.14) (Va,aU7):^\=^<.

Taking the inner product in (2.13ii) with d)^ we get (by normality
of the basis) :

(2.15) ^\ = (A^^,^^) .———.
k+l k+l degCT

Combining (2.14) and (2.15) we conclude :

(2.16) (Va,a-,fJ): AO^, ̂ ,)̂  = (A<^, < )̂ ̂ .

Further, taking the inner product in (2.13ii) with 0^ , j ^ i, we
get

(2.16a) (Va.Vf^y) (A^^,(D^^)=0.

In fact, under our assumption, (2.16) holds for every small enough
deformation in p ^ J ^ y .

From now on, we fix one pair of equivariant eigenvectors <S>^1

resp. O^ and write them for notational simplicity as 0?, resp. ^.
We then use (1.8) to convert (2.16) into a pointwise statement.
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(2.17)(2) PROPOSITION. — Assume (HDLD) and assume that (2.13ff),
(2.14), (2.15) hold for all G-invariant analytic deformations. Then

(a) de^l^l^de^l^l2

(b) ̂  T ̂  ® ̂  = ̂  ? ̂  © ̂ .

Further, if T = a, then:

(c) <<D^),y?(jc)> = 0

(d) ——— ffrf(p,(s)^,=0.
^to u j=l

Here 0? = ((pi, . . ., (pp), ^ = deg a, similarly for v?^, and

df (s) dg = j (df®dg+dg®df).

Proof. — First we consider conformal deformations. If deg a = deg T ,
we have (by 1.8a)):

(2.18) (A(D,^) = - ^(rC,^) + (^-IK^VO.VT).

Second, consider volume preserving deformations. From (1.8b) we
get:

(2.19i) (AO,^) = | ^(VO.V^dvoL
JM

In terms of the inner product <,) on symmetric covariant 2-tensors
associated to g, we may rewrite (2.8ii) by :

(2.19ii) (AO,^) = [ </i,trrf0) (s) ^F> dvol
JM

with trrf<I> (s) d^V = ̂  rf(p, (s) d\|/,. From (2.16) we get, setting 0 = ^
in (2.18):

(2.20a) ^{-^j(rO),0)+('j-l\rV(D,V(D)}

= ̂ {-^j^.^+^-lK^V^V1?)}

(2) G. Besson has shown that the hypothesis (HDLD) may be eliminated from the
proposition.
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for all G-in variant reC^M). Hence:

(2.20b) de^f"^1^12^"1)1^^1^

=^[-^mx^+(ti-l)wx)i2}

Moreover, setting 0 = ^F in (2.19ii), we also get:

(2.21a) —!-— <h,trrf0 (s) d0>dvol
^g a JM "

= —1— (Ur^ (!) d^dvol,
^g T JM "

for all G-invariant h e p*S(Mo).

It follows from (2.21a) that:

(2.21b) t r f— 1 —^ (s) d<S> - — l—J lF (s) d^} = ^(x)^\deg a ^^ deg T "-̂  /

where n(x) == —1— |VO(x)|2 - -1— IV^x)]2 (compare [U], p. 1075).deg a deg T

We now claim that n = 0. This will use (HDLD) for the first time.

To see this, set

(2.22) Q^ = —^—trrfO (s) dO.deg CT ^̂

Qo € So(M) (G-invariant symmetric covariant 2-tensors), and obviously
Q<s> ^ 0. We also let V^ denote the nullspace of Q^:

(2.23) (Y^ = [VE T^M'.Q^) = 0 on T,M}.

Obviously dim (^>)^ ^ n—deg a, with strict inequality on the degeneracy
set AD where the differentials {A))i, . . . ,d<t)p,p=deg a} fail to be
independent. Letgy, V^ and 2)4. denote the corresponding objects
forT.

From (2.21b) we have:

(2.24) (V^\ n (Y^\ ̂  {0} o î(x) = 0.
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Indeed, if 0 + v e (V^ n (Kp),, then (2.11b) implies [i(x)g(v,v) = 0.
Likewise the converse. So we need

(2-25) (^)xn(^)^{0}.

Suppose then that (V^ n (V^\ = {0}. Since (^ ^ {0} by (HDLD),
there is a u so that Q^(v,v) = 0 but Q^(v,v) > 0. By (2.21b), |i(x) < 0.
Similarly there is a w so gy(w,w) = 0 but 0o(w,w) > 0. Hence
^i(x) > 0. The contradiction proves (2.25), and hence by (2.24) that
H(x) = 0. We thus have :

(2-26) 0o= 6r,

and, using (2.20b),

(^ ——I^MI2-,-^!1?^)!2 .deg a deg T

This proves (a) and (b) above.

For (c) and (d) we note that (2.16a), (2.18) and (2.19ii) imply:

(2.28i) - ̂  ̂ (x),^)) + (l - l) <V(D(x),VVF(x)> = 0

(2.28ii) ^-Trd^) @ rf^F = ^(x)^

where p = deg a = deg T and ^i(x) = - ̂ OOO.V^Oc)). But the rank
P

of Tr^D (s) d^F is at most p so by (HDLD), ^i(x) = 0 . (c) and (d)
follow. Q

The first corollary of Proposition (2.17) is simply:

(2.29) V^=V^.

To analyze (2.29) further, we will need the main technical lemma
of this section :

(2.30) LEMMA. - Assume {HDLD) (3), and fix k e Z+ . Then there
is an open dense set ^ in J^y with the property : if g^SS^. and
0^^^es^(^o) (for some o), then there exists an open dense set
V <=. M so that <l>^|y is a submersion into its image.

(3) It suffices to assume here that dim M ^ max {deg o, CT e Go}.
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Since the proof of Lemma (2.30) is somewhat lengthy, we will
postpone it until the end of this section.

Assuming (2.30) for the moment, there exist open dense sets
U^ (resp. £Ap) on which Q^ (resp. Q^y) has rank exactly equal to
n — deg a (resp. n — deg r). (2.26) obviously implies then that
deg a == deg T = p (say). Moreover the submersion property on U^
implies :

(2.31) (V^ = W\y)), x e U ^ , y = 0(x).

Thus V^ is the vertical bundle of the submersion 01 u . A connection
for this bundle is given by defining the horizontal spaces as the
orthogonal complements of the vertical:

(2.32) DEFINITION. - (H^\ = (V^.

Similarly, we set (H^\ = (V^. Since U^ and U^ are both open
dense, they have an open dense intersection U == U^ n U ^ y . By shrinking
U, if necessary, we may assume that both submersions 0 : U -> ^(U) c: R^
and ^F : U -> ^¥(U) c= R^ are conjugate to coordinate projections. We
then have a double fibration :

(2.33) ^ N^

0(^7) W)

such that the fibers are connected pieces of level sets O'^Ci), respectively
^F"1^). Since V^ = Fip, it must be the case that there exists a smooth
map /: 0(£7) -> ^¥(U) so that ^~\c,) = ^~\f(c,)). Furthermore, it
must be the case that / is a local isometry. Indeed, fix x e U and
consider the diagram :

(H^ ^ (H^
(2.34) \d^ \d^, (c=0(x)).

^ df "
T OP ^ T \QPQ(x)[hA ———" 1 T(x) "^

If ds^ is the Euclidean metric on (R^, then by definition of Q^ we
have :

(2.351) ^(dsl) = Q^.

Similarly

(2.35ii) ^F*^) = S^p.

It follows that all linear isomorphisms in (2.34) are isometries.
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Thus, / is a local isometry on IFF, and so f(c) = Ac + B with
A eO^) and ^e ̂ . Consequently, ^(x) = A^(x) + 5, xe U. Since
v? and ^> are equivariant eigenfunctions, we must have that B = 0 and
that A intertwines a and T . In the first place we get a = T , and that
A e K(a). Further, by the unique continuation theorem for solutions
of second order elliptic equations ([H]), we get that ^(x) = A<!>(x) for
all x e M. But by assumption T was supposed to come from an
orthogonal summand in c^(^) to A^(a)0. Modulo (2.30), this contradiction
completes the proof of Theorem A (4). D

Remark. — The proof above was simplified a good deal from the
original, following some remarks of H. Duistermaat.

Finally we give the Proof of Lemma (2.30). — Let <I> =
O? e e?(^o) ? ^d write 0 = ((pi, . . . , (pp), p = deg a, as usual. Then
d<S>^ is a submersion if and only if d^>^ A . . . A d^p 1=- 0 at x . Thus,
we want to prove : for all a e Go

(2.35) ^r dlf teo e -^o: VO^ e e^teo), 0^0 implies
A|)i A . . . A d(()p7^0 on an open dense set} is open dense in Ji^.

First we note a simplification: namely, it suffices to show
Aj>i A . . . A d^p 7^ 0 on 5ome open set. Indeed, let A = d^ + ^d on
p-forms. Evidently A(^(|)i A . . . A ^p) = db(d(^^ A . . . A ^(|)p). Now
8 does not act as a derivation on A p , but a straightforward computation
shows :

p
(2.36) 5(d(()i A ... A d^p) = ̂  ̂ i A ... A 8(ri((),) A . . . A ̂

+ B(d^ A . . . A ̂ ),

where 2? is a linear algebraic (i.e. 0th order differential) operator from
p-forms to (p-l)-forms. Hence :

(2.37) A^iA • . • f\d^p) = ^(d(^,/\ • ' • /\d(^>p) + dB(d(^>,/\ • • • A^).

Evidently, d<^i A • • • A ^())p satisfies a second order elliptic equation.
By the unique continuation theorem ([H]), if A()i A • • • A d(^>p ^ 0 then
it is non-vanishing on an open dense set.

Thus we need : for all a,
def

(2.38) ^(^) ={^oe^o:VO?,e£^(^),0?^0^(()iA . . . AA^O}
is open dense in e^o-

(4) Again, it suffices that dim M ^ max {deg o, a e 60}.
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It is clear that ^(o) is open. To prove denseness, we introduce
some notions of stability of eigenspaces.

(2.39) DEFINITION. - (i) An eigenspace e^(go) is stable if there exists
a 8 = 5(go) so that for all h e S(Mo) with \h\ = 1 (see (1.1)), and for
all branches ^(t) of eigenvalues along go + tp*(h) (see (1.6)), with
\t\ < 5, we have, ^(t) = ^(Q for all i, j.

In other words, a stable eigenspace £^(go) fails to split along any
ray in the ball of some radius 5 (go) around go.

(ii) £^(go) Is (nth order) infinitesimally stable if in (i) we replace
^k(t) = ^4(0 by equality of the first n derivatives at t == 0.

If e^(go) 1s not °f the form K(a)<S>^, we will speak of a stably
degenerate eigenspace (which are not supposed to exist).

Evidently, stable => infinitesimally stable.
Let 5T;fc(a) = {go'-^(go) is stable}, we claim:

(2.40) PROPOSITION. — 5T^(<7) is open-dense in M^.

Proof. — Open: This is obvious, as 8 may depend on go. Dense:
Suppose to the contrary that there is an open set U in ^y containing
no g e S ^ h ( c ) . Let go€ U. Since £^(go) is unstable, it must be the
case that for all e > 0, there is a gi e B^(go) (ball of radius e) so that
dime^(g0 < dime^(go). Choose e^ so that B^(go) c: U. Then g, e U,
so gi ^ SS'k(o). We then repeat the process, producing gz ^ ^e^fel) with
mult (^k->a,g2) < mult(^,<j;gi). After a finite number of repetitions,
we must end up with a gm for which m(^,a;g^) is a local minimum.
But £^(gJ must then be stable. D

By virtue of proposition (2.40), (2.38) follows as long as

(2.41) ^(a)n5^(a) is dense in 5'^(a).

Proof. — We argue by contradiction. So suppose there is an open
subset ^(a) <= 5^(0) so that ^^(a) n ^^(a) = 0. Then, for all
g e ̂ (o), there is a 0^ e £^(g) so that d(t>i A • • • A d^p = 0. Existence
of one such 0^ actually implies that rf\|/i A • • • A rf\|/p = 0 for all
^6e^(g). This follows from Proposition (2.17b), which in fact shows
that

(2.42) (Vg e ̂ (a))(3<^ e ̂ (g))^ e ̂ (g)) : rfv|/, = ^ a,, rf(p,
7=1
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(where <D^= ((pi, . . . ,(p^), ̂  (^, . . . ,^), ̂  e C^M)). Thus our as-
sumption implies A|/i A • • • A d^p = 0 for all ^>ee^(g), hence

(2.43) (yg e ̂ (a))(V<D e ̂ (g))(3£/c=M)

s.t. U is open and
p-i

d^p = E ̂  d^j.
J=l

Here we picked the ^th component only for convenience. However,
in view of (2.42), we may fix one choice of nonzero O^es^Qr), and
then the differentials of its components {d<^i: f = l , . . . , p — l } span, at
each x , the subspace of T^M given by span {d^j(x): ̂ fjeE^g)}.

Our plan is to show now that

(2.44) Ath A ... A A^-i =0.

If not, then on some open set U, the {(|)i, . . . ,(()?-1} are the initial
elements of a set of coordinates {xi , . . . ,x^ : Xi==\ | / i , f= 1, . . . , p — 1}.
Let now ^ e ̂ (a) and let g(t) = g + th be a deformation so that
g(r) e i^k(0) f°r ^ m some interval (—£,£ ) . Fix a ^(a)-Kato basis
{O^J of s^C?), and let 0^ be the specific <I> above. Letting 0(0
denote its real analytic extension along g(t) we have by assumption :

\2.45) Aj)i(0 A • • • A d^(t) =0 .

riLetting . denote — , we get:
dt t=o

(2.46) ^A))i A • • • A rf(J), A • • • A rf(|)p = 0 (any deformation).
r

Now <|̂  satisfies:

(2.47) (A-?i)(j), = - (A-yl)(t), (Vf)

where we drop the subscript k in ^. Hence

(2.48) (j), = - ^(A-^-^^Acj),) + 7i,((f),)

where ^ is orthogonal projection into E^(g), and n^ = / - TC^.

Let us set:

(2.49) G^Ti^A-^)-1^1.
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Putting (2.49) into (2.46), we get:

(2.50) ^ d^, A • .. A d(Gi A((),) A • • . ̂  = 0.
;

Here we omitted the d^((J),) term since it contributes zero anyway (see
below (2.43)), and also used the orthogonality of the spaces L2 L2

if a^a2. a l ? CT2

(2.50) means that:

(2.51) rf^ l(x,^)A(^(-l)^A(p,(^)y()),A • . . Ad$,A • . -d^]\=0
JM \ i j

for all variations A of the Laplacian. The integrand in (2.51) is a
(distributional) function of y with values in the p-forms in x , and the
integration is with respect to the ^-variable.

We now use (1.8a-b) to convert (2.51) into pointwise statements.

First, let A come from a conformal variation. Following the argument
of Proposition 2.17, we get:

r r
(2.52) r^-^d^GKx^) A ̂

JM I z

+ \- - 1) d^dyGt A dy^ ^ = 0 (Vr e ̂ C^Mo-)),
where

p
(2.53) o)o> = E (-^^i{y)d^, A . . . A d$, A . . . A ̂ ,

1 = 1

where ' always refers to the x- variable and where ^ (x) dyGt A ^co<i>
means to contract the 2-tensor in the ^-variable and A the resulting 1,
resp.(p-l), forms in the x-variable.

It follows from (2.52) that :

(2-54) [-^^^(x.^A^+^-l') d^dyGt A ^1^=0

(all (x,^)), where for any co variant tensor, T| ,

(2-55) ^ -—Z^*^) .
IIJI geG

(Above g* applies to the ^-variable.)
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Secondly, let us consider the volume preserving deformations. In
this case we get:

(2.56) 0 = f <Mx®W(x,y) A ̂ > dy = 0
JM ©

for all traceless h e p*S(Mo). Here dx (x) dyG is a double (U)-form and
/\ means to take A in the x-variables and ( s ) in the ^-variables. So

d^®dyG /\ d/00 is a symmetric covariant 2-tensor in y with values in

the p-forms in x .
Since the integral (2.56) vanishes for all traceless h, is must be the

case (apply Proposition (2.17) component by component) that:

(2.57) {d,®dyGt{x,y) ̂  (^coo - d^dyGi A dy^)} = 0.

In fact, as in Proposition 2.17, both terms (2.57) must independently
vanish. Indeed, we may write

(2.58) w^x,y) = Mx,y) dx, A . . . A dxp.,

where x, = ((); and where

(2.59) Mx,y) = (- ir-1 ^ a,(x)^(y)
7=1

(cf. (2.43)-(2.44)).

Obviously, only p-vectors of the form

Y dlf 8 A 8 A A 9
^l — ^— A -— A . . . A -———

OXi OX^ OXp-^

do not automatically annihilate d^®dyGi(x,y) f\ dy^^. Plugging Xi into
(2.57), we get (simplifying the notation):

(2.60) \dy 9 G^y) (s) d./J - { d 8 G. dyf^gy = 0.
^ GXi J OXi

As the first term here has rank at most 2 (and if 2, a negative.
determinant), while g has rank n and is positive definite, we get:

(2.61) {dy^G (s) dyf^=0.

We now show that (2.61) implies (2.44).
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Indeed, we write (2.61) as :

(2.62) ^ I^^gy) = 0
geG

where
(2.63) 4,x(x,}0 = ̂ (x,^) A coo

= /<i)(x,.y)^(7^0c,jQ A dxi A . . . A rfx^-i
(cf. (2.44), (2.58)).

We now claim :

(2.64) I^(x,y)=0 (modC00).

Proof. — Since Singsupp Gt ( . , . ) = diag^xM? lt follows that
singsupp G^(-,g-) = graph (g~1) = {(g^,}0 : }^e M}. Since p : M -> MQ is
normal, G acts freely on M, and hence
singsupp G^(-,^i-) n singsupp (^(•,^2-) = 0 if ^i ^ g z . Since
singsupp /(D^G,^-) <= singsupp G t ( ' , g 9 ) , we see that (2.62) must imply
(2.64). ' D

Still under the assumption that (j)i, . . . , (|)^-i have independent
differentials on some open set U , (2.64) implies :

(2.65) /^.^^^(x.jOEEO^odC00) (Vi=^,...,n).

Now the singularities of —G^(x,y') are very explicitly described by
dXi

the Hadamard parametrix method ([H], 17.4). One has (if n>2) :

(2.66) (5) G^x,y) = a,(x,yW1 + a,(x,yW1 (mod C00)

on a sufficiently small neighborhood W of the diagonal in M x M,
where 5 = S(x,y) is the riemannian distance on W\ and where
ai(x,y^)eC^(W). When n = 2, s'-^resp. 53-") should be replaced by
log 5 (resp. slog s). For the sake of completeness, we sketch a proof
of (2.66):

Proof. — First, we fix :
(2.671) W ' . a small enough neighborhood of the diagonal so

def
that, for all x e M, exp;1: W, == {y : (x,y) eW}-^ T,M is
a diffeomorphism onto its image;

(°) A more precise account of the singularities of the green's kernel near the diagonal
can be found in [Be 2], sections B and App. D.
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(2.67ii) ^ : a smooth cutoff in Cf'(W), equal to 1 on a smaller
neighborhood of the diagonal;

(2.68m) p^ : a smooth function on ^+, which vanishes in a
neighborhood of {r2^^} and equals one on {r^^+l} .

(2.68iv) F,(;a) = (v!^)-" f (I^-FT'-W^^^
JR"

v = 0 , l , 2 , . . . . Note that FyC^) is actually a (distri-
butional) function, still denoted F^, of x |.

One now seeks a solution (modC^) of the form
N

(2.69) G,,^(x,y) = ^(x,y) ̂  (7,(x,jOF,(s(x,̂ )
v=0

for the equation

(2.70) (A,-^) GUx,y) = 5,(x) - 7i,(x^).

In (2.69) the coefficients U^ are assumed to belong to C^^W). They
may be constructed ([H], p. 34) so that

(2.71) (A,- ̂  G^ = 5/x) - R^x,y),

where ^eC2^1"". It of course follows that
/^ n^\ /^-L F^ r- / ^ ' 2 N + 3 — n
(2./2) (J\,N~ (J\E ̂  5

and therefore, up to order IN + 3 - n, the singularities along the
diagonal of G^ and G^ ̂  coincide. The singularities of the latter may
be deduced from (2.69), after replacing F^(s,^) by its asymptotic expansion
as s -> 0. This expansion could be derived (for example) from the
formulae ([H], loc. cit.):

(2.73) (i) (-A-?i)F, = vF,-i (mod C"), v > 0

(ii) (-A-^) ^ o = = § o (modC")
QF(iii) - 2 — = xFv_ i (mod C""), v > 0.
ox

If we group together the terms of the resulting expansion with powers
of 5 of like parity, we get (2.66). n

(2.74) Remark. — For the generic metric on M, the coefficients do
and ^i are non-vanishing in a neighborhood of the diagonal. This may
be confirmed quite easily from the explicit formulae ([H], p. 33) for the
coefficients U^ in (2.69).
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We now return to (2.65). Combining it with (2.66), we get

(2.75) /<i» vanishes to infinite order on diag^xM- Indeed, if fo only
vanishes to order k on diag^xM? fhen the term of (2.66) with odd
power of s would only in cl~n+k or C2~n+k, depending on parity
of n.

It follows that

(2.76) (O(D vanishes to infinite order on diag^xM-

But (D(D is the solution of the second order elliptic equation

(2.77) [A.+AF1]^ + dB^ = ^coo,

where B is from (2.36) and A^"1 is the Laplacian on (p— l)-forms.
Hence coo = 0.

By an obvious orthogonality, this implies

(2.78) ^(j)i A ... A d$, A ... A d^p = 0 (VQ.

This gives (2.44).

Furthermore, we can repeat every step of the above argument with
d<^^ A . . . A d(|)^,-2 replacing d^^ A . . . A ,̂-1 of (2.44). Doing this
(p—2) times, we see that our above argument actually implies:

(2.79) d^, = 0 for all i.

This absurdity finishes the proof of Lemma (2.30). D

3. GENERIC SPECTRUM OF A COVER

In this section, we drop the assumption that the cover pi : Mi —> Mo
is normal. In fact our main interest is with the opposite extreme, where
the covering group is trivial. In that case, there are no manifest
symmetries forcing metrics in p*^o to have multiple eigenvalues.
However there may be « hidden » symmetries which do this. Our main
result is Theorem B, which explains precisely when no such hidden
symmetries occur.
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The trick here (and for any riemannian cover) is to pass to the
least normal p : M —> Mo extending pi. To define this cover (which we
will call the normal closure of pi), we need to recall some elementary
facts about covers and their monodromy groups [SeT].

Let us fix XQ e Mo. Then path lifting gives a homomorphism T :
7Ci(Mo,Xo) -> Perm^^Xo)), where PeTm(p^l(xo)) is of course the
permutation group of the fiber over XQ. The kernel of T is a normal
subgroup, equal to

(3.1) ro^nCpiW^i^)
i

where p^(xo) = {xj .

FQ consists of the loops at XQ which lift to loops at all
Xiep^(xo).

The monodromy group G is the image of T, hence

(3.2) G = 7Ti(Mo,Xo)|ro.

If Mo is the universal cover of Mo, we set

(3.3) M = Mo Fo.

Evidently we get a tower of covers,

(3.4) M -> Mi -> Mo (normal closure)

with M -> Mi and M -> Mo normal. The covering group of M -> Mo
is G by construction; let us denote the group of M -> Mi by H .

Our main result is

(3.5) THEOREM B. — Let pi ; Mi -> Mo be a finite cover, and let
p : M -> Mo be its normal closure. Assume p satisfies the HDLD
assumption (2.2). Then the following are equivalent :

(a) { g o ^ ^ o : spec (Mi,p*^o) ls simple} is residual in Ji^
(b) L^G'IT-f,^) is multiplicity free and all orthogonal irreducibles

occurring in it are of real type.

Remark. - L2(G\H,R) is multiplicity-free if the multiplicity with
which each irreducible o e Go occurs in it is at most one.
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Proof. — By Theorem A (2.1), we have that for a residual set of
metrics g o e J / o , each real eigenspace E^(p*(go)) in L^(M) is irreducible.
On the other hand, it is clear that the multiplicity of an eigenvalue
^ E spec (Mi, p * (go)) equals dim (E?(p* (go))" (^-invariant vectors).
Thus, spectral simplicity holds for a residual set in J^o as l01^ as

mult (res^a : In) ^ 1) tor all o e Go. The Frobenius reciprocity takes
the following form for real, orthogonal irreducible a :

(3.6) mult (res^cy, 1^) == dim^(a). mult (a, ind^l).

Multiplicity free means mult (cr.ind^l) ^ 1, while real type means
dmiRK(o) = 1, so we see that (b) => (a).

Conversely, assume (a). We then have

(3.7) {go: dim(E^(p*(go))H=l} is residual in Ji^. However, any
CT e Go occurs (with positive density [D]) in some E^. If obviously
follows that dim V^ ^ 1 for all a e Go. By Frobenius, then,
(a)^(fc). D

4. SIMPLE ISOSPECTRAL MANIFOLDS

Our object in this section is :
(4.1) THEOREM C. — There exist isospectral (and non-isometric) pairs

(Mi.^i). (^2, g2) so that spec (M,,^-) is simple.

Proof. — We follow the method of Sunada [Su], and seek such
simple isospectral pairs among commensurate manifolds :

(4.2) M, r M,.

Here, p i : M —> Mi (f=0,l ,2) are assumed normal, and with the exhibited
covering groups. By [Su], spec (M^pfgo) == spec (M^pfgo), for any
^oeJTo, as long as L^G/H,, R) ^ L\G\H^ R) (equivalence of real
(j-spaces). By Theorem B, we see that (M^,p*(go)) and (M^,pf(go)) are
simple isospectral for go e J / o if M satisfies (HDLD) and additionally
the L2(G\Hi,R) are multiplicity free and completely of real type.
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An example of such a triple (G,H^H^) is given in [Bro] :

(4.3) G = SL^,) (n^3)

TT
^1

H^ = H[.

*
0

* • • • *

X

As explained in [Bro], L\G/H^R) ^ L\G/H,, R).

To see that L^G/^i,^) (say) is multiplicity free, we note that
G / H , == P"(Fg). There are just two 7^-orbits on G / H , : {e} and
P"(F^) - {e}. Hence there are just two double cosets in H^\G/H^. It
follows that L2(G/H^,C) splits into exactly two unitary irreducibles
([K]):

(4.4) L\G/H^C) = C © C 1

(constants and orthogonals to the constants). Since
L\G/H,,C) = L^G/H^R) ® C we must have

(4.5) L\GIH^R) = [RO 1R1.

Each of these irreducibles must be of real type by (1.12). Hence
L2(G/H^, R) is multiplicity free and completely of real type.

To construct the diagram (4.2) we now need Mo satisfying (HDLD)
and such that exists a surjective homomorphism from 7ii(Mo,Xo) -> G.
An example of such an Mo is : Mo = No x 5'", where No is a Riemann
surface of a genus g greater than the number of generators of G, and
where 5'" is the n-sphere. Following a standard argument [Su], a
surjective homomorphism can first be defined from n^(No,no) -> G. It
immediately induces one from 7Ci(Mo,Xo). Then, choosing n large enough.
we may assume Mo satisfies (HDLD). The proof is complete. D
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