
ANNALES DE L’INSTITUT FOURIER

YUVAL Z. FLICKER
Regular trace formula and base change for GL(n)

Annales de l’institut Fourier, tome 40, no 1 (1990), p. 1-30
<http://www.numdam.org/item?id=AIF_1990__40_1_1_0>

© Annales de l’institut Fourier, 1990, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1990__40_1_1_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
40, 1 (1990), 1-30

REGULAR TRACE FORMULA
AND BASE CHANGE FOR GL(n}

by Yuval Z. FLICKER (*)

Introduction.

Our aim here is to develop the regular trace formula of [F2] from
the context of GL(2) to that of a reductive group, and use it to give an
elementary proof of the theory of base change for cuspidal automorphic
representations of GL(n) which have a supercuspidal component. Our
motivation is the belief that a formula as fundamental as the trace formula
should be given a simple proof. In [F2] we establish, by means of such
a proof, an asymptotic form of the formula which suffices to prove the
complete base-change theory for GL(2); in fact the method suffices to
establish every lifting theorem involving groups of rank (or twisted rank)
one (see [F5] in the case of the symmetric-square).

As in [FK1], the trace formula proven here holds for test functions
with a supercusp component. At a second place we choose a spherical func-
tion which is sufficiently admissible with respect to the other components
of the test function; the notion of admissibility is introduced prior to Theo-
rem 4 below. The second restriction does not restrict the applicability of
this trace formula to lifting problems, and indeed it is shown in [FK1]
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summer of 1987 when this paper was written is gratefully aknowledged.
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that the simple trace formula developed there can be used to extend the
metaplectic correspondence of [FK] and the simple algebra (or Deligne-
Kazhdan) correspondence of [BDKV] or [Fl; III] from the context of cuspi-
dal representations with two supercuspidal components to that of cuspidal
representations with a single such component.

It is easy to see that the proofs of [FK1] can be adapted to establish
also the base-change lifting for cuspidal GL(n)-modules with a supercus-
pidal component, which is proven here by means of a different technique.

However, in [FK1] the test function is chosen to have a regular com-
ponent at a third non-archimedean place (see the definition following Co-
rollary 3 below; a regular function on GL(n) is supported on the conjugacy
classes of regular split elements whose eigenvalues have distinct valuations).
For example, in the proof of the Ramanujan, or purity conjecture for cuspi-
dal G'L(n)-modules with a supercuspidal component (see [FK2]) we need
a trace formula for a test function whose components are not restricted at
any third place.

Here we develop such a formula on taking the second component to
be a regular - but not spherical - function which is sufficiently admissible
with respect to all other components. We then show that a suitable linear
combination of these regular functions, which annihilates the trace of any
constituent of a reducible unramified principal series representation, has the
same orbital integrals as the corresponding linear combination of spherical
functions. Using the fact that each unramified component of a cuspidal
GL(n)-module is an irreducible principal series GL(n,Fv)-mod\ile, we
derive our applications to the theory of base-change for GL(n} .

It will be interesting to develop (by elementary means) a trace
formula for a test function with a sufficiently admissible regular component,
and arbitrary components elsewhere. This may lead to a simple proof of
the base-change lifting for GL(n}, and metaplectic and simple algebra
correspondences, for an arbitrary cuspidal representation. But we have not
done this as yet.

As noted in [FK1], the simple form of the trace formula of [FK1] and
of the present work are analogous to Deligne's conjecture on the Lefschetz
fixed point formula for a finite flat correspondence on a separated scheme of
finite type over a finite field, which is multiplied by a sufficiently high power
of the Frobenius; see [FK2] for more details. The notion of admissibility
is suggested, at least in the case of GL(2) , by DrinfekTs use of the trace
formula in [D].
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In [F4] we stated a theorem ("fundamental lemma"), asserting the
transfer of stable orbital integrals of spherical functions in the case of base-
change from G(F) to G(E),E/F cyclic extension. The global-type proof
there is incomplete. It is completed in Proposition 24 in a few special cases
(e.g. base-change for GL(n) and for (7(3)). We do not use the Theorem of
[F4] here. In fact, Proposition 25 gives a purely local proof of this claim for
a sufficiently wide class of spherical functions. Recently Clozel proved the
statement claimed in [F4] using his technique of spherical functions (used
in [AC] in the case of base-change for GL(n)). Labesse also proved that
statement, using the technique of Iwahori functions, as in [F4], which he
developed independently of [F4].

Finally, we briefly state here the global and local base-change results
of Theorems 27 and 32 below. The local and complete global results had
been proven by Arthur-Clozel [AC]. Let E / F be a cyclic extension of
global fields, of any characteristic. An irreducible G(A)-module TT is the
product <8)7Ty of local Gy -modules 7Ty which are unramified for almost all
v , where Gv = G(Fy). For G = GL(n), an unramified 7Ty is naturally
associated with an unordered n-tuple t = (ti, . . . , tn) of non-zero complex
numbers, and we write 7Ty(<) for 7Ty. If v is a place of F such that
Ey = E ®F Fv is an unramified cyclic extension of Fy then we say
that the unramified Gv -module 7Ty(t) lifts to the unramified Gy-module
TTv(t') if t1 = t6 , where Gv = G(Ey) and e = [Ey : Fv}. If v splits
completely in E then we say that the Gv-module 7Ty lifts to the Gy-
module 7Ty = 71-1 0 ... (8) TTe if TT^ = TTy for all i(l < i < e); here
Ev = Fv 9 ... © Fv and Gv = Gv x ... x Gy . If v is a place of F
which is unramified in E then the notion of lifting of unramified Gy-
modules is the obvious combination of the definitions in the totally split
and inert unramified cases. Denote by a a generator of the galois group
Gal(E/F). A representation TT of G(A^) or Gv is called a-invariant if
TT ^ ^TT and ^Tr^g) = 7r(<7^). An irreducible G(A)-module TT = (g>7r,; lifts
to an irreducible G(A) = G(A^)-module TT = (S)y^v (product over all
places of -F) if Try lifts to 7Ty for almost all v (where 7Ty and 7Ty are
unramified). Theorem 27 below asserts (cf. [AC]):

GLOBAL BASE-CHANGE THEOREM FOR G = GL(n). — Let w be
a place of F which splits completely in E . Then every cuspidal G-module
TT whose component at w is supercuspidal lifts to a unique cuspidal G-
module TT which is (T-invariant and has a supercuspidal component at w .
Moreover, every a -invariant cuspidal G-module TT whose component at
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w is supercuspidal is a lift of a cuspidal G-module TT , and every other
cuspidal G-module which lifts to TT is of the form TT 0 c, where e is a
character of ^ / F ^ N ^ ; TT <g) e ̂  TT if e is non-trivial.

To state the local result we define, after Lemma 20, the notion of
matching functions fv on Gy and fv on Gv , and say, below Theorem
27, that the irreducible Gv-module Try lifts to the irreducible (7-invariant
6?v-module 7Ty if tr TTv(fv) = tr 7Tv(fv x a) for (a good definition of 7Ty(cr)
and) all matching fy on Gy and /v on Gy . Theorem 32 asserts (cf.
[AC]):

LOCAL BASE-CHANGE THEOREM FOR G = GL(n). — The lifting
defines a surjection from the set of equivalence classes of irreducible
tempered Gy-modules Try to the set of equivalence classes of irreducible
tempered a-invariant Gv-modules 7Ty. It maps discrete Gy -modules to a-
discrete Gv-modules (a-descrete Gy-modules are defined prior to Lemma
28).

The lifting commutes with induction and so this local theorem extends
to the set of relevant (a notion introduced in [FK]; every component of
a cuspidal G-module is relevant), not only tempered, G^-modules. It is
clear from our proofs that if the cuspidal TT lifts to the cuspidal TT then
7Ty lifts to 7Tu for all v . Also it is clear that the global theorem holds with
any, not necessarily totally split, place w , and then it relates (T-invariant
cuspidal TT with a supercuspidal component at w , with cuspidal TT whose
component TT^ at w lifts to a supercuspidal Gw -module. Such TT^ are
obviously supercuspidal. The fibers of the lifting are easily described.

It should also be noted that the base-change theorems are perhaps
easier then the metaplectic and simple algebra correspondences. The two
groups under comparison admit (as was shown by Arthur-Clozel [AC], Thm
III, 3.1; their statement is reproduced as Cor. 6 ' , in [F2], p. 760) a-priori
rigidity and multiplicity one theorems by virtue of Proposition 3.6 of [JS]
(see the proof of Theorem 27). Consequently to establish our theorems
one does not need to know a-priori that given a general fv (resp. fy
with suitable orbital integrals) there exists a matching fv (resp. fv ). This
statement can be deduced from the trace Paley-Wiener theorem of [BDK]
(and [Fl; I, §7] in the twisted case), and the local base-change theorem, or
even purely locally on using the results of [K], which relate orbital integrals
with Fourier transforms of invariant distributions on nilpotent orbits in the
Lie algebra of Gy (if the characteristic is zero). To prove the metaplectic
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and simple-algebra correspondences one gives (in [FK], and [BDKV] or
[Fl; III]) a local proof that matching functions exist, and one concludes
the rigidity and multiplicity one theorems for the metaplectic covers and
inner forms of GL(n) from the comparisons of trace formulae and the
analogous results for GL(n) itself.

The global base-change theorem for GL{n) had been proven in
Arthur-Clozel [AC] in the greater generality of all automorphic GL{n)-
modules, with no restriction at the place w , in the case of characteristic
zero. They also prove the local theorem and the global theorem for TT
with two square-integrable components (one of which is supercuspidal)
by means of the simple trace formula of Deligne-Kazhdan. In this paper
we obtain in particular the strongest global result presently obtainable by
elementary means (without using the theory of Eisenstein series, invariant
trace formula, correction argument of [F3], cancellation of singularities,
orbital integrals of singular classes, etc., which are used in [AC] in a crucial
way to deal with general TT ). We also derive the transfer of orbital integrals
from the local lifting, rather than use it in the proof.

It will be interesting (and I believe possible) to establish the complete
global base-change theorem for GL(n) by means of a simple proof.

1. Regular trace formula.

Let F be a global field, A its ring ofadeles and f\f the ring of finite
adeles, G a connected reductive algebraic group over F with center Z .
The group G of F-rational point on G is discrete in the adele group C?(A)
of G. Put G' = G/Z and G'(f\) = G'(A)/Z(A). The quotient G^G^A)
has finite volume with respect to the unique (up to a scalar multiple)
Haar measure dg on G"(A). Fix a unitary complex-valued character u
of Z\Z(A). For any place v of F let Fy be a completion of F at v ,
and Gv = G(Fy) the group of Fy-points on G . If Fy is non-archimedean,
let Ry denote its ring of integers. For almost all v the group Gy is defined
over Ry , quasi-split over F^ , split over an unramified extension of Fy ,
and Ky = G(Ry) is a maximal compact subgroup. For an infinite set of
places (of positive density) u of -F, the group Gu is split (over Fy,). A
fundamental system of open neighborhoods of 1 in C?(A) consists of the
set of TT Hy x TT Ky , where V is a finite set of places of F and Hy is

v€V v^V
an open subset of Gv , containing 1.
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Let L(G) denote the space of all complex-valued functions <f> on
G\G(f\) which satisfy (1) (f>(zg) = uj(z)(l>(g) ( z in Z(K), g in G'(ft)),
(2) <^ is absolutely square-integrable on G^G'^K). G(f\) acts on £(G)
by right translation: (r(g)(f))(h) = (j){hg); L(C?) is unitary since uj is
unitary. The function (/> in .L(G) is called cuspidal if for each proper
parabolic subgroup P of G over F with unipotent radical N we have
f (f)(ng)dn = 0 (n in N\N(f\) ) for any g in (?(A). Let Lo(G') denote the
space of cuspidal functions in L(G) , and ro the restriction of r to Lo(G) .
The space Lo(G') decomposes as a direct sum with finite multiplicities of
invariant irreducible unitary G'(A)-modules called cuspidal G-modules.

Let / be a complex-valued function on G(F\) with f(g) = uj(z)f(zg)
for z in Z(A), which is supported on the product of Z(f\) and a compact
open neighborhood of 1 in G(A), smooth as a function on the archimedean
part G(Foo) of C?(A), and bi-invariant by an open compact subgroup of
G(f\f) . Fix Haar measures dgv on G^ = Gv/Zy for all v , such that the
product of the volumes \Kv/Zy H Ky\ converges. Then dg = <S>dgy is a
measure on (^'(ft). The convolution operator ro(/) = f^/^ f(9)ro(g)dg
is of trace class; its trace is denoted by tr ro(f) . Then

(1) ^roW^^Tr^rTrCn,

where ^/ indicates the sum over all equivalence classes of cuspidal
representations TT of G(f\), and m(7r) denotes the multiplicity of TT in
Lo(G) ; each TT here is unitary, and the sum is absolutely convergent.

The Selberg trace formula is an alternative expression for (1). To
introduce it we recall the following

DEFINITIONS. — Denote by Z^(H) the centralize! of an element
7 in a group H . A semi-simple element 7 of G is called elliptic if
^(^'(A^/Z^G") has finite volume.

It is called regular if Z^(G'(f\)) is a torus, and singular otherwise.
Let 7 be an elliptic element of G . The orbital integral of f at 7 is defined
to be

^(7J)= f /(g^dg.
G'W/Z^G')

Similarly, for any place v of F the element 7 of Gv is called elliptic if
Z^(G'^} has finite volume, and regular if Z^(Gy) is a torus. If 7 is an
element of G and there is a place v of F such that 7 is elliptic (resp.
regular) in Gy , then 7 is elliptic (resp. regular). The orbital integral of
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fy at 7 in Gy is denned to be

$(7j.) = $(7,A;^) = / Mg^dg.
G'JZ^G'^

It depends on the choice of a Haar measure d^ on Z^{G'^) .

Let {(t>a} be an orthonormal basis for the space Lo(C?). The ope-
rator ro (/) is an integral operator on G' (A) with kernel K^(x,y) =
y^r(/)^(a;)^(y). The operator r(f) is an integral operator on G'{F\)
a,/?

with kernel Kf(x^y} = Y^/(^~17y) (7 in G ' ) . If G is anisotropic
7

(namely G'\G'(f\) is compact), then Lo(G') = L(G) and r = ro. Since
K^(x,y) = Kf(x,y) is smooth in both a; and y , we integrate over the
diagonal x = y in G^A), change the order of summation and integra-
tion as usual, and obtain the Selberg trace formula in the case of compact
quotient, as follows.

1. PROPOSITION. — If G is anisotropic then for every function f
on G(F\) as above we have

(2) ^ m(7r) tr TT(/) = ̂  $(y,/).
{y}

The sum on the left is the same as in (1). The sum on the right is finite; it
ranges over the conjugacy classes of elements in G' .

Remark. — If G is anisotropic, then each element y in G is elliptic.
For a general group G we introduce the following

DEFINITION. — The function f is called discrete if for every x in
G(f\) and y in G we have /(x^yx) = 0 unless y is elliptic regular.

Changing again the order of summation and integration as usual we
obtain the

2. PROPOSITION. — Iff is discrete, then

(3) / ^ / ( x ^ y x ) dx=^ <D(2/J).
•/G'(A) y€G' , {y}

The sum on the right is finite. It ranges over the set of conjugacy classes
of elliptic regular elements in G ' .
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Remark. — It is well known that the sum on the right is finite; for
a proof see [FK], §18 (if G = GL(n)), and [Fl], Prop. 1.3 (in general).

DEFINITION. — The function / is called cuspidal if for every x,y
in G(f\) and every proper F-parabolic subgroup P of G, we have
^JV(A) f^'^y^dn = 0 » where N is the unipotent radical of P .

Let A^ be the ring of F-adeles without component at u. Put
Gu = G(A^). Write / = fnf^ if / is a function on G(A), fu on Gu,
/u on Gu, and f(x,y) = fuW^iy) for a: in G^ and y m Gu. We
say that /u is cuspidal if for every x, y in G^ , and P as above, we have
IN^^^V^^0'

If /n is cuspidal then / = fufu is cuspidal, for any fu .

When / is cuspidal, the convolution operator r(f) factorizes
through the projection on Lo(G) , r(f) is of trace class, tr ro(f) = tr r(f)
and Kf(x,y) = K^{x^y) , and we obtain

3. COROLLARY. — Iff is cuspidal and discrete, then the equality
(2) holds. The sum on the left is as in (1). The sum on the right is as in
(3).

We shall now construct a useful set of discrete functions. Fix a non-
archimedean place u of F such that Gu is split, and the component ujy,
of uj at u is unramified, namely trivial on the multiplicative group R^
of Ru. Put v(x) = \x\ for x in f^ / F ^ . Multiply a; by a power of v
to assume that ujy, = 1. Fix a minimal parabolic subgroup Bu = Ay,Uu
of Gu, where Uu is the unipotent radical of By, and the Levi subgroup
Au is a maximal (split) torus. Let X* = X*(A^) be the lattice of rational
characters on Ay,, and let X, = X^(Au) be the dual lattice. Let A^
be the maximal compact subgroup of Ay,; then X, ^ A^/A^ . If x is
an element of X^ , denote by a(x) an element of Ay. which maps to x
under this isomorphism. Let valy, '- F^- — ^ Z b e the normalized additive
valuation.

DEFINITION. — Consider x in X, with valu(a(a(x))) -^ 0 for
each root a of Ay, on Ny,. A complex-valued locally-constant function fy,
on Gu with fu(zg) == fu(g) tor all g in Gu and z in the center Zy, of
Gy, which is compactly supported module Zu is called x-regular if fu(g)
is zero unless there is z in Zu such that zg is conjugate to an element
a in Au whose image in X^ is x, in which case the normalized orbital
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integral F(g,fy,) = Ay,(g)^(g,fy,) is equal to one. An x-regular function
fy, will be denoted by /x • A regular function is linear combination with
complex coefficients of x-regular functions.

By definition, a regular function is zero on the non-regular set.
For any maximal (proper) F^-parabolic subgroup Py, = MyNy, of

Gu , where Ny, is the unipotent radical of Py, and My, is the Levi subgroup
containing Ay,, let ap^ denote the F^ -valued character on My, defined
by ap^(m) = det[ad(m) | L(Ny,)}. Here L(Ny.) denotes the Lie algebra
of Nu, and ad(m) \ L(Ny,) the adjoint action of m in My, on L(Ny).
For any non-negative integer n let AY- be the set of a in Ay, such that
|i;a^(ap^(a))| < n for some Py,.

DEFINITION. — A regular function fy, is called n-admissible if the
orbital integral $(a,/u) is zero for every a in A^ .

4. THEOREM. — Let /n be a function on Gu which is compactly
supported modulo Z^ = ^(ft^). Then there exists a positive integer
riQ = no(/^) such that for any no-admissible regular function fy, the
function f = fy,fu is discrete.

Proof. — For every maximal F-parabolic subgroup P of G and
every place v 7^ u of F there exists a non-negative integer Cv,p which
depends on /n , with C^,p = 0 for almost all v , such that if 7 lies in a
Levi subgroup M of P and f^^x^^x) ̂  0 for some x m Gu, then
(4) |^(op(7))| < C^p .

Put Cy,,p = Y^CV,P- Since 7 is rational (in G), the product formula
v^u

Vva^y(ap(7)) = 0 on JF^ implies that the inequality (4)^ remains
v

valid also for v = u. Then the theorem follows for no > Cy.,p for all of
the finitely many conjugacy classes of the subgroups P.

5. COROLLARY. — Suppose that f = fy,^ is a cuspidal function,
where fy, is a regular no-admissible function with no = no(/^) • Then the
equality (2) holds, where the sum on the left is as in (1), while the sum on
the right is as in (3).

DEFINITION. — (1) A complex-valued compactly supported func-
tion fy, on Gu/Zu is called spherical if it is Ky-biinvariant. (2) Let Hy,
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be tie convolution algebra of such functions. (3) A spherical function fu is
called n-admissible if the orbital integral $(a, fu) is zero for every regular
a in A^ .

For applications, we need to replace the regular no-admissible compo-
nent fu in the Corollary by a spherical no-admissible component. For this
purpose, we recall basic results concerning spherical and regular functions.
Let T = X*(C) denote the complex torus Hom(X^,CX) . The Weyl group
W of Au in Gu acts on Au, X* , X«, and T . Each t in T defines
a unique Cx-valued character of Bu which is trivial on Nu and on A°^.
The G-u-module I(t) = Ind(61u.'t^Bu,Gu) normalizedly induced from the
character t of Bu is unramified and has a unique unramified irreducible
constituent 7r(t) . We have 7r(t) ^ 7r(t') if and only if t ' = wt for some w
in W . The map t —»• 7r(t) is a bijection from the variety T/W to the set
of unramified irreducible G^-modules. Put t(7r) for the t associated with
such a TT .

If fu is a spherical function then the value of the normalized orbital
integral F(a,fu) = A^(a)$(a,/u) at a regular a in Au depends only on
the W-orbit of the image x of a in X^ ; it is denoted by -F(x, fu). Let
C[X*]^ be the algebra of TV-invariant elements in the group ring C[X*].
The Satake transform fu —> fu = Y^ ^(x,/n)x defines an algebra

x€X,
isomorphism from the convolution algebra Hu of spherical functions, to
CIX,]^. For each x in X,, let /(x) be the element of H,, with
/(xy= ̂  wx.Then /(x) is no-admissible if \valu(ap^(w(a(x))))\ > no

w€W
for every w in W and parabolic subgroup Pu containing Au; as above,
a(x) is an element of Au which maps to x in X* under the isomorphism
Au/A^u ^ X*. A simple computation of the character of an induced
representation yields the following

6. LEMMA. — For every fu in Hu and t in T we have tr(7r(t))(fu)
= tr(I(t))(fu)=fu(t), where fu(t)= ̂  F(x,/^(x) .

x€X*

To study regular functions, note that the normalized TV^-homology
module TT^ (= module of A^-coinvariants in [BZ]) of an admissible Gu-
module TTu with trivial central character, is an A^-module; its character is
denoted by x(^Nn) • A simple application of the Weyl integration formula
and the theorem of Deligne-Casselman [CD] implies the following
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7. LEMMA. — If /x is an x-regular function, then

tr 7r,(/,) == [W]-1 f (A^J)(a) F(a, f^da.
^AU/ZU

Moreover, if <r 7r^(/x) is non-zero, then there exists (i) ^ in T such that
TTu is a constituent of I(t) , and (ii) a subset W^t) of W such that

tr 7r^(/x) = ̂  t(wx) (w in W^t)).
w

Finally, each constituent of I(t) , including 7Tu , has a non-zero vector fixed
by the action of an Iwahori subgroup.

Proof. — (i) follows from Frobenius reciprocity. The final claim is
proven in [B], (4.7), in the case of a reductive group, and in [FK], §17, in
the case of the metaplectic group considered in [FK].

DEFINITION. — (1) Tie spherical function fn and the regular
function ^ are called companions if fu = ̂  c(x, fu)f(x) and (f>u =

x

I^c(x,/^)/x (x in X^/W). (2) A spherical, or regular, function f^, is
x

called solid if tr ^u{fu) = 0 for every irreducible Gn -module 7^ which is
not equivalent to some I(t) .

8. LEMMA. — Suppose that the spherical fu and the regular (f)y,
are solid companions. Then (i) tr -Ku(fu) = tr TT^(^) for every irreducible
Gn -module TTn , (ii) ^(g.fn) = ^(g,(f>n) for every g in Gn .

Proof. — (i) follows from Lemmas 2 and 3, which imply that
tr(I(t))(fn) = tr(I(t))((f)n) for all t ' , (ii) follows from (i) by the density
theorem of [K; Appendix].

9. PROPOSITION. — Let f^ be a cuspidal function on Gu which
is compactly supported modulo Zu . Then there exists a positive integer
no = ^o(V) with the following property. For any nQ-admissible solid
spherical function fu which has a regular solid companion ̂ , the equality
(2) of Proposition 1 holds with the function f = f^ , where the sum on
the left is as in (1) while the sum on the right is as in (3) (of Proposition
^.

This follows at once from Theorem 4, Lemma 8, and Corollary 5.
We shall use Proposition 9 to study lifting problems related to the

group GL(n) . For this purpose we now construct solid companions for this
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group, using results of [BZ]. This construction can be generalized to the
case of any reductive G on using the results of [KL], but we do not do it
here. For Gy, = GL(n,Fn) the torus T is isomorphic to C^71, and I(t)
has a trivial central character if i\... tn = 1 where t = (^ i , . . . , tn) . For
any i , j(l < i / j < n) , put o;^(^) = ti/tj . The result of [BZ] which we
need is the following

10. LEMMA. — The Gu -module I{t) is irreducible if and only if
^jW ^Qu for all i ^ j .

For Gu = GL(n,Fu), Xx is isomorphic to Z71; if t = (^ i , . . . , ^n )
n

lies in T and x = (a:i,... ,a:n) in Xx, then t(x) = TT^1 • Let o^ be
z=i

the element x of X^ with Xk = 0 for fc ^= i,j ; ^ = 1 and a;j = —1.
For any x in X^ we have
(qaij(t) - (q2 + 1) + qaji(t))t(x) = g^(x + a^-) - (g2 + l)t(x) + ̂ (x - tt^).
Consequently, we have the following

11. LEMMA. — TAere exist finitely many Xy. in X^ and integers
Cr such that for every t in T and x in X^ we have

^ Cr ^(X + X,) = n^W - ̂  + 1) + ̂ ^W) ^x) •
r i<j

Proof. — This is obvious on working in the integral group ring
X = Z[X,c] of X^c. In more detail, let X be the quotient of the free
abelian ring generated by the objects a*x with a in Z and x in X^ , by
the relations (a*x) ' (&*y) = (ab)*(x+y) and ( a - t - & ) * x = a * x - h & * x .
Then

JJ(g * Oij - (q2 + 1) * 0 -h q * a^) = ̂ c^ * Xr
i<j r

in X . Given t in T = Hom(X^,CX), define t in Hom(X,C) by
^(a * x + & * y) = a^(x) + &^(y) . Then

^ C^ *(X + Xr) = t(^{Cr * X^) . x)
r r

= t( JJ(g * on, - (q2 + 1) * 0 + q * a,,) | • x)
i<j

F[(gay(t) - (g2 + 1) + gaj.(t)) t(x),
»<.»•
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as required.

Put L(/,) = ̂  crf^ and L(/(x)) = ̂  c,/(x + x,).
r r

12. PROPOSITION. — Suppose that f^ = ^c(x)/(x) is a spAeri-
x

cal function and <^ = ̂  6(x)/x is a regular function sucA that £(/x)

is regular if 6(x) ^ 0,'and b(x) = c(x) for every x in X^. Then
the spherical function £(/„) = ̂ c(x)L(/(x)) and the regular function

X

^(^u) = ^c(x)L(/x) are solid companions.
x

Proof. — This follows at once from Lemmas 10 and 11.

13. COROLLARY. — Let /u be a cuspidal function on Gu which
is compactly supported modulo Z u . Then there exists a positive integer
no = nQ(fu) such that for every no-admissible spherical function fy,,
putting / = .TL(.^) we have that ^$(7,/) fsum as in ((3)) is equal

Wto

E'tr ^(^ = E' ̂ u) tr ^rfn),
TT Tr

where

b^u) = n^^M^)) - (ql + 1) + quaji(t(7Tn))) .
i<j

The sum ̂ ' ranges over the equivalence classes of cuspidal G-modules TT
whose component TT^ is unramified, equivaJent to the irreducible unrami-
Ged Gu -module I(t) with t = t^u) .

This follows at once from Lemma 11 and Proposition 12. Since
G = GL(n) we have that the m(7r) of (1) are equal to one by multiplicity
one theorem for the cuspidal spectrum of GL(n) .

Remark. — We refer to the identity (2) for the function / of
Corollary 5, and in particular for the function / of Proposition 9, as the
reg-uJar trace formula. Corollary 13 is an explicit form of the regular trace
formula in the case of G = GL(n) .

The regular trace formula is a representation theoretic analogue of
Deligne's conjecture on the Lefschetz fixed point formula for the trace
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of a finite flat correspondence on a separated scheme of finite type over
a finite field, which is multiplied by a sufficiently high power of the
Frobenius morphism. Its main application is indeed (1) a comparison with
the Grothendieck fixed point formula, to deduce the purity theorem (or
the Ramanujan conjecture) for cuspidal GL(n)-modules, over a function
field, which have a supercuspidal component, and (2) a comparison with
Deligne^s conjectural fixed point formula, to deduce Drinfeld's reciprocity
law concerning cuspidal C?L(n)-modules and irreducible n-dimensional i-
adic representations of the Weil group of a function field; for details see our
joint work [FK2] with D. Kazhdan.

Here we use the regular trace formula to prove the base-change lifting
theorem for cuspidal C?£(7i)-modules with a supercuspidal component. In
[FK1] we already gave a simple proof of the form of the trace formula,
analogous to Deligne's conjecture, for a test function / with a supercusp
component and a sufficiently admissible spherical component. There we
used a regular component at a third place to annihilate the singular orbital
integrals in the trace formula. This simple trace formula is used in [FK1] to
extend the results of [FK] and [BDKV] or [F; III] to the context of cuspidal
modules with a supercuspidal component. The metaplectic correspondence
of [FK] and the simple-algebra correspondence of [BDKV] or [F; III] are
more difficult to prove then the base-change lifting for GL(n), and it is
easy to see that the methods of [FK1] apply to establish this lifting in the
same context of cuspidal modules with a supercuspidal component.

The proof of the base-change lifting for GL(n) given here is even
simpler. The usage of regular functions, for which the transfer of orbital
integrals is trivial by definition, eliminates the need to compare explicitly
orbital integrals of corresponding spherical functions for the two groups in
question, other than the characteristic functions of the maximal compact
subgroups of these groups. This comparison of orbital integrals of spherical
functions, also referred to as the "fundamental lemma", is not required in
our proof of the base-change lifting. But, as the referee pointed out, this
transfer is implicit in our arguments, at least for a sufficiently large class
of spherical functions.

The regular trace formula of the present work suffices to obtain the
local results of [FK] and [BDKV] or [F; III]. However, the passage (in Pro-
position 12) from regular to spherical function annihilates the constituents
of any induced G^-module I(t) which is reducible. Consequently using
the present regular trace formula we can obtain the global results of [FK1]
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only for cuspidal representations TT of the metaplectic group or the mul-
tiplicative group of a simple algebra which satisfy the unnatural condition
that they have an unramified component ^u which is equivalent to an ir-
reducible I(t) . This condition is automatically held in the case of GL(n) ,
since by [Z], Theorem 9.7, any component of a cuspidal GL(n)-mod\ile is
(non-degerate hence) of the form I(t) if it is unramified.

We hope that sufficiently admissible solid companions regular and
spherical functions can be used to prove a regular trace formula as in
Corollary 13 for / which is not necessarily cuspidal, but have not done
this as yet.

To study the applications of the regular trace formula to the base-
change lifting we establish a twisted analogue of the regular trace formula.
This is our next aim.

2. Base Change Lifting.

We shall now develop a twisted analogue of the regular trace formula
of Chapter I, using the same notations. Thus G is the group of F-rational
points of a connected reductive group G over a global field F . Let a be an
automorphism of G (over F ) of finite order e. Suppose that the character
uj of Z(F\)/Z satisfies ^{a{z}) = u){z) for all z . Then (the group
generated by) a acts on Lo(C?) (and L(G)) by (ro(a)(t>)(g) = ^((r(p))
(resp. (r(a)(f>)(g) •==• (j)(a{g))). An irreducible representation TT of G(f\) is
called a-invariant if it is equivalent to ^TT , where ^^(g) = Tr(a(g)) (the
same definition applies to a Gv -module 7Ty, and TT == ̂ v is a-invariant
if and only if TT-y is ^--invariant for all v). The trace of the operator
ro(f x a) = ro(f)fo(a) is given by

(5) tr ro(/ x a) = ̂  m(7r) tr TT(/ x a) .

Here ^/ ranges over all a-invariant cuspidal representations TT of C?(A),
m(7r) is the multiplicity of TT in Lo(G) , and 7r(/ x a) = 7r(/)7r((r) where
7r((r) is the restriction of ro(a) to the space of TT. The twisted trace
formula is an alternative expression for (5). We shall use the following

DEFINITIONS. — (1) An element 7 of G (resp. Gy ) is called o--
semi-simple if (7 x a)6 = 7o"(7)... o^"^) x 1 is semi-simple as an element
of the connected component G (resp. Gv ) of the identity in the group
G x {a} (resp. Gy x {a} ). (2) Denote by Z/yx^Jf) the centralizer 0/7x0-
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in a group H(= G^, G' or G'(f\) ). (3) A a-semi-simple element 7 in G
(resp. G y ) is called (7-elliptic if Z^(G'(f\))/Z^(G') (resp. Z^(G'))
has finite volume, and <r-regular if Z^x^(G'(A)) (resp. Z^^{G'^)) is a
torus. (4) Tie a -orbital integral off at a a-elliptic 7 is defined to be

^(7X(T,/)= / /^•7-^-1))^.
JG'WIZ^^G'}

The a -orbital integral of fy at a a-elliptic 7 in Gy is defined to be

<1>(7X^/.)= / /^•7-^-1))^;
JG'JZ^^G^) ^

it depends on a choice of a Haar measure d^ on Z^xa(G'y) .

Let {<t>a} be an orthonormal basis for the space Lo(G). The operator
^(f x ^) is an integral operator on G'(A) with kernel

K°f^ V) = E W x a)^){x)^(y) .
a,0

The operator r(/ x a) is an integral operator on G'(A) with kernel

^x.M^Arr-1^-^)) (7 in G').
'7

If G is anisotropic then Lo(G) = L(G) and r = 7*0 . Since K^^(x,y) =
Kfxa(x,y) is smooth in both x and y , we integrate over the diagonal
x = y in G'(A), change the order of summation and integration as usual,
and obtain

14. PROPOSITION. — If G is anisotropic then ^' m(7r) tr 'jr(fxa)
= E ^(7 x a, f) , wAere the last sum ranges over a set of representatives

{7x0}
7 x a for the a-conjugacy classes of elements in G ' .

Here 7 and 6 of G' (resp. G^ ) are called a-conjugate if there
exists a; in G (resp. Gy) such that x^ = ^(rc) in G' (resp. G^,). The
group G may be any reductive connected F-group. Also we say that the
function / is (T-discrete if for every x in G(A) and 7 in G we have that
f(x ' 7 • a(x~1)) is zero unless 7 is cr-elliptic and a-regular. Changing
again the order of summation and integration we obtain

15. PROPOSITION. — Iff is a-discrete then

(6) f ^f(x-^a(x)) dx= E $(7XaJ).
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The sum on the right ranges over the set of a-conjugacy classes of a-elliptic
a -regular elements 7 in G ' .

When / is cuspidal the convolution operator r(/) factorizes through
the projection on Lo(G), tr ro(f x a) = tr r(f x a) and K^y(x,y) =
Kfxa{x,y) . Hence we obtain the following twisted trace formula :

16. COROLLARY. — Iff is cuspidal and a-discrete then we have

(7) ^ m(7r) tr TT(/ x a) = ̂  $(7 x (T, /) .
{7x0}

On the left the sum is as in (5), while the sum on the right is as in (6).

In this paper we use the twisted trace formula in the special case
of base-change. Thus let E / F be a cyclic extension of global fields, and
G a reductive connected F-group. Let GE = ResE/pG be the F-
group obtained from G by restriction of scalars from E to F . Then
GE(F) ^ G(E), GE(f\) ^ G(/\E) where f\a is the ring of F-adeles,
and GF(Fv) ^ G(E^) for every place v of F, where Ey = E (g)p F-y.
Fix a generator (T of Gal(E/F). Then it acts on GE , and Corollary 16
applies to a function / on GE(F\). We shall also denote (^(^-modules
by TT , the fixed character of the center Z^(A) ^ Z(f\a) of (^(A) by c*;,
and elements of GE by 7. To obtain a twisted trace formula analogous
to that of Corollary 5, we fix a non-archimedean place u of F which
splits completely in E such that Gu is split and u^u is unramified.
We may and do assume that Cjy, = 1. Then G^ = Gu x . • . x Gu (e
times), and correspondingly we write 7 = (7i,...,7e) for its elements.
Put 7 = N^ = 71^(72)... (T6-^), and /„ = /i * /2 * • • • * /e if
7u = (A? • • • »/e) is a function on C?^. A simple computation (see, e.g.,
[F3], §1.5) shows that $(7 x ajn} = $(^7,^) for every 7 in G^ . We
conclude the

17. PROPOSITION. — Suppose that f = fuf^ is a cuspidal function
on G(F\E) , where fy, = (/u,/2,.. . , /^), A is a regular no-admissible
function with no = no(/^) ? and /^ is tie characteristic function of an
open compact modulo center subgroup of Ky, (multiplied by a suitable
scalar) such that fu = fu * /S • TAen (7) holds with f replaced by f .

It is easy to check that any regular function fu can be taken to
be biinvariant by an Iwahori subgroup; see [F5]. Then f^ can be taken
to be a scalar multiple of the characteristic function of the product of



18 YUVAL Z. FLICKER

Zy, with the Iwahori subgroup. In particular f^ can be chosen to satisfy
L(fu) * fi = ^(/n) • Proposition 12 then implies the following twisted
analogue of Corollary 13.

18. PROPOSITION. — Suppose that G = GL(n). Lei f^ be a
cuspidal function, on G^ which is compactly supported modulo Z^^
Z(A^)). Then there exists a positive integer no = no^) such that for
every no-admissible spherical function fu on Gy,, putting f = f^L^fu) ,
where fn = (^, f^...,./? and L(fn) = (L(^), ̂ ,..., ̂ ), we Aave that
the sum ^ $(7 x (T, /) of (6) is equal to

{7X<7}

^/ tr 7r(/ x a) = ̂  &(7rJ ^r 7r(.T/, x a) .
7T if

Here ^' ranges over the equivalence classes of cuspidal a-invariant GE-
modules TT wAose component TT^ is of the form TT^ 0... 0 TT^ (e copies),
wiere TT^ is equivalent to an irreducible unramified Gy, -module I(t) , and
b^u) is as defined in Corollary 23.

Proof. — It remains to explain the last assertion, which concerns
Try,. As a G^ -module, TT^ is of the form 71-1 (g) ... 0 TTg . It is easy to
see, as in [F3], §1.5, that ^u is a -invariant if and only if TT^ = 71-1 for all
i(l < i < e) . Moreover, tr ^u(fu x a) =tr ^u{fu} it TT-U - TT^ 0 ... 0 TT^
and /^ = (A,^,...JS) . But then tr 7^(L(/J) = b^n)tr ^{fu) by
Lemma 11, and this is non-zero only if TT^ is equivalent to an unramified
irreducible I(t) , as required.

Remark. — The identity (7) for the function / of Proposition 17
will be referred to as the regular twisted trace formula. Proposition 18 is an
explicit form of the regular twisted trace formula in the case of G = GL(n} ,
which we use below to prove the base-change lifting for this group.

From now on G = GL{n). Our aim is to establish the base-change
theory for this group on comparing the sides of the regular trace formula (2)
and its twisted analogue (7), which involve orbital integrals. We begin with
a comparison of the sets {7} and {7 x a} over which the sums are taken.
Let E / F be a cyclic extension of local or global fields; put G = GL(n, F)
and G=GL(n,E).

DEFINITION. — Given 7 in G put

N7 =7 -^(7) -^(7) • • • • • a 6 - 1 (7).



REGULAR TRACE FORMULA 19

Since ^•(N7) =7~1 • N7 - 7, the elementary divisors pi (re) \p2(x) |... |
pj(x) of the matrix N7, which a priori have coefficients in E , in fact have
coefficients in F . Hence N7 is conjugate to an element N^ of G. Only
the conjugacy class of N^ is determined by 7, and N^ depends only on
the o--conjugacy class of 7.

19. LEMMA. — The norm map N : 7 —>• N^ is an injection from
the set of a-conjugacy classes in G to the set of conjugacy classes in G .

Proof. — We have to show that if N7 and N6 are conjugate in
G then 7 and 6 are cr-conjugate. To recall the proof of [L], §4, put
7 == N7. As noted above we may assume that 7 lies in G . The centralizer
Z^(G) of 7 in G is a reductive F-group; it is the group of invertible
elements in Z^(L(G)), where £(G) = Mn denotes the Lie algebra of
G. The centralizer Z^^(G) of 7 x a in G is the group of F-points
of a reductive F-group Z/yx^(G). We have Z^^(G) C (Z^(G))(E),
and Z/yx<y(G) is an inner form of Z^(G) which splits over E and
is defined by the cocycle Cy = 0^(7) o a ; namely the F-structure on
^yxa(G) is given by a ̂  7<T(a)7~1. The same definitions apply to the Lie
algebras £(G) and £(G); Z^(£(G)) is an F/F-form of Z^(L(G)).
By the Hilbert theorem 90 of [S], Ex. 2, p. 160, we have ^(Ga^E/F),
^-7x<T(G))(£?)) = {0}, and the lemma follows as in [L], §4, from a simple
cocycle computation.

We recall (see [AC], §1, or [L], §4) the following basic properties of
the norm map.

20. LEMMA. — Suppose that F is a global Held. Then 7 in G is
a norm from G if and only if it is a norm from Gv for every place v of
F . (ii) Suppose that E / F is a cyclic extension of local or global fields,
and 7 is an elliptic regular element of G. Then 7 is a norm from G if
and only if det 7 is in N E / F ^ .

To compare the sums of orbital integrals in (2) and (7) we introduce
the following

DEFINITION. — Let v be a place of a global Geld F . Let Uv be
a unitary character of NZy ^ NE^/F^E^ and &v(x) = u;v(Nx) the
associated character of Zy = Z(Ev). Let fv be a smooth f= locally
constant if v is non-archimedean) compactly-supported modulo NZy
function on Gy with fv(^9)(^v(^) = fv(9) ( g in G y , z in N Z y ) . Let
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fv be a smooth compactly supported modulo Zy function on Gy with
fv{zg)Cjv(z} = fv(g) ( g in Gy , z in Zy ). Then fy and fv are called
matching if for every regular 7 in Gy we have $(7,/y) = ^(7 x <^/v) if
7 == N^ , or $(7, /v) =0 if 7 is no^ a norm from Gy .

Remark. — (1) If N^ = 7 is regular then Z;y^(G) ^ Zy(G) are
F-tori in G', and in the definition of $(7 x a,f) and $(7,/) we take
the same measure on Z^^(G) and Z^(G'). The definition of the orbital
integrals and consequently also of the matching functions depend on a
choice of a Haar measure on Gv and on Gy . (2) It is not hard to see that
(i) $(7,/y) is a class function on Gy whose restriction to the regular set
of Gv is smooth, (ii) for any smooth class function h on Gy which is
supported on the regular set there exists an fv supported on the regular
set of Gy with $(7, fv) = ^(7) t011 3'U 7 m Gv . The analogous statement
holds for /„ . Hence it is clear that for every /„ (resp. fv) which is
supported on the regular set of Gy (resp. Gy , and $(7,/z,) == 0 if 7
is not a norm), there exists a matching fv (resp. fv ). Using the results
of [K] it is easy to see that in the case of characteristic zero for every fv
there exists a matching fv , and for every fv with $(7,/i;) = 0 if 7 is
regular but not a norm there exists a matching fv , but this more refined
statement is not needed in our study of base-change for GL(n); as noted
after Theorem 32 below, it is a consequence of [BDK] and the local lifting
theorem. The analogous refined statement plays a key role in the study of
the deeper metaplectic correspondence (see [FK]) and the simple algebra
correspondence (see [BDKV] or [Fl; III]).

DEFINITIONS. — Let v be a non-archimedean place of F which
does not ramify in E . Suppose that ujy is unramified. Let f^ be the
function on Gy with fy(9) = 0 unless g = zk with k in Ky and z
in NZy , where fy(zk) = uJv{z>)~l\Kv\~l. Let f^ be the function on
Gv with fy(g) = 0 unless g = zk with k in Ky and z in Zy where
fS(zk)=^v(z^l\Kv\-l (here Kv=GL(n,Ry}, Ky = C?L(n,^J ).

21. PROPOSITION. — The functions f^ and fy are matching.

Proof. — See Kottwitz [Ko].

We are now ready to compare the trace formulae of (2) and (7) . Let
uj be a unitary character of NZ(F\)/NZ c^ N E / F ^ / ^ E / F ^ ^ ^ , and put
uj(z) = uj{Nz) ; uj is a character of Z(f\)/Z = Z(F\E)/Z(E) .
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Let / = (^fv be a smooth compactly supported modulo NZ(f\)
function on G(A) with f(zg)u;(z) = f(g) (g in G(A), z in TV^A)),
such that fv = f^ for almost all v . Let / = (g)/y be a smooth compactly
supported modulo Z(A) function on G(f\) with f(zg)uj(z) === f(g) ( g in
G'(A), ^ in Z(A)), such that /„ = /^ for almost all v . Suppose that
/„ and fy are matching for all v . At some non-archimedean place w of
F which splits completely in E we take fw to be a supercusp form, and
fw = (fw, fw^""»fw) ^ where /^ is a function supported on the product
of NZw and a neighborhood of 1, such that fw = fw * fw • At some non-
archimedean place u ^ w of F which splits completely in E we take
fu = L(f^), where /^ is any no-admissible spherical function on Gu,
and /^ = (L(f!^), /^,..., /^), as in Proposition 18. Here no depends on
the support of fv and /v for all v ̂  u. Note that / does not transform
under the center Z(F\) of G(A) (as in Corollary 13), but only under its
subgroup NZ(f\) = NZ(f\E) • Since [Z(A) : Z ' NZ(F\)] = e, the effect of
this change is that (2) takes the form

(2') ^/ tr 7r(/) =e^|Z^(G(A))/Z(A)Z^(G)in^(7J.) .
7T {^} V

Here TT ranges over all cuspidal G^-modules such that the restriction of their
central character to NZ(f\) is uj, and 7 ranges over the set of conjugacy
classes of regular elliptic elements in G. Since fy matches some fy for
every v , by virtue of Lemma 20 (1) each 7 which yields a non-zero term
in the sum is a norm from G .

Also we note that / is cuspidal since its component fw is a supercusp
form; hence Corollary 13 applies. The identity (7) takes the form

(7') ̂  tr TT(/ xa) = ̂  |Z^.(6(A))/Z(A)Z^,(G)|;[] $(7 x <r, /,) .
7T W V

The TT and 7 are described in Proposition 18. Since the sums over 7 in
(2') and 7 in (75) are taken over the same sets, and fv,fv are matching
for every v , and Zyx^C?) and Zy(G) are isomorphic if 7 = N ^ , we
conclude

22. PROPOSITION. — For any matching f = (g)/,; and /= (g)/y a5
above we have
(8) ^r7r(/)=e^r7r(/x<r).

W 7T

To derive lifting theorems from this identity we write tr 7r(/) as a
product over all v of tr ^v(fv) ; th^s t^n be done since each of TT = (g)7Ty,
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/ = 0fv and the global measure dg = 0d^v is a product of local
objects. To obtain such factorization in the twisted case we need to
factorize the operator 7r((r). Since TT is cuspidal, it is generic (or non-
degenerate), and can be realized in a space of Whittaker functions W
on G(A) with respect to an additive character ^ = ^ o N E / F °t ^E »
where ^ is a non-trivial character of ft mod. F . Thus each W satisfies
W(ng) = ^( V^ n^i^)W(g) for any upper triangular unipotent matrix

Ki<n

n = (riij) in G'(ft) = G(ft^) and any ^ in G'(fl^). Here TT acts by
Wg)W)(h) = IV(ft^), and 7r(a) acts by (WW)(g) = lV((r(^)). Now
each component Try of TT is also non-degenerate, and can be realized
in the space of Whittaker functions Wy with respect to the component
^ = ̂  o N E ^ / F ^ ot ^ ' The normalization (7Tv(a)Wv)(g) = Wv((r(g)) of
7Tv(cr) satisfies ^(a) = <^v^v(^), hence tr ir(/ x a) = TT <r ̂ (/i; x <r).

i;
Let 7Tu be an irreducible unramified unitary G^-module, and TT^ =

7Tu (8)... 0 TTn . Put c(Tr^) = ̂  ^ ̂ u ( / ' " ' ) , where the sum ranges over all
irreducible G^-modules TT^ such that TT = TT^ 0 TT^ occurs in the sum on
the left of (8). Put c(^u) = ̂  tr ^(f^ x a) , where the sum ranges over
all irreducible G^-modules ^u such that TT = TT^ 0 TT^ occurs in the sum
on the right of (8).

23. PROPOSITION. — For every ^u we Aave c(7rj = c^u) .

Proof. — By virtue of Corollary 13 and Proposition 18 the identity
(8) can be written in the form

(9) ^ b(^)K^) - C(7TJ] tr TTn(fn) = 0 .

Vu

The sum ranges over all (equivalence classes of) unitary unramified irredu-
cible G^-modules TT^ . Theorem 2 of [FK1] implies that

b(^u)(c(^u) - c(7rj) = 0,

since the sum of (9) is absolutely convergent for every spherical fu, and
(9) holds for all no-admissible spherical fu for some no • Since each TT
and TT in (2') and (75) is cuspidal, TT^ is non-degenerate, hence equivalent
to an irreducible induced Gu -module of the form I(t). By Lemma 10 we
have b(7Tu) ̂  0, hence c(^u) = c(iu)» as required.

We need an extension of Proposition 23 from the set which consists of
u to the complement of a finite set of places of F . To state it we introduce
the
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DEFINITION. — Let E^/FV be an unramified cyclic extension of
degree e of non-archimedean local fields. Then we say that (1) the Gy-
module I(t) (resp. ^(t)) lifts to the G^-module i{t') (resp. TT^) ) if
t1 = ^(= (t^ .., t^\ if t = (<i , . . . , tn) ); (2) the spherical functions f^
on Gy and /„ on Gy correspond if tr (^(t))(f^) == tr (7r(^))(/,,) for all
t in T (equivalently, tr (I(t))(fy) = tr (W)(/,,) for all t in T ) .

We also denote by Hy (resp. H y ) the Hecke convolution algebra
of spherical, namely jKv-biinvariant, compactly-supported modulo center,
functions on Gy which transform under Zy by uj^ (resp. A^-biinvariant,
compactly supported modulo NZy , functions on Gy which transform
under NZy by uj^1). Note that the spherical fy (resp. fy ) corresponds to
precisely one spherical /„ (resp. /„ ) by the theory of the Satake transform.

Let v be a place of F . Then Ey = E^pFy = ̂ C.. .CF^ ( e " = e/e'
copies, where e' = [F!, : Fy]). Suppose that Fi/Fy is unramified. Put
G^ = GL(n,F^) . Then we say that the unramified G^-module 7r(<) (resp.
I ( t ) ) lifts to the unramified G^-module TT^') = Tr'^i) 0 ... 0 ^ ' { t e " )
(resp. J(^) = J'(<i) 0 ... <g) r(^)) if ^ = ^ for all i(l < i < e " ) .
The spherical function fy on Gv corresponds to the spherical function
fy = /{ 0... (8) ̂ ,, on G^ if <r (7r(<))(^) = tr (7r(f))(^ x (T) for all t in
T, where 7r(f) = TT^^') 0... ̂ ^l(tel) . For example, if /„ corresponds to
the spherical /^ on G^ , and /^° is the unit element of the Hecke algebra
H^ of C?^ , then /„ corresponds to fy = f, g) f^0 0 ... <g) /^ .

The following Proposition 24 is usually considered to be a crucial
tool in the extension of Proposition 23 alluded to above. The technique of
regular functions permits us below to extend Proposition 23, and complete
the proof of the base-change theorems, without ever using Proposition 24.
In fact Proposition 24 can be deduced from the local lifting theorem as in
Remark (3) in §32 below.

24. PROPOSITON. — If the spherical fy on Gy and fy on Gy are
corresponding then they are matching.

Proof. — This is the special case of G = GL(n) of the Theorem
of [F4]. The proof of that Theorem is incomplete in the generality stated
there. The problem is in the deduction of Lemma 5 from Lemma 4 in §6 of
[F4]. Contrary to the assertion of [F4], p. 141,1. 4-5, it is not the identity
(6.4), but only (6.3), which holds for the unit elements /^,<^ .

To complete the proof of the Theorem of [F4], we need to prove
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Lemma 6.5 of [F4]. By inspection, this Lemma holds in the situation of
base-change from (7(3, E / F ) to C?L(3, E), and the analogous case of
the symmetric-square from SL(2) to PGL(3) . A few general rank cases
where this Lemma holds, are the following. Suppose G = GL(n). In this
case (of base-change for GL(n)) we can work with the Deligne-Kazhdan
trace formula. Then all 7r,7r' of (6.1) are cuspidal. Their local components
are non-degenerate. Hence the unramified components are irreducible full-
induced J(^),J(^), by [Z], (9.7), and Lemma 6.5 holds.

In the analogous case of the metaplectic correspondence of [FK], the
unramified components of the cuspidal TT and TT' are unramified irreducible
full-induced, as noted above in the case of GL(n), and by virtue of
Theorem 16 in [FK] (this theorem establishes a canonical isomorphism of
the Iwahori algebras of GL(n) and its covering group considered in [FK]),
in the case of the metaplectic group of [FK]. In particular the sentence on
lines 3-5, p. 85, of [FK], should be replaced by a reference to Theorem 16
of [FK].

We shall now give a purely local proof, based on Proposition 12, of
a special case of Proposition 24 which suffices for our purposes. We first
fix some notations. Let E / F be an unramified cyclic extension of non-
archimedean local fields, and a) an unramified character of Z . Consider
x = (rci, . . . ,Xn) in X*(^ Z71) with Xi ̂  Xj for all i / j .

DEFINITION. — A locally constant function f on G with f(zg)(jj(z)
= f(g) ( z in Z , g in G ) which is compactly supported modulo Z , is
called x-regular if f(g) is zero unless there is z in Z such that zg is
a-conjugate to an element a in A whose image in X* is x, in which case
the normalized twisted orbital integral F(g x (T, /) = ^(Ng)^(g x (T, /) is
equal to uj(z) . An x-regular function f will be denoted by /x • A regular
function f is an element in the span of the x-regular functions, for all x .

As in the non-twisted case, for each x in X* let /(x) be the
spherical function in H with f(xf = ^^ wx. As in Proposition 12 we

w€W
have in the twisted case that : if / = ̂ ,c(x)f(x) ls a spherical function,
and (j> = ^ fr(x)/x is a regular function such that L(f^) = V^ Cr/x+xr

r
is regular if &(x) / 0, then the following holds. The spherical function
L(/)=^c(x)L(/(x)) and the regular function L(4>) = Y, c(x)L(/x) are
solid companions.
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25. PROPOSITION. — Let HI be the maximum of the absolute
values of the entries of the vectors Xy. of Lemma 11. If f and f are
corresponding ni -admissible spherical functions on G and G then L(f)
and L(f) are matching.

Proof. — Let &* : H -> H be the linear map defined by 6*(/(x)) =
/(ex). It is clear that / and / are corresponding if and only if / = & * / .
By definition, the regular functions /x on G and /ex on G are matching.
Hence L(/) and L(Vf) are matching, for every n\ -admissible spherical
/ o n G , as required.

We shall now return to the extension of Proposition 23 alluded to
above. Let E / F be a cyclic extension of global fields. Let V be a set
of places of F including the archimedean places and those which ramify
in E. At each place v outside V fix an unramified unitary irreducible
Gv -module TT^ . At some place w in V which splits completely in E fix
a supercuspidal Gw -module TT^ , and put TT^ = TT^ 0 ... 0 TT ,̂ .

26. PROPOSITION. — For every v in V let fv and fv be matching
functions on Gv and Gv , such that fw is a matrix coefficient of TT^, . Then
we have

(10) s^ n t r 7rv^ =^11tr 7r^x (T)-
7T V€V 7T VCV

The sum over TT ranges over all a -invariant cuspidal G-modules TT whose
component at w is TT^ and whose component at every v outside V is 7r°, .
The sum over TT ranges over all cuspidal G-modules TT whose component
at w is TT^ and whose component Try at each v outside V lifts to 7r°, .

Proof. — Proposition 23 implies (10) if V is the complement of u.
By virtue of Proposition 25 we also have (9) where u is replaced by any
v outside V , as noted in the proof of Proposition 23. By induction (10)
holds where V is the complement of a finite set. But then Lemma 3 of
[F2], IV, implies the proposition.

DEFINITION. — The irreducible G(F\)-module ?r = ^v^v lifts to
the irreducible G(f\)-module TT = <S)v^v it ^v lifts to Try for almost all
v .

Remark. — For almost all v the components 7Tv and 7Tv are
unramified and so the notion of local lifting is indeed defined.

The following is the global base-change theorem for GL(n) .
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27. THEOREM. — Let E / F be a cyclic extension of global fields,
and w a place of F which splits completely in E . Then every cuspidal
G-module TT whose component at w is supercuspidal lifts to a unique
cuspidal G-module TT ; this TT is a -invariant and has a supercuspidal
component at w. Moreover, every a -invariant cuspidal G-module TT
whose component at w is supercuspidal is a lift of a cuspidal G-module TT;
any other cuspidal G-module which lifts to TT is of the form 7r0c1 (0 < i <
e), where e is a primitive character of Ax which is trivial on FXNF\^,
and TT 0 e1 ̂  TT for all i(l < i < e) .

Proof. — On the right of (10) there is at most one TT by the rigidity
theorem for the cuspidal spectrum of G (see [JS]). By Corollary 6' of
[F2], V, which is an immediate consequence of [JS], Proposition 3.6 (as
was noticed first by Arthur-Clozel [AC], III, 3.1), the sum on the left, over
TT , consists of at most one orbit TT 0 e1 (0 < i < e) under tensoring by
c of cuspidal G^-modules (and each element in the orbit occurs). Since
tr(^v 0 4)(/v) = tr ^v(fv) tor any fv which matches some fv , we
conclude that TT 0 c ̂  TT , and the theorem follows.

From the global base-change theorem we shall now deduce a local
base-change theorem. Let E / F be a cyclic extension of degree e of local
non-archimedean fields.

DEFINITION. — The irreducible G-module TT lifts to the irredu-
cible a -invariant G-mdoule ?r if for some choice of 7r((r) we have
tr 7r(/) = tr jr(f x a) for all matching f on G and f on G.

Remark. — (1) It is clear the TT lifts to at most one TT , and if TT
lifts to TT then TT 0e lifts to TT for every character e of F X / N E X .
(2) If M = ]JM» (Mi = GL(rii,E)) is a Levi subgroup of G and

i

M = TTAfi (Mi = GL(n^F)), and pi is an Mi-module which lifts to
i

an Mi-module pi, then TT = I(<S)ipi^M,G) lifts to TT = I((^ipi',M,G) by
virtue of a standard formula for the character of an induced representation.
In other words, lifting commutes with induction. (3) If the pi are non-
degenerate and pi((r) are the intertwining operators defined using the
Whittaker model of p i , then the normalized operator 7r((r) is the one
obtained by the induction functor from 0pi((r).

DEFINITION. — (1) An irreducible tempered G-module TT is called
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discrete if it is not equivalent to any properly induced G-module. (2) An
irreducible tempered a-invariant G-module TT is called (T-discrete if it
is not equivalent to any G-module properly induced from a a -invariant
representation of a Levi subgroup.

28. LEMMA. — (i) A G-module TT is discrete if and only if it
is square-integrable. (ii) A G-module TT is a-discrete if and only if
TT = /(p^p^.. ̂ aa~lp) where n = ah, and p is a discrete G' = GL(b, E)-
module with at p ̂  p(l $ i < a) and ffa p ^ p .

Proof. — (i) follows from [BZ]. For (ii), since TT is tempered it
is induced from a representation (pi,..., pa) of a Levi subgroup of
type (&i,. . .A), where the pi are discrete. Since ^TT ^ TT we have
(^pi,.. . , apa) = (pi,..., pa) up to permutation, which must be transi-
tive onjl,...,a} since TT is not induced. Up to reordering the indeces
Pi = a% Pi, as required.

DEFINITION. — Let TTO be a a-discrete G-module with central
character u . A locally constant compactly supported modulo Z function
f on G with f(zg)u)(z) = f(g) is called a pseudo-coefficient of TTQ if
tr 7To(/ x a)^= 1 and tr 7r(f x a) = 0 for every tempered a-invariant
irreducible G-module TT with central character uj, which is inequivalent
to TTO .

29. PROPOSITION. — For every a-discrete G-module there exists
a pseudo-coefficient.

Proof. — When E = F this is proven in [K], using the trace Paley-
Wiener theorem of [BDK]. The proof in the twisted case analogously follows
from the twisted variant of the trace PW-theorem (see [Fl], I, §7, or
[R]; a different, in some sense better, proof in the non-twisted and also
twisted case, is now in preparation), which we now recall. Let M be a
Levi subgroup of G. Let Irr^(M) be the set of irreducible cr-invariant
G-modules TT. Let Xa(M) be the group of (necessarily (r-invariant)
unramified characters \ of M. X^(M) has a natural structure of a
complex algebraic variety, isomorphic to C^ , where d = dim Xa(M). It
acts naturally on Jrr^(M) by \: p -^ p <g) ̂  . The twisted trace Paley-
Wiener theorem asserts, in the terminology of [BDK], that the a "good
form" A on Irr^(G) is a "trace form", namely the following.
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30. THEOREM. — Let A be a complex-valued linear form on the
vector space over C spanned by JTT^(G) . Suppose that (1) there exists
an open compact a-invariant subgroup K of G which dominates X, in
the sense that X vanishes on each irreducible a -invariant G-module which
has no K -fixed vector, and (2) for every proper Levi subgroup M and
a-invariant irreducible M-modules p , the function \ ̂  \[I{p^\\M^G)\
is regular on the complex algebraic variety X^(M) . Then there exists a
function f with A(7r) = tr ?r(/ x a) for all TT in JTT^(G).

Given the existence of pseudo-coefficients, the following is easily
proven (see, e.g., [Fl]) using the Deligne-Kazhdan trace formula.

31. PROPOSITION. — Let E' I F ' be a cyclic extension of local
fields and TT' a or-discrete GL(n,E')'module. Then there exists a cyclic
extension E / F of global fields such that F has a place w with Fw = F '
and Ew = E' and every archimedean place of F splits in E . Moreover,
there exists a cuspidal a -invariant G-module TT whose component at w is
V , with the following properties. There are two finite places u, uf which
split completely in E such that Try is unramified for every finite v ̂  n, u ' ,
and TTu is supercuspidal.

Remark. — When E' = F ' Proposition 31 asserts that given a local
TT' there exists a global TT with a component TT' such that TT has the
specified properties.

Given a local TT^ (resp. ^w ) we apply (10) with the TT (resp. TT ) of
Proposition 31. Since tr TTv(fv) = tr 7Tv(fv x ̂ ) f01 matching fy , fy at all
v ̂  w , we conclude the following local base-change theorem for GL(n) .

32. THEOREM. — The lifting defines a surjection from the set of
equivalence classes of irreducible tempered Gv-modules Ti-v to the set of
equivalence classes of irreducible tempered a -invariant Gv-modules Hy .
It maps discrete Gv -modules to a-discrete Gv-modules, and relevant
Gy-modules to relevant a-invariant Gy-modules. The preimage 7Tv of a
supercuspidal TT^ is supercuspidal.

Remark. — Relevant Gv -modules are defined in [FK], §27. Every
component of a cuspidal G-module is relevant, and every tempered G--
module is relevant.

Proof. — For the first assertion it remains to note that each a-
invariant tempered Gv-module Try is induced from a (T-discrete one,
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and the lifting commutes with induction. The last assertion follows from
the Theorem of Deligne [CD], according to which a G^-module TT^ is
supercuspidal if and only if the restriction of its character to any torus
in Gv is compactly supported modulo the center Zy of Gy .

Remark. — (1) It is clear that Theorem 27 holds where w is any
place of F , to assert that the lifting bijects a-invariant cuspidal TT
with a supercuspidal component at w , and orbits of cuspidal TT whose
component TT^ at w lifts to a supercuspidal Gw -module; TT^ is necessarily
supercuspidal. (2) Using the local base-change theorem and the trace PW-
theorem 30 it is easy to deduce (as in [FK], §27) that for every /„ there is
a matching fy , and that for every fy with $(7, A) = 0 if 7 is regular
but not a norm there is a matching fy . As noted in Remark (2) following
Lemma 20 the existence of matching /y and /„ can be proven purely
locally, using [K], in characteristic zero. (3) Using the local base-change
theorem it is easy to deduce Proposition 24 (along the lines of [FK], §27.3),
namely to show that corresponding spherical functions are matching. This
gives an easier proof of the theorem of [F4], but only in the special case of
GL(n).
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