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FAILURE OF AVERAGING
ON MULTIPLY CONNECTED DOMAINS

by David E. BARRETT

Let S be a strip { z e C : a<Imz<P} and let G be the group of
automorphisms of S generated by the translation z \-> z + 1. The
following averaging principle is useful in relating function theory on
the annulus S / G to function theory on the simply-connected domain S .

THEOREM 1 (averaging principle). — Let f be a holomorphic function
on S which is bounded on G • K for each compact subset K of S. Then
there exists a G-invariant holomorphic function J on S such that f(z)
belongs to the closed convex hull of the set f ( G ' z ) for each z in S .

n

Proof. - Let f^(z) = (2n+l)-1 ̂  f(z+j). Then the family {/„}„
J=n

is uniformly bounded on compact subsets of S so that we can extract
a subsequence converging uniformly on compact subsets to a limit
function/ which clearly satisfies the desired convex hull condition. The
G'-invariance of / follows from the observation that if / is bounded
by Cz on G ' z then |/n(z+l)-/»(z)[ ^ Cz/n so that indeed
7(z+l)=/(z). D

We note in passing that if / is in fact bounded on S then the
convex hull condition also holds almost everywhere on the boundary
of 5'.

This averaging principle occurs in work of Scheinberg [Sch] and of
Stout [St] and is useful in the study of various problems on annuli
involving pointwise estimates, including interpolation problems, corona
problems, sup norm estimates for solutions of 3, and uniform holomorphic
approximation problems. The idea in each case is to pull the problem
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back to a (7-in variant problem on the simply-connected domain 5', to
solve the problem on S by general techniques without attention to the
group 6', and then to use the averaging principle to obtain G-invariant
solutions with no loss of constants.

The argument used in the above proof is known to break down for
domains of higher connectivity due to the more complicated nature of
the corresponding fundamental groups. The purpose of this note is to
exhibit a natural method for constructing counter-examples to the
averaging principle in the case of higher connectivity. In particular we
will prove the following Theorem.

THEOREM 2. — Let 0 be any open Riemann surface with non-abelian
fundamental group and let G ^ 7ii(Q) be a fixed-point free Fuchsian group
with Q ^ A/G, where A 15 the unit disc. Then there exists a function f
holomorphic on A and bounded on G • K for all compact subsets K of A
for which there fails to exist a G-invariant function J on A such that
f(z) belongs to the closed convex hull of the set f ( G ' z ) for each z m A .

Our construction is based on the study of monodromy properties
associated to a certain class of real hypersurfaces in 0 x C, namely
the class of Levi-flat hypersurfaces with circular fibers. (Indeed, the
main thrust of this paper is to show that such a hypersurface need not
enclose the graph of a holomorphic function.) These objects appear
already in a paper of Nevanlinna in 1929 [Ne], and a paper of Adamyan,
Arov, and Krein [AAK] (see also [G]) illustrates their intimate relation
with the function-theoretic problems mentioned above. More recently
they make an appearance in connection with a very interesting new
approach to the corona problem and related function-theoretic problems
on the disc, for which see the papers of Alexander and Wermer [AW],
Slodkowski [Ski] [Sk2], and Berndtsson and Ransford [BR] as well as
other references cited in these papers. (The reader may also wish to
consult the related papers of Forstneric [Fnl] [Fn2].) Finally, a very
recent paper of Berndtsson [B] treats this class of hypersurfaces in its
own right in the setting of multiply-connected domains. In view of
these developments we introduce these objects in Section 1 at slightly
more length than is necessary for the purpose at hand. Sections 2
through 5 contain the proof of Theorem 2. Section 6 contains various
remarks about Theorem 2 and its proof.

We should mention that for compact Riemann surfaces Q with (non-
empty) boundary there is a substitute result due to Forelli [Fr] (see
also [JM], [EM I], [EM2]) which may be formulated as follows.
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I THEOREM 3. - Let peQ, let gp be Green's function for Q at p ,
and let G ^ 7ti(Q) be a fixed-point free Fuchsian group with 0 ̂  A/G'.
Then for any bounded holomorphic function f on A there exists a
G-invariant meromorphic function f on A with poles contained in the
preimages of the critical points of gp (counting multiplicities) and bounded
near 3A\ (closure of the set of poles) such that f(z) is contained in the
convex hull of the set f ( G ' z ) for almost all z e f c Q .

Although this result has shown itself to be very useful it is clear
that in some sense it is not optimal, since it is weaker than Theorem 1
in the case of an annulus. It seems to the author that it would be
good to devote further study to questions relating to the number and
placement of poles required in Theorem 3.

The author is eager to acknowledge that this paper is essentially
the product of stimulating conversations with B. Berndtsson and
F. Forstneric at Institut Mittag-Leffler in January of 1988. This research
was supported by an Alfred P. Sloan Research Fellowship.

1. Levi-flat hypersurfaces with circular fibers.

Let Q. be an open Riemann surface. We consider domains D in
0 x C with boundary S c= Q x C of class C2 such that for each z e Q
the fiber

Dz L { w e C : ( w , z ) e D }

is a (non-degenerate) Euclidean disc with center c(z) and radius r(z).

THEOREM 4. — For D and S as above the following are equivalent :
(i) the Levi-form of S vanishes identically ;
(ii) the functions r and c satisfy the following system of partial

differential equations with respect to any local coordinate z on Q,:

rr = r 1 2 4- I r 2
" z z " z I ' I °z

rczz = 2rzCz;

(iii) for any simply connected open subset U of 0 there are holomorphic
functions a, P, y, and 5 on U so that a8 - py = 1 and

Dn^xO^Kz^e^xC:^^^!};
y(z)w+50Q
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(iv) for any simply connected open subset UofQ. there is a holomorphic
mapping p : U-^ Aut C such that D, = p(z)-l(A), ^here C denotes the
Riemann sphere.

This result admits a more or less evident generalization to the case
of a domain in ft x C with generalized discs as fibers, where generalized
discs include not only interiors of circles but also half-planes as well
as exteriors of circles in C.

For the purposes of this paper it would suffice to take(iii) or (iv)
as the defining property of the class of domains under discussion and
to check that this property is in fact local in with respect to Q. With
regard to property (iv) note that the quotient space Aut C/Aut A
parameterizes the space of generalized discs in C, so that our domain
D may viewed as the graph of a mapping T from Q, to Aut C
/Aut A. S is thus Levi-flat if and only if there exists a holomorphic
lifting of T to Aut C over every simply-connected open subset of Q.
This generalizes the notion of a harmonic function in the sense that a
mapping u from Q to (R ^ C/iR is harmonic if and only if there exists
a holomorphic lifting of u to C over every simply-connected open
subset of Q. Note also that if c = 0 then the equations in (ii) simply
state that log r is harmonic.

Proof of Theorem 4. - (i) o (ii): The function

vl/^w)^ |w-c(z)|2 -r(z)2

serves as defining function for S . The vanishing of the Levi-form for
S is equivalent to the vanishing of the Levi determinant

def /° ^ ^\
^W=de t (^ ^ ^)

^W \|/ZW \|/WH/

when v|/ = 0. By direct calculation we have

J^W = 2Re(w-c){|w-c|2^-2rr^}

- 2|w-c|2(rrzz+|rz|2 - |cz|2) - 4r2\n\2

= 2r Re (w - c) (rczz - IrzCz) + lr\rrzz -\n\2 - \ c-z \2) (mod v|/)

so that J^(\|/) = 0(modv|Q if and only if(ii) holds.
(ii) ^> (iv): Let p : U -^ Aut C be a C2 map such that D, = ^"'(A).

Note that the required holomorphic map p must be of the form p = q • p
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for some C2 map q: V -^ Aut A. Our goal, then, is to find conditions
on p which are necessary and sufficient for the existence of q such that
q ' p is holomorphic.

We exploit the equivalence of A with the upper half-plane to identify
Aut A with the subgroup PSL (2,(R) = GL(2,R)/{^ :^ e R*} of
PSL(2,C) = G'L(2,C)/{;U]:^eC*} ̂  Aut C. Since U is simply-connected
we may represent p and q by matrix-valued functions on £7, which we
denote by P and Q.

Claim. - Let a C2 map P: U ̂  G7(2,C) be given. Then in order
to find Q: U -^ G7(2, R) such that Q • P is holomorphic it is necessary

def _ _
and sufficient that the real two-form CD = 3P-P"1 -+- 8 P ' P ~ 1 satisfy
do •= (0 A CD.

Proof of Claim. - If Q • P is holomorphic then

0 = 3(6-P) = ~QQ'P 4- 0-3P.

By conjugation we have also that

0 = 30-P+ Q'SP
so that

and

hence

dQ = {S^D)Q = - 0-CD

0 = ^Q = g-o A CD - g-rico;

AiD — CD A CD = 0.

On the other hand, if Ao = CD A o) then the matrix-valued one-form
dg + ^-CD on U x G7(2,IR) satisfies

^(^+^*o>) = (^+^-(0) A co

so that the Frobenius Integrability Theorem (see [Na]) guarantees the
existence of Q: U -> G7(2,R) satisfying the linear total differential
equation

dQ + 0-(o = 0.

Let <2 be one such solution. Then

3g = - Q ^ P ' P - 1
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so that ~S(Q'P) = 0. (We note in passing that Q is determined up to
left multiplication by a constant matrix.) D

Thus to prove the equivalence of (iv) and (ii) it suffices now to
observe that we may choose p to be the family of automorphisms

p(z): wi->(w-c(z))/r(z)

which is represented by the matrix-valued function

^)=M.(; -/),
where M - ( ' n
is the matrix taking us from the disc to the half-plane. Then

"--M- -^ ~^}u-
so that the vanishing of

^0) — CO A CD

-^M ( ~ rSSr+Srt\~Sr^-Sc/\~Sc - rSSc+lSr/\~Sc \
^\ r8^c-28c/\~Sr r83r-8r/\'3r-Sc/\~Sc) M

is equivalent to condition (ii).

(iii) o (iv): This follows by definition of the complex structure on
Aut C.

This completes the proof of Theorem 4. D

Note also that the implication (iii) ==> (i) follows from the observation
that if (iii) holds then S is foliated by the complex curves

«(z)w + P(z) _ ^
y(z)w + 8(z)

2. Strategy of the construction.

Consider a domain D in Q x C with disc fibers which satisfies the
equivalent conditions of Theorem 4. Let F(D) denote the set of all
holomorphic functions on 0 whose graph is contained in D u S .
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Suppose that heT(D) and graph (h) n S + 0. Then there exists a
neighborhood U of the z-coordinate of any intersection point together
with functions a, P, y, and 5 as in condition (iii) so that

a(z)fc(z)+p(z)
y(z)/i(z)+8(z) ^ 1

on U and
a(z)h(z)+P(z)
y(z)h(z)+8(z)

= 1

at an interior point of U. Thus by the maximum modulus principle it
follows that

a(z)fe(z) + P(z)
Y(z)Mz) + 8(z)

is constant in U so that graph (h) n (£/x C) c: 5'. A standard
connectedness argument now shows that in fact all of graph (h) is
contained in 5'. Thus we may partition F(D) into the set r;(2)) of
interior sections g with graph (h) c: D and the set 1^(25) of boundary
sections h with graph (h) cz S . It will be useful to define the set r<,(Z))
of exterior sections to be the set of all meromorphic functions h on Q
with graph (h) n (DuS) = 0; we explicitly allow h(z) = oo as a
member of Fg(5).

Let T be the covering map T : A - > A / G ^ f i and let
p = (TxU)~\D) c: A x C. Then Z) evidently satisfies the equivalent
conditions of Theorem 4 so that we may choose a, ^, y , and S
holomorphic on A so that

S(z)w+^(z)
D = ^ (z ,w)eAxC :

y(z)w+S(z) <1

Setting
5(z)/(z) + g(z)
y(z)/(z) + S(z)

= e"

we obtain a holomorphic function / belonging to F^D). In order to
prove Theorem 2 we will define / by exactly this procedure for a
particular choice of D over Q. It is clear that any function / satisfying
the conditions of Theorem 2 passes down to a function on Q, belonging
to F(5). Thus to prove Theorem 2 it will suffice to construct D over
Q for which F(D) == 0.



364 DAVID E. BARRETT

3. Monodromy.

Pick p : A -^ Aut C holomorphic so that Dz = p(z)''l(A) for z e A .
Then

p(^z)- l(A)=^,=^=p(z)- l(A)

for g e G so that p(^•z)p(z)- leAut A. Since p(^*z)p(z)~1 depends
holomorphically on z and Aut A is totally real it follows that

def
m(g) = p(^-z)p(z) is independent of z. The mapping m: G -> Aut A,
g h-> m(g) is called the monodromy of S ; it is easy to check that m is
a homomorphism.

Observe now that we have a covering map

A x A -^ D
(z,w) h-> (r^z)-^)

so that D is obtained as the quotient of the polydisc A x A by the
G-action

(3.1) g ' ( z , w ) = (^•z,wfe)-w).

Moreover, we see that the graphs of interior sections of D pull back
to graphs of holomorphic functions (p : A -^ A satisfying

(3.2) <p(^-z) = m(^)-(p(z) for z e A and g e G .

Similarly, boundary sections pull back to holomorphic mappings (p from
A to the unit circle again satisfying (3.2); since (p is necessarily constant
these correspond simply to the common fixed points of the image of
m on the unit circle. Finally, exterior sections pull back to holomorphic
(p: A -> C\A satisfying (3.2); since the matrix of m(g) may be written

(a b\
[a K ) '

def
note that (p satisfies (3.2) if and only if its reflection h = l/(p through
the unit circle satisfies (3.2), so that exterior sections also correspond
to antiholomorphic h: A -> A satisfying (3.2).

We will summarize this last point by saying that exterior sections
correspond under Schwarz reflection to antiholomorphic interior sections,
but note that the antiholomorphic character of the graph of h is lost
upon reverting to the original coordinates in Q x C.
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4. ReaUzibility.

It is time now to note that any homomorphism m: G -> Aut A gives
rise to a so-called flat disc bundle over ft by obtained by dividing the
polydisc A x A by the G-action (3.1); this bundle is contained in an
obvious way in a flat C-bundle over 0. The preceding paragraph
enables us to extend the discussion of interior, boundary, and exterior
sections to this more abstract setting. It is natural to ask which
homomorphisms m correspond to actual Levi-flat hypersurfaces with
circular fibers in ft x C. The question is answered by the following
result.

THEOREM 5. — A homomorphism m : G -> Aut A is the monodromy
of a Levi-flat hypersurface mth circular fibers in ft x C if and only if
the corresponding flat disc bundle over 0 admits an exterior section.

Proof. — (==>) Any D in ft x C satisfying the conditions of Theorem 4
admits an exterior section w = oo, so the implication follows from the
invariant nature of our terminology.

(<=) Let Bi denote the flat disc bundle over ft, let B denote the
corresponding C-bundle and let e: 0 -^ £ denote the given exterior
section. It will suffice to find a holomorphic trivialization T : B ̂  ft x C
over 0 so that T maps the graph of e to the co-section {w=oo} of
0 x C, for then we can simply take our hypersurface to be the
boundary of D = T(^) c= ft x C.

It is easy to do this locally. Indeed, let Z o ^ f t , let U be a simply-
connected neighborhood of ZQ, and let v : B\u ^ U x C be a trivialization
of £ over U. Let g be the meromorphic function g on U given by
graph g = v (graph e). If g(zo) ^ oo then by shrinking U we may
assume that g is holomorphic; then the composition of v with the map
U x £ -^ U x C, (z,w) h-^ (z, l/(w-g(z)) transforms the graph of g to
the oo-section as required. If g(zo) = oo then we use
(z,w) \-> (z, l/(w~1- (g(z))-1) instead.

Once this has been done locally then any two local trivializations
transforming e to the oo-section are related by a coordinate transformation
of the form (z',w') = (z,a(z)w+fc(z)). The functions a(z) obtained in
this manner give rise to a multiplicative 1-cocyle with values in ( 9 * .
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But the exact sequence

• • • -> H\(9) -> H\(f)*) -> H\T) -^ . . .
^11 ^11
0 0

shows that H1^*) vanishes, allowing us to redefine our local trivializations
so that each a(z) = 1. The functions b(z) now define an additive
1-cocycle with values in (9 so that the vanishing of H1^) allows us to
arrange that each b(z) = 0. The redefined local trivializations now paste
together to define a global trivialization with the desired properties. D

Thus to prove Theorem 2 it will suffice to find a homomorphism
m : G -> Aut C for which the associated flat disc bundle has no interior
or boundary sections but does admit an exterior section. To ease the
notation in Section 5 we observe that the homomorphism m* : G ->
Aut C given by m*(g)(z) = l / m ( g ( l / z ) ) has the property that interior
sections of the bundle associated to m* correspond naturally to exterior
sections of the bundle associated to m and vice versa. Thus it will
suffice to find m for which the associated flat disc bundle has no
exterior or boundary sections but does admit an interior section.

5. Conformal mapping.

We now focus our attention on the special case of homomorphisms
m : G -> Aut C having the property that the image of m is contained in
a fixed-point free Fuchsian group G " c = A u t A , so that A/G" is a
Riemann surface 0,' with 711(0') ^ G ' . Then from basic properties of
covering spaces we may deduce that each (p : A -> A satisfying (3.2)
induces a holomorphic map \|/: Q -> Q' such that the induced map \|/^
makes the following diagram commute:

7ti(0) A-^(Q')

(5.1) <|| >||
0 ^ <-•

(Here 7ii(Q) and TI^Q') are defined with respect to the basepoints T(0)
and r'((p(0).) Thus interior sections of the flat disc bundle defined by
m correspond to holomorphic maps from 0 to Q.' satisfying the



FAILURE OF AVERAGING 367

topological condition (5.1). Similarly, from our work in Section 3 we
see that exterior sections correspond to anti-holomorphic mappings
\|/: Q -> Q,' satisfying the same condition (5.1).

Thus it it now suffices to find G' and m so that
(i) the class of all continuous mappings : v|/: Q -> Q,' satisfying (5.1)

contains a holomorphic mapping but does not contain an anti-
holomorphic mapping,

and
(ii) the image of m has no common fixed points on the unit circle.

The simplest choice to make at this point is to take G' = G and
m = Id so that f2 = Q , ' . Thus we get an interior section (generally
unique) by taking v|/ to be the identity. It is well-known that if G is
non-abelian then G has no common fixed points on the unit circle so
that our bundle admits no boundary sections. Thus by the considerations
at the end of Section 4 it suffices now to rule out the existence of an
exterior section. But this follows from the following mapping result.

THEOREM 6. — If Q, is a Riemann surface with non-abelian fundamental
group then there does not exist an anti-holomorphic self-map of 0 inducing
the identity map on 7ti(Q).

Proof. — For notational convenience we now regard Q as the
quotient of the upper half-plane H by a fixed-point free Fuchsian group
G c= Aut H ^ PSL(2,R) = {A e GL(2,R) : det A= I}/ dL H . Recall that
the automorphism corresponding to A is hyperbolic, parabolic, or elliptic
according to whether | trace A \ is greater than, equal, or less than 2.
G contains no elliptic elements since it is fixed-point free.

We claim that G must contain a hyperbolic element. Suppose to
the contrary that all non-trivial elements of G are parabolic. Let
A e SL(2,R) represent an element of G, A + 11. After conjugation we
may assume that

-(; ;)•
so that A represents the translation z \-> z -\- 1. Let

B = (a b\
i c d i
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represent an element of G which fails to commute with A. Then
trace AnS = trace B + en, so we must have c = 0 if we are to avoid
hyperbolic elements. Since B is also parabolic we must have a = d = ± 1
so that B does commute with A, contrary to hypothesis.

So G does indeed contain a hyperbolic element. After conjugation
we may assume that this element is a dilation g^: z ̂  \z for some
\> 1.

Suppose now that there does exist an anti-holomorphic map \|/: Q -̂  Q
which induces the identity map on 7Ci(Q). Then \|/ lifts to an
antiholomorphic map ^F: H -> H satisfying

(5.2) ^(g-z) = g^(z) for z e A and g e G.

Let G^ be the subgroup of G generated by g^. Then since (5.2) holds
in particular for g restricted to G^ it follows that ^ induces an anti-
holomorphic self-map of the annulus H/G^ which induces the identity
map on n^H/G^). Since it is known that any such map must be an
anti-automorphism [Hu] (see also [K, p. 14]) it follows that ^ must
itself be an anti-automorphism of H . By (5.2) x? must commute with
the dilation ^, so ^F must be of the form ^(z) = - yz, y e R + . But
by (5.2) again G consists of hyperbolic automorphisms which commute
with ^F, so all elements of G are dilations g^. But this contradicts the
non-abelian nature of 7Ci(Q). D

This completes the proof of Theorem 2. D

6. Remarks.

1) We note that the annulus Q = {z e C : ri< |z| <r2} does admit a
topologically trivial anti-automorphism, namely the map z^—>r^r^z~1.
This map can be used to show that flat disc bundles over annuli admit
interior sections if and only if they admit exterior sections. The same
remark applies to the punctured plane C*.

2) The punctured disc does not admit a topologically trivial anti-
automorphism, so the construction in Section 5 leads to a flat disc
bundle over A\{0} admitting an interior section but no exterior section.
This disc bundle corresponds to the Levi-flat hypersurface
{(z ,w)e(A\{0})xC: Iw-t logIzD-^Ooglzl)- 1}, which does admit a
boundary section w = 0.
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3) The function / constructed in the proof of Theorem 2 is not in
general bounded, but a normal families argument shows that there is
a subdomain of 0 on which / is bounded (as a multiple-valued function)
and still fails to have an average /. The author has not yet solved the
problem of characterizing those Riemann surfaces Q for which the
averaging principle holds for bounded f.

Added in proof: This implication (i) ==?> (iii) in Theorem 4 may also
be proved by directly computing a holomorphically varying family of
fractional linear transformations mapping any three leaves of S aver U
to any three leaves of the product hypersurface U x 3A. This argument
appears in «Analytic multivalued functions and polynomically convex
hulls », by Donna Kumagai.
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