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FREQUENCY FUNCTIONS
ON THE HEISENBERG GROUP,
THE UNCERTAINTY PRINCIPLE
AND UNIQUE CONTINUATION

by N. GAROFALO (*) and E. LANCONELLI

1. Introduction.

The Heisenberg group H" of real dimension N = 2n + 1, n e ̂ ,
is the nilpotent Lie group of step two whose underlying manifold is
yn+i equipped with the group law

(1.1) (x,y,t) o (x^/.O = ( x ^ x \ y + y l , t - ^ t ' - } - 2 ( x l • y - x ' y f ) ) ,

where x - y denotes the usual inner product in [R". A basis for the Lie
algebra of left-invariant vector fields on H" is given by

(L2) ^-i^^i' ^i-2^' ^'••••".l-
From (1.2) we have for j, k = 1, . . . , n

[x^x,} = [y,, rj = \^^\ == [^] = o,

[X,,Y,]= -45^

which constitute Heisenberg's canonical commutation relations of quantum
mechanics for position and momentum, whence the name Heisenberg

(*) Supported by the NSF, grant DMS-8905338.
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group (see e.g. [He], and also the recent monography [F2] or the
expository paper [Ho]). The Kohn-Laplacian on H" is

(1.3) A^= EW+rj).
7=1

Since Hormander's fundamental work [HI] the study of operators
of the type sum of squares of vector fields has received a strong impulse
and today's literature on the subject is quite large. Much of the
development in the field has been connected to the development of
analysis on homogeneous nilpotent Lie groups, following a circle of
ideas outlined by E. Stein in his address to the 1970 Nice International
Congress [S]. Among such groups H" and its subelliptic Laplacian (1.3)
play a prominent role, see [F3].

In virtue of Hormander's theorem [HI] the identity [Xj, Y/,] =
8

~ 45^ -r- implies that A^ is hypoelliptic. In fact, see (1.13) below, A^

is (real) analytic-hypoelliptic and therefore a solution u to A^M = 0
cannot vanish to infinite order at one point unless u == 0 in the
connected component containing that point.

In this paper we are interested in a quantitative version of the
above uniqueness property for solutions to the equation

(1.4) - A^u + Vu=0,

where on the zero order term V we make suitable assumptions.
Specifically, we seek an estimate of the order of vanishing at one point
of a solution u to (1.4). Such estimate should in a precise quantitative
way only depend on suitable Z^-norms of u, and of XjU,
YjU,j = 1, . . . , n , in a fixed neighborhood of the point in question.

In general, however, there can be no such result even when V e C00.
This is a consequence of recent work of Bahouri [Ba].

THEOREM (Bahouri). — Let Xo, X^, .. . , X^-i be C^ vector fields in
an open set D c: [R^. Suppose that

(i) The vector space generated by X^, . . . , X^-1 has dimension
N — 1 at every point of D;

(ii) The rank of the Lie algebra generated by X^, . . . , X^-1 is N at
every point of D;
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(in) There exists a point x^ e D such that in a neighborhood of Xo

e^ A d^^ 0, £„ A (d^)2 = 0

\vhere £^ is the one-form that to every vector field X associates

det (Zi,...,^_,,^) = X,-/\ . . . A A^, A A-.

Then there exists an open set Q, mth X o 6 Q c 7 ) , and a func-
tion VeC^^l) such that the equation - ^u + Vu = 0, w^r<?

^ = Z< ^/2 + ^o? admits a nontrivial solution u in 0 vanishing in an
j = i

op^n subset of Q.

Assumption (ii) is Hormander's condition cited above. The conclusion
of the above theorem holds without assumption (iii) when the dimension
is three or four. In other words, when N = 3 or 4 every operator of
the above type fails to have the unique continuation property. An
interesting example is provided by the operator(L5) ^y^-o'- ^-o^.

The construction in [Ba] shows that there exists a neighborhood of
the origin Q, and a VE C°°(Q) such that

(1.6) supp V c { x ^ O } n Q, V is flat at {x=0} ,

for which the equation - ^u + Vu = 0 admits a nonzero solution in
0 flat at {x==0} and supported in { x ^ O } n Q. The change of variables
(^O^^,/,^), where x ' = x, / = y , t ' = t - 2xy, maps the
plane { x = 0 } into the plane { x ' = Q } , and transforms the Kohn-Laplacian
in rA^= l^2^)+ Qr2^)into the ̂ ^ ̂ in (L5)-
Therefore, there exists a neighborhood of the origin 0 and a V e C^Q)
and satisfying (1.6), such that - A^ + V fails to have the unique
continuation property. When V is real-analytic, then a qualitative result
of Bony [B] based on Holmgren's theorem shows that solutions to (1.4)
in an open set cannot vanish in an open subset unless they vanish
identically.

Is there any positive result when V is not real-analytic? We will
answer this question affirmatively by providing a sufficient condition
for solutions to (1.4) to have a finite order of vanishing at one point,
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even when the potential V is allowed strong singularities. In order to
state our results we need to introduce some more notation.

Henceforth, we denote by z = (x,y) a generic point of V\ An
easy verification shows that for u e C^O-r)

(1.7) A^A^^z2!!^^),

n f S2 82\
where A, = ^ f ^ + ^ l is the Laplacian in the variable z = (x,y),

./= 1 \ J " J /
and T denotes the vector field

i\ o\ rr. v. / 8 S \w ^w^r^)'
An important group of automorphisms of Or is given by the so-

called Heisenberg dilations

(1.9) 8,(z,r) = (Xz,^), ^ > 0, (z,r) e H\

It is worth remarking that if G = (^) is the (2n+l) x (2n+l)
matrix given by : g,, = 5y, f , 7 = 1, .. . , In + 1, and at least one of
the two indices f , j is not In + 1, ^z+i^i) = 2, then

(1.10) exp^log?.] = 6^.

The number
Q = trace (G) = 2n + 2

is the homogeneous dimension of &-T, see [FS]. A function M : H^ -^ R
is said Heisenberg-homogeneous of degree fc e Z if for every ?i > 0

(1.11) M o 8 , = ^u.

There exists a distinguished Heisenberg-homogeneous function of
degree one, the distance function (see [S], [Fl])

(1.12) d(z,t) = (\z\^t2)14.

It is a remarkable fact that if r(z,r) denotes the fundamental
solution of - A^ with singularity at the origin, then

(L13) rM - w^--'
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where CQ > 0 is a number depending only on Q in (1.10). (1.13) was
proved by Folland in [Fl]. For reasons that will soon be clear we
choose and fix CQ as follows

r iz i 2
(1.14) c^=(0-2) l 1 —^.

JaQi V^OI

In (1.14) we have denoted by 8^1, the set {(z,r) e H"|^(z,0= 1}, and
by dH^n the 2n-dimensional Hausdorff measure in ^2n+l. More in
general we let

(1.15) Q,= {(z^eH71!^)^}, 30, = {(z,r) e H^^z^r},

and call these sets respectively the Heisenberg ball and sphere centered
at the origin with radius r. Balls and spheres centered at points other
than the origin are defined by left-translation. If (zo,^)6^? fhen (1.1)
yields (zo^o)"1 = (-^o, -4). We let d ( z , t , Z o , t o ) = ^((zo^o)"1 o (^0)
denote the distance between (z,Q and (zo,^o)- Then the ball Q,(zo,?o)
and the sphere ^D^o^o) centered at (zo,?o) ^h radius r are obtained
by replacing d(z,t) in (1.15) with d(z,f,Zo,to). Likewise, the fundamental
solution r(z,r;Zo,?o) °f ~ ^n with singularity at (zo,?o) ls obtained by
replacing d(z,t) with d ( z , t ; Z o , t o ) in (1.13).

Our problem being a local one we work from now on in a fixed
Heisenberg ball Q^ centered at the origin. We require that the zero
order term V in (1.4) satisfy the following assumption: There exist
C > 0 and an increasing function /: (0,7?o) -> ^+ such that

po f(r)
(1.16) J—ldr<^

Jo r

and for which

(1.17) |F(z,0| ^ c/^z^)^(z^) for ̂  (^O^^o-

In (1.17) we have set

|z|2

(1.18) ^^^i^-t)^ (^,0^(0,0).

The geometric meaning of this function will be explained later on.
At this moment we simply remark that: \|/ is Heisenberg-homogeneous
of degree zero; 0 ^ \|/(z,0 ^ 1 ; v|/(0,0 = 0; \|/(z,0) = 1.
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According to (1.16), (1.17) the potential V is allowed to be quite
singular and therefore a notion of solution to (1.4) needs to be specified.
Since regularity questions are not the main concern for us throughout
this paper we will assume a priori that a solution to (1.4) is a u e C(Q.R )
such that u, X,u, Y,u, A^u e L\^). We note that (1.16) implies
lim f(r) = 0. Typical representatives of/'s satisfying (1.16) are f(r) = r8,

0 < e, /(r) = log- oc > 1,

We need to introduce the following.

DEFINITION 1.1. - Let u be such that \|/2^ e L2^ ), where \|/ is as
in (1.18). We say that u vanishes to infinite order at the origin if as
r-.^

f
u2^ dz dt = 0^) for every k e N .

Jo,

One of the main results in this paper is the following.

THEOREM 1.1. - Let V satisfy (1.17) for some C and f . Let u be
a solution to (1.4) in 0^ and suppose that there exist Ci > 0 and an
increasing function g : (0,^o) -> ^+ satisfying (1.16) such that

(1.19) \tTu^t)\ ^ C^^OIzl2!^)!,/^ a.e. (z,OeQ^,

where T is given by (1.8). Then, there exist r^ = r^Q, C, Ci, f ,g) > 0
and F = r(Q,C,C,,f,g,u) > 0 such that if u ^ 0 in Q, for

0 < r < r-. then

r ' r
(1.20) u^dzdt ^ r u ^ d z d t

for every r e ( 0,-° )•

Remarks. - a) The constant F in (1.20) must depend on u, as easy
examples show. b) The dependence of ro and F on the parameters
involved can be made very explicit. In particular, the proof of Theorem
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1.1 yields a number r^ such that

/^o) < C -1 (Q^ and ^(ro) < 2C,1,

while F is determined by the formula

F = 2Qexp^21og2max(l ,^(ro))^l+exp^ P [/(0+^)]^)1l.
L \ Jo t y j j

In the above equation M > 0 is a constant depending on g, on
C, f in (1.17), and on C,, g in (1.19), while N(ra) brings the dependence
on M in r according to the equation

(̂'•0) = f {S [(W + (W] + ̂ M2}^ rft / f «2 -i- dH,
•'"'-o °°1 -) / in^ IV^I

c) condition (1.19) is trivially satisfied by all functions such that
Tu = 0. These are the functions which are invariant w.r.t. the natural
action of the torus T on H". If we identify z = (x,y) e R2" with
z = (zi, .. . ,zJeC", where z, = x, + ;^, then T acts on H" by
(pe(z,0 = (^z.O.eeCCUTi]. It is not difficult to recognize that Tu = 0
iff

(L21) M 0 ( p o = y for every9e[0,2ii].

We would like to thank David Catlin for pointing this fact out to
us. When n = 1 (1.21) is easily seen to be equivalent to the fact that
«(z,t) = u*(\z \t), for some u * . When n > 1, (1.21) is less obvious.
For instance every polyradial function satisfies it, i.e., every function
which can be written as u(z,t) = «*(|zJ2,, . . . , z, \t) for some «*.

Theorem 1.1 yields the sought quantitative information on the order
of vanishing at the origin of a solution M to (1.4). As a consequence
of it we obtain

THEOREM 1.2. - Under the assumptions of Theorem 1 . 1 if u vanishes
to infinite order at the origin, then must be u = 0 in n, , where r, is
as in the statement of Theorem 1 . 1 . °

We emphasize that given a V satisfying (1.16), (1.17) the conclusion
of Theorem 1.1 is simply false if we do not restrict the family of
solutions to (1.4). This can be easily seen by choosing f(r) = r2 in
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(1.17), so that the latter becomes

(1.22) | F(z,0[ ^ Cv|/(z,r) for a.e. (z,Q e Q^.

This condition is certainly satisfied by Bahouri's potential since
according to (1.6) the latter is flat at {x == 0}. Yet, the differential
inequality (1.19) is only a sufficient condition for (1.20) to hold. According
to Proposition 4.2 below the function u(x,y,t) = x\z\2 + 2ty, which
solves A^u = 0 in H1 , satisfies (1.20), although it does not satisfy (1.19).
Whether there exist an optimal condition for (1.20) remains an interesting
open problem.

The proof of Theorem 1.1 is based on an approach to unique
continuation for elliptic equations found by F. H. Lin and one of us in
[GL1] and [GL2]. Indeed, our analysis shows some remarkable similarities
with the elliptic case. Yet, in the present sub-elliptic context new and
interesting difficulties arise, some of which of a rather subtle geometric
nature. Before we outline the plan of the paper we comment on
assumptions (1.16), (1.17) on the potential Fin (1.4). Henceforth, for a
function u on H" we set

(1.23) IV^I^ ETO2 + (r^)2,
7=1

where Xj, Yj, j = 1, . . . , n are given by (1.2). With d as in (1.12) and
\|/ as in (1.18) a computation yields

(L24) I V N ^ I 2 = \|/ in H"\{(0,0)}.

In Euclidean space the presence of the density v|/ is outshone by the
flat geometry of (R^, which yields \|/= 1. Roughly speaking, (1.17)

means that we measure — F, rather than V itself, w.r.t. Lebesgue

measure. This was suggested to us by the natural occurrence of the
measure \|/dz dt in Theorems 2.1 and 2.2 below.

Thinking in terms of — V assumption (1.17) is an ad hoc adaptation

to our context of the condition |^(x)| ^ ———3—? in the paper [GL2]
I -^ I

on strong unique continuation for elliptic operators. We also recall
Hormander's strong uniqueness result in [H2] which was concerned with

C
the assumption V(x)\ ^ —^-^ for some 0 < 8 < 1.

I -^ I
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Another result in this paper is a theorem of uniqueness in which
we make a weaker assumption both on the potential V and in the
differential inequality (1.19). Specifically, we request that given
F(z,t) = V+(z,t) - F~(z,t), where F4" and V~ respectively denote the
positive and the negative part of V', then there exist a constant C > 0
and a dimensional constant 5 = SQ > 0, such that for a.e. (z,r)eQ^

^vK^), o^-(^^(1.25) O^F^z .O^——.vK^) , 0^-(z,0^———^0.

We then have

THEOREM 1.3. — Let u be a solution to (1.4) in Qj^ wf^i a F
satisfying (1.25). Suppose that there exists Ci > 0 such that

(1.26) \tTu(z,t)\ ̂  Ci lz l^z .OI , /or a.^. (z.QeQ^.

TTi^n, r/im? ^cf.sr5 ro = ro(Q, C, Ci,8) > 0 such that if as r -^ 0+

r
u(z,tY^f(z,t) dz dt = 0 (exp [- ^r-^])

Jo,

/or some A, a > 0, ^n mi^s^ be u = 0 m Q^.

The main ingredients in the proof of Theorems 1.1 and 1.3 are :
(I) Representation formulas for (smooth) functions on H-T as

integrals on Heisenberg spheres and balls.
(II) A strong form of uncertainty principle for 0-r.

(Ill) A formula for the first variation of the energy integral associated
to (1.4).

(IV) A frequency function on B-T and the study of its growth
properties via parts (I), (II) and (III).

Section 2 is devoted to parts (I) and (II). Section 3 to part (III).
Section 4 is dedicated to the implementation of part (IV) in the proof
of Theorem 1.1. There, we also prove along with Theorems 1.2 and 1.3,
other results concerning solutions to (1.4) which are invariant w.r.t. the
action of the torus T on B-T, i.e., solutions satisfying (1.21). One

0
remarkable fact is that when V(z,t) = ——^^(z.O, with C e I R , thed(z , t )
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analogue in the present context of the inverse square potentiel V(x) =
C

—3 •> then the frequency of a solution to (1.4) satisfying (1.21) is strictly
I -^
increasing. As a consequence of our results and of unique continuation
results for elliptic theory we prove in section 4

THEOREM 1.4. — Let u be a solution in HT to the equation

- \,u + ,\|m = 0, C e R ,

and suppose that u satisfies (1.21). If u vanishes to infinite order at the
origin, then must be u = 0 in H".

At the end of the section we give an example which proves that
C

the inverse square potential V = —^ \|/ constitues a threshold for our

results to hold. For every s > 0 we provide a nontrivial solution to
(^

the equation — A^u + -j^^fu = 0 which vanishes to infinite order at

the origin and for which conditions (1.19) or (1.26) are trivially satisfied.

Finally, we would like to thank Luis Caffarelli, David Catlin, Carlos
Kenig, Fang-Hua Lin and Xavier Saint-Raymond for their interest in
the results of this paper and for stimulating conversations.

2. Sub-elliptic mean value formulas and a Hardy-type inequality.

We begin this section by establishing some representation formulas
for (smooth) functions on H". These formulas generalize classical results
involving functions and their Laplacians in Euclidean space. Gaveau [Ga]
proved the following result: Let u be such that A^K = 0 in H". Then

r \ z \ 2

(2.1) ^(0,0) = (0-2)0^ u ^ t ) . . .,dH,^
L, v ? / Vd(z,Q|

where CQ is given by (1.14).

For \|/ given by (1.18) we now define

(2.2) ^r^n= ^ ( z , t ) d z d t .
JOr
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Using the polar coordinates adapted to tHT introduced by Greiner
[Gr], see also [GrK], it is easy to recognize that there exists ^ > 0
depending only on Q = 2n + 2 such that

(2-3) ^L.-o^.

We now recall Federer's co-area formula [Fe], Theorem 3 2 1 2
p. 249 : Let f e L^OT) and g e Lip(ffT). Then

(* (*+oo / f* r / \

(2.4) f^dx= d s ( \ -^dH
JHN J-» \Ji»=,i IVg(x)|^ 7 j-» a-jv^)i—-1;'

provided that Vg does not vanish on the set {g=s} for a.e. se\
From the definition (1.15) of Sir and (2.4) we can write

^(z,t)
(15) 1 ^1 - = W^^"^-Jo \J^Qp va^z,rj | y

(2.5) yields upon differentiation

w i^-L^^^
Comparison of (2.6), (2.3) gives

(2-7) • 13Q.|^= e^r^-1.

THEOREM 2.1. - L^ l;ecc o(H^), then for every r > 0 \ve have
1(18) ^L/'2-"^^"-^"1

J^.,(.,)[r(,,)-^]+ \nV(z,t) \r(z,t) -—— \ d z d t .

Also, we have

i r
(2t9) To—— v^t^^t) dz dt = v(0,0)

1-^- H"J^
c'r\^n J^

+ ^ f P""1 { f ^^ ̂ 0 fr(z,0 - -̂ 1 ^z dt\ dp' J o Uftp L P J J
In (2.8), (2.9) r(z,Q is given by (1.13).
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Remarks. - a) Theorem 2.1 holds unchanged if the origin is replaced
by any other point (z^QeH\ For instance, by left-translation we
obtain from (2.8)

1 f . „ \|/(z,r;zo^o) ,„
130 ( z m ( ? ) iwTT^T'T^T ̂ " == ^o^o)I ̂ Wo, to) I Hn Ja0..(zn, <») I ̂ (^ ̂  ZQ, ^o) I

+ \nV(z,t) r(z,r;Zo,ro) --^ dzA,
Jn^zo,^) L r J

Z-Znwhere we have let v|/(z,r;Zo,ro) = v|/((zo,^)~1 o (z,Q) =
d(z,t;Zo,to)2

? and

then |3D,(zo,ro)l' rV^O? •-O^l^n
Jaft..(z,

v|/(z,r;zo,to)
.̂n.L^,^|Vrf(z,r;zo^o)l 2n

b) If A^^ = 0 in H" from (2.8) and (1.14) we obtain Gaveau's
mean value formula (2.1).

Proof of Theorem 2.1. - We begin with proving (2.8). To this end
it will be convenient to represent A^ as a divergence form operator

(2-10) A^= div(^(z)V),

where

(2.11)^(z) =

/
If^•^•''

\ 2y, . . . 2y, - 2x, • • • - 2x, 4|z|2/

2yi \

2y,
-2xi

-2^

and 1^ denotes the identify matrix in R2". Let 0 < £ < r be fixed
and consider the open set with smooth boundary D = Q.r\Q.,. If
u e 0^(5) and v is as in the statement of the theorem we have by
(2.10) and the divergence theorem

r r -».
(2.12) (u^v - vA^u) dz dt = (uA Vu • ~n- vA VM . ~n) dH^,

^ jso

where we have denoted by n the exterior unit normal to 8D. Letting
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u = 1 in (2.12) we obtain

(2.13) \^vdzdt= ] AVv-ndH^.
JD JQD

Now we apply (2.12) to the functions v and u = F obtaining

rA^vdzdt^-^-^ AVv^dH^-^-^f AVv-ndH^
(2.14) ^r^ r Js^ £ J^

vAVr-'ndH^- vAVr'^dH^.
J^o^ Jang

In the first two terms in the r.h.s. of (2.14) we have used the fact

that r = —^ on 3Qp, p > 0. Next, we observe that ~n = —— on 9^r,
P |Vd[

-^ W
while n = - __ on ^Og. Using this observation and (2.13) for the

first integral in the r.h.s. of (2.14) we obtain

(2.15) f FA^ dz dt = -^ f ^v dz dt
JO^^E r J»r

+^f ^.,r^-f .^,w^„
" Jane jsa, I ""I

f ^vnw+L/^^^2"•
(1.13) yields

(2.16) Vr(z,t) = - (e-2)C^(2,t)l-^Vd(^,t),

so that using the notation (1.23)

,,,̂ d̂ ,...(̂ ,̂

We want to show that (1.24) holds. (1.12) yields

1 (Wx\
(2.18) ^^=4^ [wy 'W(z,t) \ ^ I
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so that applying (2.11) we obtain

. /4|z|2x+4^\
(2.19) .4(z)W(z,Q = ,———— 4|z|23;-4^

4d(z,t) ^ g^ )

1 [~ | z 2 /^ . / ^
= -T7—T -7——^ V + -T.——^ - X

rf(z,Q Ld(z '02\2^7 d(z9r)2 \ 0
Now we define

(̂ O) ^ = Zf^ A +^• A )+2 t a

^i \ 5^ 5^/ 3^

(2.21) (p(z,0 =
rf(z,02

We remark that (p is Heisenberg-homogeneous of degree zero.
Recalling (1.8), (1.18) we can rewrite (2.19) as follows

(2.22) AVd = ^{vl/jr+cpr} in H"\{0,0}.d

This formula plays an important role in the sequel. From (1.8),
(2.18) it is readily verified that

(2.23) Td = 0 in N^{(0,0)},

which shows that the vector field T is tangent to the Heisenberg spheres
50,, r > 0. Moreover, (2.18), (2.20) give

(2.24) X d = d in N^{(0,0)}.

This fact will play a crucial role in section 3. (2.22), (2.23) and
(2.24) immediately give (1.24). If we replace (1.24) in (2.17), recalling
(1.14) and (2.7) we obtain

C A vr. w
(2.25) lim v———dH^

W|E^O^ Jsa^
1 (* I

lim -^—— ^-—dH^ = - z;(0,0).
^o+ ^sl^in, IVd|

Furthermore, (2.7) gives

1 f
(2.26) lim -^ AVv'n dH^ = 0.

E-^O4" s J^Qp
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Finally, since by (1.13) F e ̂ (O,) (to see it use Greiner's polar
coordinates, see [GrK]), using (2.25), (2.26) when passing to the limit
as 8 -^ O4^ in (2.15), we obtain (2.8).

To complete the proof we change r with p in (2.8), multiply both
sides by p9"1 and integrate in p between 0 and r. The co-area formula
(2.4) allows us to conclude that (2.9) holds. D

Before we proceed we pause for a moment to further elucidate the
role of the density v|/. (2.22) and a direct computation give

(2.27) A^ = Q-J-[-^ in N^{(0,0)}.

Observing that if u is a radial function on H", i.e., if u(z,t) = f(d(z,t))
for some f on ^+, then

(2.28) A^ = (IV^I2)/^) + (A^d)/^),

replacing (1.24), (2.27) in (2.28) we find the remarkable formula

(2.29) A^ = ^\f"(d) + Q^1 f(d)},

see also [FS]. From (2.29) it is immediate to guess that the fundamental
solution of - A^ should be given by (1.13).

Our next task is to establish an uncertainty principle for the
Heinsenberg group. In [GL2] an important role was played by the
following a priori inequality. Let B, = {x e RN\\x\<r}. Then for every
MeCS°(^\{0})

(2.30) f^

^ (^H^L/̂ + J,1^1'^'
By density one immediately obtains from (2.30) for every u e H^R^

(2.31) f ^^(__n |V«(x)|^,
j^v w yv ^/ j^n
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which is an inequality of Hardy, see [KSWW], Lemma 1. (2.31) and
Schwarz's inequality imply

(2.32) f f W^xYdxV! iVuWI^xW^Yff uWdx)\
\J^N /\JRN / \ L J \J^N /

which via PlancherePs theorem for the Fourier transform yields the
harmonic analysis formulation of Heisenberg's uncertainty principle, see

N—2 N
[He], Chap. 2, (with —— replaced by — equality is attained in (2.32)

iff u(x) = A exp (—a |x | 2 ) , for some AeR, a>0).

In our context we have

THEOREM 2.2. - For every u e €^(N^{(0,0)}) and every r > 0

(2.33) f ^-^t)dzdt

)̂'{(m"<2-̂ -"
+ f IV^u^Ol^zdtl.

Jtir J

COROLLARY 2.1 (Hardy-type inequality for H"). - Let
MeC?(H"\{(0,0)}), then

f ^^'^^(o^f ^^,Wdzdt.
«Jon v ? / \'^ / VM^

COROLLARY 2.2 (Uncertainty principle for IH"). — For every
M6C,X(H"\{(0,0)})

f f d(z,tfu(z,tWz,t)dzdt\( [ |Vn^u(z,0|2d^d()
\ JH" / \ JH" /

^ (Q^} f t u(z,t)^(z,t)dzdt}.
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One should compare Theorem 2.2 and Corollaries 2.1 and 2.2 with

(2.30)-(2.32) above. Also, it should be noticed that with ^——2 replaced

by -^ equality is attained in Corollary 2.2 iff u(z,t) = A exp (-ocrf(z,r)2),

for some A € R, a > 0.

Proof of Theorem 2.2. - By formula (2.4) we have
(134) L^2'"'"'"

. ['( ! Kfe.)- »M \
jAL.dwm^'"'")'11'

=l^(L:(^•ty.&^
= (integrating by parts) - 1 y^^^aj^l0^^

r Jsfir |Vfl(z,t)|

+ ̂ (i^'^'1^-
We now apply formula (2.8) to the function v = u2 obtainingnia-̂ ^

^1 d ( p9-1= n^f p8-1 K
Jo P^P\(0-2)CQ[^op^pYce-^UQ^""^^'0

(2.35) [^(z't)-p^]d2 A+«(0,0)4U'"-"r^L,*"-^^
'̂

Using again formula (2.4), the fact that F = -^ on 3Qp, (2.10)
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and the divergence theorem we have

An.o^o rr(z,o—^Lz dt\

= ^pQ2^ f ^(u2)^ dz dt
?-2)C, f
0<3-l
^ Jo,.(̂ ^̂ ,̂.,̂ ,̂,

Using this information in the second integral in the r.h.s. of (2.35)
we obtain from (2.34)

^L^^-)—-^,^2^^
+(^-1)I^^ZA

^° ̂  (z)Vu(z, 0. Vd(z, 0 dz dt.
Ja^ ^V'l1)

+ 2
JQ

Since the matrix A(z) in (2.11) is symmetric and positive semi-
definite, (2.36), Schwarz's inequality and (1.24) give("7' "'-".Ll̂ ')-'2-"

^f "w^^.Vrf(z,0|""2"

^(i ̂ l^^""^'012^^)2^ IVH""(^012^^)

"(^O2 ,/ ..,, , ,\^C .- , , - , \^

-L"<2."-^--
-L^^-

i r
+- |VH^(z,0[2^d^,0 JQ,

where e > 0 arbitrary. Choosing e = ^ — — , we obtain (233)
from (2.37). 2 Q
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3. Conformal vector fields and sub-elliptic first variation formulas.

The aim of this section is to compute the first variation of the
energy integral associated to (1.4). First variation estimates play an
important role in calculus of variations and geometric measure theory.
The standard strategy to achieve them is to perform a so-called radial
deformation and then use the minimizing properties of the energy
integral. The effectiveness of this procedure is deeply related to the
existence, at least locally, of conformal vector fields. We recall that on
a Riemannian manifold of dimension^, (M,^y), a vector field Z is
said conformal if

Z,j + Z,,, = ̂  (divMZ)gij, i, J = 1 , .. • , N,

where we have denoted by Z,j the covariant derivative of the
z'-th component of Z w.r.t. the 7-th local coordinate. In Euclidean
flat space there exists a distinguished conformal vector field, namely

Z = r— = = x , x e i R N . The fact that this vector field is orthogonal toor
the level sets of the fundamental solution of Laplace's operator with
pole at the origin has important consequences. One of them is clearly
illustrated by the first variation formula for the Dirichlet integral of a
function in ^N. Let B, = {x G ̂ N \x\<r}, then

(3.1) f Vu(x)\2 da = N^1 f Wx^dx
j9By r j B j .

(* / -\ \ 2 /^ /•

+ 2 ( ^ - ( x ) } da - - x-Vu(x)Au(x)dx,
J^V^ i r^

where we have l e t — ( x ) = V u ( x ) ' — ' It is noticeable in (3.1) the8n \x\
absence of terms involving tangential derivatives of u.

There exists on the Heisenberg group a vector field which plays
much the same fundamental role of the conformal vector field

Z = r— in [R^, namely the vector field X introduced in (2.20). This

vector field can be thought of as conformal in the following sense. Let
G = (gij) be the (2n+l) x (2n+l) matrix that generates the Heisenberg
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dilations, see (1.10). Then we have

(3.2) ^,,+ X^=2(divX)g^ ij= 1, . . . , 2n + 1,

where Q = 2n + 2 is the homogeneous dimension of H". In (3.2) we
,3 -y

have denoted by Z^ the partial —» where we have let for (x,y,t)e D-T
^j

^i = xi9 ^n+ i = Yi •> I = 1 , . . . , H , ^2n+1 = t -

Unlike its Euclidean relative r — the vector field X in (2.20) is not8r
orthogonal to the level sets of the fundamental solution (1.13), i.e., the
Heisenberg spheres 8Q.r. Yet, it displays the important redeeming
feature (2.24): Its projection Xd along the direction orthogonal to the
sphere 8fi.r has constant valuer on the sphere itself. We exploit this
fact to obtain the following remarkable sub-elliptic first-variation formula.

THEOREM 3.1. - Let u be a function such that u, XjU, TjU,
j = 1, . . . , n, and A^nu e L^H"). Then we have for a.e. r > 0,

(3.3) | V^u(z,t)\2-————dH^ = Q^-1 f |Vn^(z,012 dz dt
Jan^ \y'a\z^)\ r j^

-Lm'̂ n-
f (Xu(z,t)\(Tu(z,t)\ (p(z,Q ,„^LX'^f^'—Jwd^

2 f
- - (Xu(z,t)) ^nu(z,t) dz dt.

r Jflr

In (3.3) T is defined by (1.8), X by (2.20), and cp by (2.21) (recall
that cp is Heisenberg-homogeneous of degree zero). According to (2.23)
the vector field T is tangential to the sphere 80.^. Therefore, the third
term in the r.h.s. of (3.3) represents a novelty w.r.t. the Euclidean case,
and an unpleasant one, indeed.

Proof of Theorem 3.1. - In what follows for the sake of simplicity
we will drop the independent variable (z,t) in all the integrands.
Moreover, we agree to let ^ = x,, ̂  = ^,, i = 1, . . . , n , ̂ , = r ,

, , , , „ - 1 1 • , 8u SX, Baaand denote by M,, Xij, a,^ respectively the partials —»—»—^ where
8^ 8^ S^
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(ay) = A is the matrix in (2.11). Also we denote by (AVu)i the i-th
component of AVu, so that (AVu)ij denotes the partial (AVu), w.r.t. ̂ .
Throughout, we will use the summation convention over repeated
indices.

(2.24), the divergence theorem and the fact that

yield ""^-e
M L17"""1'^"-^17"-'11^"

=- di\(\V^nu\2X)dzdt=Q\ ^^nu^dzdt
r J^r r Jft,

+ l f X^^nU^dzdt
r J"r

= Q ^nnu^dz dt + 1 f .r,((^Vu)^,,),^z A
r J". r Jo,

= 8 |VHnM|2 rfz A + 1 f ^(^VM), ̂  „ dz dt
' Ja, r j^

+ 1 f X,(AVu),u,^dzdt
r J"r

= e f IVHnMl2^ dt + 1 f ^,(a,^,,),,M,,^ dt

' JOr r J"r

4- - ^((^t Vu) ,̂,) „ dz dt - 1 | XiU,i((A VM), , dz A.
' J"r r Jftr

Integrating by parts in the third integral in the r.h.s. of (3.4) we
obtain

(3.5) - Xi((AVu),u^),,dzdt = 1 XiU,,(AVu),njdH^
r J"r r J8Qr

- 1 ( X^Ayu),u,,dzdt
r Jn,

= -,; (JTM)(^VM.n)d^ - l f ^,(^VM)^,^Z A.
r J^r r Jfl,
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As for the second integral in the r.h.s. of (3.4) we have

i f i r
(3.6) - Xi(cijkU,k\iU,j dz dt = - X,u,^^^ dz dt

r Jfi-r r J^r

1 f
+ - X,ajk,iU,kU,jdz dt

r Jn,

= - XiU^i(AVu)h dz dt + - Xidjk iU,i,u,j dz dt
r Jn. r Jo.
i f i r-j .,<
' Jn.- iX^AVu),u,,),, d z d t - - \ Z^,,G4Vu),,, dz dt

+ - XiCijk,iU,kU,j dz dt

Jao,
XiU,i(AVu)krik dH^ - - Z^(^VM)^,, dz dt

^ In

I f I f
Xu A^u dz dt + - Xidjk,iU ^u ,j dz dt.

' Jn, ' Jo,

Substituting (3.5), (3.6) in (3.4) we obtain

1 ,
^i2^,^(3.7)

Je^

= Q IV^^I 'dz dt -2\ X^(AVu),u,, dz dt
r Ja^ r Ja^

i f 2 ri r 2 rX,a^,iU^u,j dz dt + - (Xu)(AVu'n) dH^+ - Xta,k,iU,hU,jdzdt + -
r^ '•L

- ' f Xu A^u dz dt.
^Jo,

From (3.2), the symmetry of the matrix (X^j) and the fact that
divZ = Q we infer X^j = ^y. On the other hand, (2.11) gives with
obvious meaning of the notation

l^y \
8uAVu = | VyM-2—x

8u
V^^'iJ
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We conclude

(3.8) A-,,^V^,,=^(^V^,,= V^|2+2^^+4|z|2W.

The final step is the computation of the sum A^^,^. We note
that from (2.11) the only non-zero terms in a^i occur when either
j = 2n + 1 or k = In + 1. Moreover, since a^ does not depend on
^2n+i = t we have ^,(2^+1) = 0 for every;, k. Therefore, since a^ = a^

2n / 2n \

(3.9) A^^M,, = 2 ̂  ^•( ̂  ^(2n+l)/c,^,^)M,(2n+i)
!=1 \/£=1 /

' u,(2n+l) ^ ^ia(2n+l) (2n+l), i
i=l

^^Su^ ..[^
St
Su n [ n n "I

= 2 ^ ^ ^ i \ L^ a(2n+l)k,iu^k+ ^ a(2n+l)(n+k),iU , (n+k)
oi i=l L/c=l k=l J

Su n [ n n "1
^7^ ^n+i\ ^ a(2n+\)k,(n+i)UkJr ^ a(2n+1) (n+k),(n+i)U , (n+k)
ui i=l Lk=l k=l J

/ ,3 \ 2 2n

{ ^ f j ^ - A ^ a (2 /^+l ) (2 /^+l ) ,^ • •
\ui/ i=l

If i = 1, . . . , n and k = 1, . . . , n we have

a(2n+l)k,i = 2——.— = 0, d(2n+l)(n+k),i = — 2—^ = — 28^-,
^^ ^i

_ ^ Q^n+k _ ^o ^ 8^k
u(2n+l)k,(n+i) ~ ^^——— — ^O^ , ^(2^+1) (/i+/c), (n+0 = — 2——— = 0,

^+, 8^+i

whereas O^+D^+I),. = .r(4|z|2) = 8^, f == 1, . . . , 2 n .
^S!

We then infer from (3.9)
^ n

(3.10) A^,u,^,j = 4^ ̂  [^4-,M,,-A',-u, <„+,)]
oi ,-i

. ^SuY"
+8f^) Z[^.+^,-^.]

V^ 1 / i=i
i^i^^n+i^n+il

2

-^r..^
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Substituting (3.8), (3.10) in (3.7) we finally obtain
(3•ll) L1"-"1'^'""

Q - 2 r 2 r ->-
= ——— IV^I2^ dt + - (Xu)(AVu'n)dH^

' J"r r J<5Qr

2 r
- - Xu A^M dz A.

r Jn,

c- ^ ^* u ^ -' VM.^vrf i [(jru)\|/+(rM)(p]Since .4 = ^*wehave^VM.n = -———— = - / T V ' •^ where
|Vd| a [Va|

in the last equality we have used (2.22). From this observation and
(3.11), (3.3) now follows. Q

4. Frequency functions on D-T and unique continuation.

The aim of this section is to prove Theorems 1.1-1.4. We do so by
studying the growth properties of certain quotients of variational
integrals which are naturally related to equation (1.4). Henceforth, we
will work in a fixed Heisenberg ball Q^ centered at the origin.

For a solution u to (2.4) in Q^ and r < Ro we define its height in
O.r as follows

(4.1) ^.^..f^H...

We also let

(4.2) D(r)= \ IV^z.OI2^^,
Jn,

W= \ [^^(z^+V^tMz^dzdt,
Jo,

and call these quantities respectively the Dirichlet integral and the total
energy of u in Qr-

LEMMA 4.1. - Let u be a solution to (1.4) in ft^ . Then, for a.e.
r€(0 ,7?o)

(4.3) H ' ( r ) = Q——i- H(r) + 2I(r).
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Proof. - A density argument, (1.14) and (2.8) of Theorem 2.1 yield

,.8-1

^ H(r) = (6^11 AHn(M2)(z'0-

|r(z,0-^1 rfz A+u(0,0)2!.

Differentiating (4.4) w.r.t. r and using the co-area formula (2.4) to
evaluate the derivative of the integral within curly brackets we obtain

(4.5) H\r) = Q——}- H(r) + f A^u^t) dz dt.
Ja,

Now we observe that

(4.6) A^(u2) = 2»A^«+2|V^M2 .

If we substitute (4.6) in (4.5) and use (1.4) we obtain (4.3). D

LEMMA 4.2. - Let u be a solution to (1.4) on Q^o- There exists
ro > 0, depending only on Q, and on C and f in (1.17), such that either
u = 0 in n,g or H(r) + 0 for every r e ((),?•„).

Proof. - Suppose that for some ro < Ro ff(ro) = 0. Then from
(4.6) and the divergence theorem

(4.7) D(r,) = I(r)- f V(z,t)u(z,t)2 dz dt ^ 1 f A^u2)^) dz dt
""'-0 -'"'•0

+ \V(z,t)\u(z,t)2 dz dt = u(z,t)A(z)Vu(z,t)-~ndH,
•'"'•„ Jxi,Ja^ Jsa^

\V(z,t)\u(z,t)2 dz dt = f
•'̂ o ^r,

+ \V(z,t)\u(z,t)2 dz dt = \ \V(z,t)\u(z,t)2dzdt.

Next, we use (1.17) and (2.33) of Theorem 2.2 to obtain the bound

(4.8) f | V(z,t)\u(z,t)2 dz dt <£ C/(r<,) f u(^- ̂ i(z,t) dz dt
^"r,, Jn, d(2.0^ Ja^z,t

fc(^^'^^}--^)'f^,.
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Since by (1.16) lim f(r) = 0, we obtain a contradiction from (4.7),
r^0+

(4.8) unless D(ro) = 0, which forces u = 0 in Q^.

From the proof of Lemma 4.2 it is obvious that the dependence of

ro on 0, C and / is such that C/(ro) < [Q^—\ ' Lemma 4.2 allows

us to divide out by H(r) in (4.3) obtaining

<4-9' ^-^^^ ro .̂..̂ ,

We now introduce the following

DEFINITION 4.1. - Let u be a solution to (1.4) in 0^ and let r^ be
as in Lemma 4.2. The quantity

(4.10) ^(r)==^9 rG(o^

15 called the frequency of u in Q^.

We stress the invariance of (4.10) w.r.t. the Heisenberg dilations (1.9).

Remark. - The function N(r) introduced in (4.10) is the analogue
of that introduced in [GL2] for solutions to uniformly elliptic equations
of the type - div(^(x)Vu) + V{x)u = 0 . For harmonic functions in
R^ the frequency was first introduced by F. Almgren [A], who proved
its increasingness w.r.t. r . He called the quotient N(r) =

r rr IV^rix/ u^a the frequency of u in Br because of the
JB^. JQB^.

observation that when u = \mz\ z e C , f e e ^ J , then N(r) = k for
every r > 0. In view of this remark our definition is justified by the
following

PROPOSITION 4.1. - Let V = 0 in Q^, 0 < Ro ^ oo, so that
V^ u = 0 in 0^. If u is Heisenberg-homogeneous of degree k e N , then
^(r) = k for every r e (Q,Ro).

Proof. - Since V = 0 we have I(r) = D(r). From the definition (4.2),
equation (4.6), the divergence theorem, the self-adjointness of A and
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(2.22) we have

(4.11) D ( r ) = 1 f A,,(^)(z,0dz^^ ^H^
L Jn,

f ^(z,Q^(z)W(z,Q^
M ( Z , Q — — — — — — , . —————^^

Jao, W(^01

K. "(^••w^•')r&fl••
^L-"2-')7'^0^^-

Since by (2.23) T is tangent to the smooth manifold without
boundary S^lr^ Stokes' theorem and the fact that T is divergence free
imply

(4.12) f u{z,t)Tu(z,t) q ) ( z ? o d H ^ = 0 .
Jao, |Vd(z,0|

On the other hand, the fact that u is Heisenberg-homogeneous of
degree k and Euler's formula yield

(4.13) Xu = ku.

Replacing (4.12), (4.13) into (4.11) finally gives

^L"<^••'•&^fl<r>•
This proves Proposition 4.1. D
We return to the general case V ^ 0. As a corollary of Lemma 4.2

we have

LEMMA 4.3. — The function r i—> N(r) is absolutely continuous on the
interval (0,ro). In particular, N ' ( r ) exists for a.e. re(0,ro).

At this point we introduce the set

(4.14) A^ = {re(0,ro) |7V(r) > max (l,Nr,))}.

Because of Lemma 4.3 A^ is an open set, therefore
oo

(4.15) A ^ = U ( ^ ^ - ) < a,,b^\^.
;-i
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We emphasize that by the definition (4.14) we have

(4.16) H(r) < l(r) for every r eA^ ,

thus, in particular, 7(r) ^ 0 for every re A,,, see Lemma 4.2. By this
observation and by Lemma 4.3 we have

(4.17) ^D=^l_^) fo^, ̂
/ N(r) I(r) r H(r) tora.e.reA^.

We have already computed H'(r)/ff(r), see (4.9). By means of
Theorem 3.1, and since A^M = Vu, we have

LEMMA 4.4. - For a.e. reAr we have

f (Xu\ ^f f (Xu\(Tu\ (p

^) Q_, W^^ L(v-AT)^^
w '• + 2 w +2———W)———

vu2——dH^ \ Vu^dzdt f (Xu)Vudzdt
Jea, ival Q^-^____ 2^

z(r) r / ( r ) - r 7 ( r ) '
(4.9), (4.17) and Lemma 4.4 yield

LEMMA 4.5. - For a.e. re A,' o

f (xu}2 ^
N-(r) L\ r ) |W|——

(4.18) —^'2=2—^_________-' i '^Lv ^ N(r) I(r) 2^)

f ^"V^ (p ^
LA^A^IWT^2"

+ 2 W

vu2——dH^ f ru^zA f (Zu)r«dzA
JSQ, ivai g^^Jn, ^Jn^

W ?• / ( r ) " r 7 ( r ) '
We need one more lemma.
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LEMMA 4.6. - There exists a constant B = B(Q,CJ) > 0 such that
every r £ A^ we have

(4.19) D(r) ^ BI(r).

Proof. — As in the proof of (4.8) we have

Z)(r)^/(r)+ f \y(z,t)\u(z,t)2dzdt

' ^(^y^T^}
4'+ (e^)c/(r)]/(r) + (e^)'c/(r) w •

where in the last inequality we have used (4.16). Recalling that in the
proof of Lemma 4.2 we have chosen y-o > 0 such that

2 V Cf(ro) < 1, from the above inequality we obtain (4.19) with
\Q-^

1 + AyCf(ry) . , 2
B = 1 - W^ where we have set AQ=Q——2• n

We are now ready to prove the main result of this section.

THEOREM 4.1. — Let u be a solution to (1.4) and suppose that u
satisfies (1.19) for some Ci and g . Then, there exists a constant
M == M(Q,C,Ci,f,g) > 0 such that for a.e. r eA^ we have

(4.20) ^-4/<^)-^ - ̂ p^iwj.

Proof. — Our starting point is (4.18) in Lemma 4.5. Assumption
(1.17) on V and (4.16) give

(4.21) \^ ̂ ,,)«(,,).̂ .̂.

^-M\ „(,,,), ^__^,.
r Jan, Wz,t)\

_Cf(r)H(r) ^ Cf(r)
r r r
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Likewise (see the proof of (4.8)) with AQ =
0 - 2

(4.22)
Q - 2 f
-—— V(z,t)u(z,t)2 dz dt

r Jo,

<^w(4^^j
(by (4.16) and (4.19))

/(r)< (g-2)^CW+.B)^/(r).

Now we would like to get a bound for the last integral in the r.h.s.
of (4.18). We have from (1.17)

(4.23) Xu(z,t)V(z,t)u(z,t) dz dt

. 2C/(r) |
\^(z,t)\^z^^z,t)dzdt

' " d(z,t)

Ĵa

2C/(r) •-u(z,t)\
^(z,t)Xu(z,t)\———^-dzdt^o"' d(z,t)

= 2CW f A(z)Vd(z,t). Vu(z,t) - -——— <f>(z,t)Tu(z,t) Kz^ dz dt
r Jn- d(z,t) d(z,t)

^^A(z)m.,t)-^z,t)^dzdt

, 2C/(r) f |(p(z,f)rt<(z,Q| |M(2,Q| , ,
+--L. ^,0 d ( z , t ) d z d t '

where in the second equality we have used (2.22). By the self-adjointness
and the positive semi-definiteness of A(z), Schwarz's inequality, and
(1.24) we obtain

(4.24) f \A(zWz,t)•^/u(z,t)\l-tt(^t){dzdt
Jn, d(z,t)

u(z,t)2

Jn^(z,02
< J^^^^^dt |V„„y(z,0|2dzdt
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-(f^,o ̂ ,y(f
Un '̂O 7 \Jn,

J_

<^^|^Q l :y(r)+-D('•)[ W1

V^u(z,t)\2 dz dt

< (by (4.16) and (4.19)) A^Aa^ B)B}2 /(r).

Now we bound the second integral in the r.h.s. of (4.23). By
Schwarz's inequality and (1.19) we obtain

(4.25)
|(p(z,t)7M(z,f)| |»(z,t)|

d{z,t) d(z,t)
d z d t

^ / C \<f>(z,t)Tu(z,t)\2

\J^ d(z,t)^(z,t)
dz dt l^--^

< Cig(r) | ^^^(z.Odz (by (2.33) of Theorem 2.2)
ja^ d{z,t)

^C,A^A-Ql+B)g(r)I(r).

(4.23)-(4.25) finally yield

12 ,f(r)
Xu(z,t)V^,f)u(z,t) dz dt\ ̂  G——I(r),(4.26)

where G = G(Q,C,C,, f,g) > 0.

(4.18) of Lemma 4.5 and the estimates (4.21), (4.22), (4.26) allow
us to conclude that for a.e. r e A,.

N'(r) Jan,.
(4.27) -^-l-2- r

^Y ^ ̂
.T w^2" I(r)

N(r) J(r) 2H(r)
Xu\(Tu\ (pf ^yz")

JanA '•A '•7
+2——————W

' •A ' - y i vd i dH,,
+ 0 W

<('•).

^/(r)^where Oi —— j is a function whose absolute value is bounded by

L^, where L = L(Q,C,C,,f,g) > 0.
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Schwarz's inequality again and (1.19) yield

(AW) f (Xu(z,t)\(Tu(z,t)\ (p(z,t)^ U'^A^iw^^2

^Xu(z,f)\ ^(z,f) |(p(z,or«(z,oi2
dH,,dH,,

r ; IV^OI""2"; ^J^^OIV^Or"2"

dH^<Ci

sa^ \

g(r)i ^)^2^M_..^2Y^ «(,o--^^
JanA r / IVd(z,t)| '7 \^. ' Wz,t)\

We now distinguish two possibilities :

Xu(z,t)\2 v|/(z,t))YJ/(^)_ f-; ry^oi^-L "^02J/M7^,<2/(r)2(a)
Jan,.\

Ja"rV

|Vd(z,t)|

)Y ^o ,„ f
-;|W(z^)|^2'•J^

^(z,OV ^(z,t)
|V<f(z,Ol""2'' L.1 ^o2^^ dH^>2I(r)2.(b)

W(2,t)l

If (a) occurs, then we simply conclude from (4.28) that

(A^ f (Xu(z,t)\(Tu(z,t)\ (p(z.Q
^•^ LA———-A-^-JW^T

Substituting (4.29) in (4.27) we obtain

< ./2C,
g(r) J(r).

Xu\ v|/

^^^^"w
N(r) /(r)

^f(r)+g(r^

dH,,

where

< At

- ̂ ^ n)^"^^
^(r) \ r ^

70-)+gQ-)1r/(>-)+g(?-)"|

with Af = M(Q,C,Ci,f,g) > 0. We now claim that

,, f / ,,̂ (z,Q^r) = u(z,0(—^-l
Janr \ ' /

/ ^,^(^0\ ^(^0 ^u(z,0(-^-J^^^.(4.31) 7(r) =

Taking (4.31) for granted for a moment we see that, in virtue of it
and of Schwarz's inequality, the difference of the first two terms in the
r.h.s. of (4.30) is ^ 0. We conclude that (4.20) is true at those points
of A^Q at which (a) occurs.
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If (b) occurs we argue in a different way. We obtain from (4.28)
and Young's inequality,,, [f(^^^,

^ M f ^OY ^,t)
2 S^\ r ) W(z,t)l'

<cl ̂  r ^"(^oy ^o .,„^ -T^) ——:—— TTTTT—TT^n

C^g(r)H(r) C _ C (Xu(z,t)\ ^(z,t)
2 r r <2g(r)^\————)Wd^\dI{2n

^^)

where in the last equality we have used the fact that for r eA^ (4.16)
holds. At this point we restrict, if needed, the interval (0,ro) in such a
way that y-o satisfies the two constraints

(4J3) (0^2) c/(ro) < 1 ? 2 ~ ̂ (ro) > v 9

at once. We emphasize that from Lemma 2.1 y-o has already been chosen
to satisfy the first inequality in (4.33). Substitution of (4.32) in (4.27)
gives

^Xu\2 v|/
dH,,(-) ̂ .[.- .̂]L(^^^^[. C , , 1 J ^ V ^ l̂  ,/(r)

N(r) - \_ 26^] I(r) ^ H(r)
.,[f(r)+g(rY[f(r)^g(r)~\— M ———

r

for a positive constant M = M(g,C,Ci, f,g). By the increasingness
of g , the second inequality in (4.33) and (b), we conclude from (4.34)
that (4.20) holds also at those r e A^ at which (b) occurs.

In order to conclude the proof of Theorem 4.1 we are left with
verifying (4.31). (4.2), (4.6) and an integration by parts yield

'^i^^-i'^"^"^
Using now formulas (2.22) and (4.12) we see that (4.31) holds. D
With Theorem 4.1 in hand we are now ready to prove Theorems

1.1 and 1.2.
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Proof of Theorem 1.1. - Our starting point is identity (4.9) which,
using (4.10), we rewrite as

(4.35) ^(f^)]^, ,.(<W.
j « - J r 2 , ' 'e<(w•

We now integrate (4.35) between r and 2r, where r < -°? obtaining

<4-36) -^-'M
^̂1\ NWd^l[ AW*

J(r,2r)nAro l J j r i

where we have let Jr == { ? e (r,2r) t^ A^, N(t)^0}. Since on J^ we
have 0 < N ^ max(l,^(ro)) (see (4.14))

(4.37) A^(r) ̂  ^ max (l,7V(ro)) | dt- = max (l,^(ro)) log 2.

On the other hand, by integrating (4.20) on (r,bj), where r e (flj ,fcj),
and (cij,bj) is an arbitrary interval in the decomposition (4.15), we
obtain

•^-r^^-r^-^^-r^-6"''-
From this inequality, recalling that bj ^ A^, we infer

'K(4.38) N(r) < exp IM | 0 (f(f)+g(t)) dt\ max (l,^(ro))
I in t I

for every r e A ^ . (4.38) yields

(4.39) f ^(t)^
J(r,2r)nA^ "

< exp \M | () (/(0+^(0) ̂ 1 max (l,N(r,)) log 2.
L Jo r J

Using (4.37), (4.39) in (4.36) we finally obtain

(4.40) H(2r) ^ 2^-l

exp {2 log 2 max (l,JV(r,,)|l + exp (M \ ° (/(() +g(t)) ̂ Y^ H(r).
(. L \ Jo r ,
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Integrating (4.40) w.r.t. r and using the co-area formula (2.4) we
finally obtain (1.20). D

Proof of Theorem 1.2. - The argument is quite standard. We include
it for the sake of completeness. Let ro be as in Theorem 1.1. We obtain
after k interations of (1.20)

(4.41) u(z,0^(z,0 dz dt ^ . • . ^ r | ^(z.O^O dz dt
^0 \2-k

r^-.C 1 p f u(z,o^(z,o dz d t ,
"^-^H^JQ.^-A

where for p > 0|Qp|^ is defined by (2.2) and P > 0 is a number to

be suitably chosen. By (2.3) we have P|Q^-. ̂  = aWQ(—) • we

now choose P such that F/2^ = 1. Then, (4.41) becomes

(4.42) f u(z,0^(z,0 dz dt
\

^ ^o ^ _ ! , p f u(z,t)^(z,t) dz d t .
l"ro2-/cl^Jo^_^

If we now let k -> oo the r.h.s. of (4.42) goes to zero since, by
assumption, u vanishes to infinite order at the origin, see Definition 1.1.
We conclude that must be u = 0 in Q^ • Q

At this. point we briefly sketch the proof of Theorem 1.3. The main
steps are similar to those in the proof of Theorem 1.1. We recall that
we no longer have the smallness available from (1.17), but assumption
(1.25) on V~ takes its place. Lemma 4.2, e.g., carries over as follows
(see (4.7)): Let H(r,) = 0, then

D(r,) = /(ro) - V+(z,t)u(z,t)2dzdt-^- V~ (z,t)u(z,t)2 dz dt
J^ , \

^ f V- (z, t)u(z, t)2 dz dt ^ 8 f u(^ v|/(z, t) dz dt
\ Jo^W)

^ §^J^^+.D(,,)l == §^(ro),
L ro J
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2where we have used (1.25), (2.33), and we have set AQ = ———• It

is now obvious that if 8 is such that 1 — SA'Q > 0, i.e.,

0 < § < ( — . — j » then we conclude Dfj-o) = 0, and therefore u = 0

in Q^.

As a consequence of Lemma 4.2, Lemma 4.3 holds, along with
Lemmas 4.4 and 4.5. The proof of Lemma 4.6 is similar to that of

Lemma 4.2. The constant B > 0 is now given by B = -——_—^ • We
1 — bA^

thus come to the crucial point in the proof of Theorem 1.3, the analogue
of Theorem 4.1. In the present situation we have

THEOREM 4.2. — Under the assumption of Theorem 1.3 there exists a
constant M = M(0,C,8,0i) > 0 such that for a.e. r e \r ^ have

^-f-
Proof. — Using (1.25), (1.26) we see that, as in the proof of

Theorem 4.1, we can bound the l.h.s. of (4.21), (4.22) and (4.26) with

-7(r), where L = L(g,C,§,Ci) > 0. We therefore obtain the identity

(4.27) with the term 0 f^) replaced by 0 ( " ) , where 0 (~\ < L '\ r ) \r) \r) r
Using (1.26) we can see that (4.28) now becomes

r.^y f (^^t)\(Tu^t)\ cp(z,Q
w L\~~)\~~)^^^^^

2 J,/- ^\ \ 2 / / » j,/_ ,,\ \ 2^Lm^^d-'- î^^ -_ -^ i ,(^-_-^
Again we distinguish the two possibilities (a), (b). If (a) occurs we

v/2Ci
bound the l.h.s. of (4.29) with ———/(r), estimate which along with

the previously established replacement of (4.21), (4.22), (4.26) yields

(4.30), with the termO (/(r)+g(r)) replaced by 0 ( i ) . (4.30) and

Schwarz's inequality give (4.43). If (b) occurs we argue as in (4.32),
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but we have to make up for the lack of smallness. We have by Young's
inequality with s > 0 arbitrary,,, j•j^^^,

^im'm^y-y
-•Lm'^—t7"

(we have used the fact that r e A ^ so that (4.16) holds). Choosing
£ > 0 such that 2 - sCi > 1 we see that (4.34) becomes

fXu\ ^ .
N ' ( r ) ^ ^ \ r ) |W|^ ^ ^

N(r) ^ I(r) 2 H(r) r '

from which (4.43) follows since (b) holds. This completes the proof of
Theorem 4.2. D

Integrating (4.43) on an interval (r,fc,), where re(^,fc,) and (a^bj)
is an arbitrary interval in the decomposition (4.15) we see that

(A w w ^ ^ max(l,A^o))ry(4.38) N(r) ^ ————^——— for every r e A^ .

Integration of (4.38)' as in (4.39) yields

(4.39)' f ^,)g^m.x(l.jVfr»yA:f ^
J(r,2r)nA- LJ(r,2r)nA^^

where ̂  = K(Q, C, 8, Ci) > 0. Proceeding as in the proof of Theorem 1.1
we finally obtain

THEOREM 4.3. - Under the assumption of Theorem 1.3 there exists
B = B(Q,C,S,C,,u) > 0, (3 = P(0,C,5,C\) > 0, F = F(Q) > 0 and

_ / ̂ \ ^~i <? ^-^ \ -^ r\ i . 1 . •r i ^ . <-v /' / / ^ ^ n
' O ~ ' O ^

/zay^

/ r \
ro = ro(g,C,5,Ci) > 0 5Mc^ rftar if u ^ 0 m D,/or re 0- , r/î  vv^
have v 7

M (2,0 ,̂0^ ̂  ̂  rexp(^) M(z,02\|/(z,0dz ̂ .
^2r V / JQ-
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From Theorem 4.3 the proof of Theorem 1.3 follows along the lines
of the proof of Theorem 1.2 and we leave out the details.

From Proposition 4.1 and formula (4.35) we immediately infer

PROPOSITION 4.2. - Let 0 < RQ ^ oo and let u be a solution to
^^nu = ^ ln ^o* V u ls Heisenberg-homogeneous of degree k e N , we

have for every r e ( 0,— )

r ru(z,t)^(z,t)dz dt - 2Q+2/C u(z,t)^(z,t)dz dt.
Jngr J^r

Remark. - Proposition 4.2 shows that (1.19) is only a sufficient
.condition for (1.20) to hold. In fact, the function u(x,y,t) = x\z\2 + 2ty
satisfies the assumption of Proposition 4.2 with k = 3, yet it does not
satisfy a condition like (1.19). Whether there is a condition which is
necessary and sufficient for (1.20) is an interesting open problem.

Theorem 3.1 has the following interesting corollary.

THEOREM 4.2. — Let u be a solution to A^M = 0 in Q^ and suppose
that u is invariant w.r.t. the action of the torus T on H", i.e., that
(1.21) holds. Then

^ ̂ ^ ĵ̂ y ,̂,.

In particular, the function r ^—> -0=7 is increasing on (0, Ro), as well

as the function r \—> N ( r ) .

Proof. - Formula (4.43) follows immediately from (3.3) using
A^M = 0 and the fact that Tu = 0 since (1.21) holds. From (4.43),
(4.10) and (4.9) (it should be kept in mind that now /(r) = D(r)) we
infer

(Xu\ ^
dH^

N'(r) _ Jc^\ r J IWI J)(r)
A 7 ' / ^ - \ 1~\ / \ T T / \N(r) D(r) H(r)
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The increasingness of N now follows from the above identity, the

fact that D(r) = u(~u~}~~^\dH^ (integration by parts) and
Jao^ \ r ) \ y d I

Schwarz's inequality, n

COROLLARY 4.1. — If u is a solution to A^M = 0 in Q^ satisfying
( R \(1.21) we have for every r e ( 0 , — ° j

r r(4.44) u(z,t)^(z,t)dz rfr ^ r u(z,t)^(z,t)dz rit
J^r J"r

Wl^I

r^exp^wj^of IV^zA/f ^^-^1.
L \ JcQ2?o J^o 1 1 /J

It was shown in [GL1] that the inverse square potential V(x) =
C

,—-3 has the remarkable property that the frequency associated to the|x| ^
operator — A + —^ has the same increasing character of the frequency

I -^ I
of a harmonic function. We will show below that if we consider the
natural inverse square potential for the Heisenberg group, namely

C
V(z,t) = ——.3\|/(z,0, then for the frequency associated to a solutiond\z,t)
of - A^u + Vu = 0 satisfying (1.21) a result similar to Theorem 4.2
holds.

THEOREM 4.3. — Let u be a solution to

C_
d(z7t)2(4.45) - A^ u + .——^/(z.O u = 0 fnQ^,

mth C e t R , and suppose that u satisfies (1.21). Then \ve have for every
re(0,R,)

^ /,,.^^f(W_^^,,
J^\ r ) W(z,Q|

I ( r )
In particular, the function r ^-> —^ is increasing on (0,^o), and so

is the function r \—> N(r).
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Proof. - Since by (1.21) we have Tu = 0 we obtain from the
formula in Lemma 4.4 and equation (4.45)

^-^—Lm'^-(4-47' -i^^-^i^'^
~^[,x''(^'')'i^•'f/{z•w^d••

Now we have integrating by parts

^ ^I/"<^••)l?>^.')'fe•"
-M j^wfe')^r e^0 Jn^"^2^)

C ("f <)/(z,() ^(2,0^sij^.^^yi^^)2^
_ f ^(z,t) Xd(zt)
L^Wd^^^"

dw^}'X)(z,t)u(z,t)2dzdt}.
Jnr\ne V" / J

Recalling (2.24) and (2.7) we see that

f449) ^ ^(^0 ^(^,0 , ,„„
( ) ^k^O2^^"^0^

'L^)2^0^)!^
^ r v(zMz,tY
L. iv^^oi 2"

(4.50) lim f ̂  ̂ (zo ^W -0
.-0^ L^(^02 IV^(z,01 v ' 7 2" - °-
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We compute the solid integral in the r.h.s. of (4.48)

(4.51) f div (^ X\ (zMz,tYdz dt = Q f ^t) u(z^dz dt- A l ̂ t)u^tydz dt = Q\ p-̂  u(z^
^r\^ V M ) JQ,^^"J^r\^ vfl / JQ.^^O

+ | XW-^zMz^Ydzdt,
Jn,\̂

where we have used the fact div X = Q. Now by (2.24) we have in
QAO

(4.52) Z(v|/rf-2) = d-\X^f) - Id-^Xd = d-^ - 2ri-2v)/.

Recalling (1.18) and (2.20) a direct computation yields

jr\|/ = rf-^izi2 - 2\|/ == o.
Using this information in (4.52) and then (4.52) in (4.51) gives

^-X\zMz^dzdt = (S-2) f ^°| ^(^-X^zMz^dzdt == (g-2) f ^^-u^tYdzdt.
Jn,\̂  \^ / Jn,^^^)J^s ^ / JO,\Q^(^.O

Substituting this identity along with (4.49) in (4.48), taking the limit
as e -> ̂  ans using (4.50) we finally obtain (4.46) from (4.47).

I ( r )At this point the increasingness of r\—>-^ immediately follows,

whereas that of r h-» (r) follows from the formula

f (^^-dH
N - ( r ) _ U ^ l ^ l 2 " /(.)
N(r) /(r) H(r)

the fact that 7(r) = (^Ir^TT^7^2" (^vergence theorem), and
Jan,. \ r / I •" I

Schwarz's inequality, as in the proof of Theorem 4.2. D

COROLLARY 4.2. — Under the assumption of Theorem 4.3 inequality
(4.44) holds with a constant F given by

F= 2 ( ^exp^2^og2 Ry Vn»«|2

"Kn

^"O^L,"'̂ ""]}
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In particular, nonzero solutions of (4.45) satisfying (1.21) have a finite
order of vanishing at the origin.

COROLLARY 4.3. - Let u be a solution to (4.45) in W and suppose
that u satisfies (1.21). If u vanishes to infinite order at the origin, then
must be u == 0 in H".

Proof. - By Theorem 4.3 and Corollary 4.2 we infer that u = 0 in
0

Q^. Away from the origin the potential V(z,t) = ,-—^v|/(z,0 satisfies
a\z,t)

an estimate of the type | V(z,t)\ ^ C'^(z,t). Since Tu = 0 we can apply
Theorem 1.1 to infer that for some ro > 0 must be u = 0 in
C,Q = { ( Z . O G H " |z |<ro , te R}. However, in the complementary of C^
u is a solution, satisfying (1.21), of the equation

^^i22^'^^'0"^"'
where now Ve L^c(H"\C^). Since the l.h.s. is an elliptic operator in
H^C^, by the unique continuation theorem for elliptic operators with
a bounded potential, see e.g. [GL1], we infer u = 0 in H^Cr . D

We conclude by showing by means of an example that the inverse
0

square potential V(z,t) = -——^^(z,t) represents a threshold for the

results of this paper to hold.
Consider the equation in 0-T

(4.53) - A^nu + ^ c ^t)u == 0,

with 00, £ > 0, and choose n e ̂  such that y—— = -n ̂  ^. If
s s

we look for solutions of (4.53) of the type u(z,t) == f(d(z,t)), then
according to (2.29) / must satisfy the ode

fffw + Q~Tlflw ~ ̂ ££/ = °5 d > °-

Because of the assumption ——— ^ N as in [GL1] one can prove
that the function

g-2 /2./C -£\
(4.54) u(z,t) = d(z,t) £ Ko^[-^—d(z,t) 2 ,

e \ 8 y
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where KQ-^ is the modified Bessel function of the third kind and order

Q - 2
v = ———? is a solution to (4.53). Using the asymptotic behavior of

K^(r) for large positive r, i.e., K^(r) ^ ^ r ~ 1 1 2 e ~ r as r i-> + oo, we see

that (4.54) vanishes to infinite order at the origin. Moreover, since u
depends only on |z| and t we clearly have Tu = 0. This example shows
that the power two is best possible for Theorems 1.1, 1.2, 4.2, and 4.3
and Corollaries 4.1, 4.2 and 4.3 to hold.
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