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0. Introduction.

Our main goal in this paper is to describe the geometrical structure
on a complex quasi-Banach space X that is necessary and sufficient for
the following analytical property to hold:

(*) Every bounded X-valued analytic function on the open unit disc
of the complex plane, has boundary limits almost surely.
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This property was first studied by Bukhvalov and Danilevich [BD]
in the context of Banach spaces. They observed that if « analytic » is
replaced by «harmonic» in (*), then the property characterizes those
Banach spaces possessing the so-called « Radon-Nikodym Property »
(R.N.P). This latter class of spaces is now well-known to have a nice
« convex geometrical structure » and that it contains all reflexive spaces
as well as separable duals. (See for instance [DU].)

However, the « analytic case » is more general and concerns a larger
class of spaces. Indeed, it is shown in [BD] that L1 and more generally
all Banach lattices not containing Co also verify (*). More recently,
Haagerup and Pisier [HP] showed that the same holds for preduals of
Von Neuman algebras while in [GMS] the same property is established
for the predual of James-tree space. Another proof of this fact — based
on the methods of this paper — is given in section 3. In [GLM], a
geometric study of those Banach spaces verifying (*) is carried out. In
that case, (*) is known to be equivalent to the « Analytic Radon-
Nikodym Property » (A.R.N.P) : that is ^-valued analytic measures of
bounded variation are differentiable. In other words, these are the spaces
where the vector-valued version of the brothers Riesz theorem holds ;
(see Dowling [D]). The results in [GLM] show that — in a Banach
space setting — there exists a «geometric theory» for the A.R.N.P,
analogous to the R.N.P case Where Phelps' theorem (see [DU]) gives
the existence of strongly exposing linear functionals as opposed to the
strongly exposing plurisubharmonic functions obtained in the « analytic
case ».

However, this « analytic case» is not exclusively a locally convex
problem as the spaces U , H^ and the Schatten classes C13 indicate for
0 < p < 1 (see [A] and [Kl]). Linear functionals are not relevant in
this setting and all what is needed on a quasi-Banach space X to
verify (*) is a « nice plurisubharmonic structure ». Already, Kalton had
shown in [K2], the existence of a plurisubharmonic equivalent quasi-
norm on X as a necessary condition. Since this is trivially not sufficient,
we prove in section 4 that (*) holds if and only if, in addition to the
plurisubharmonicity of the quasi-norm, all closed bounded subsets of
X have strong barrier points i.e. points where plurisubharmonic functions
strongly expose the set in question.

The proofs rely on martingale techniques, mostly the analytic
martingales introduced by Davis et al. [DGT]. As shown by Edgar [E2],
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these are « reasonable discrete approximations » for the processes that
are images of complex Brownian motion by X- valued analytic functions.
We shall actually show that in this setting, all bounded J^-valued
plurisubharmonic martingales converge almost surely : a result obtained
recently by Bu-Schachermayer [BS] in the Banach space case, via
different methods. This leads naturally to an integral representation
result in terms of Jensen boundary measures, which is the « complex »
counterpart of the non-compact but convex Choquet theorem established
by Edgar [E3].

Section 1 contains the basic definitions. In section 2, we discuss the
various notions of plurisubharmonic envelopes for functions and sets.
In section 3, we exhibit some properties of plurisubharmonic martingales
and holomorphic mappings that are relevant for showing that certain
spaces verify (*). Section 4 begins with the « complex structure » of the
compact subsets of a quasi-Banach space X equipped with a
plurisubharmonic quasi-norm. The — well known — topological methods
used there are worth comparing to the martingale techniques employed
in the second part of the section where the non-compact case is
considered. The main result being the existence of barrier points in all
closed bounded subsets of spaces verifying (*). It is actually shown that
any bounded upper semi-continuous function on such a set has arbitrarily
small plurisubharmonic perturbations that are strongly exposing. This
is then used to prove the convergence of bounded Jf-valued PSH
martingales. In section 5 we give a « descriptive set-theoretical »
representation of the unit ball of X in a compactification that is
compatible with the plurisubharmonic — but not the linear - structure
of X. This representation yields - among other things - another
proof of the convergence of PW-martingales announced above. In an
appendix, we include a general result about «embedding» such
martingales in analytic functions, which might illuminate the connections
between these concepts.

We would like to thank C. Le Merdy and P. Rauch from the
Universite Paris VI for « cleaning up » a first draft of this paper from
numerous errors. This paper also benefited greatly from several discussions
with W. Schachermayer and its final form is definitely indebted to the
feedback from [GMS] on which the three of us worked in the meantime.
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1. Definitions and preliminaries.

Throughout this paper all vector spaces are assumed to be on the
complex field. If X is a vector space, a map x -»- ||x|| from X into R+

is called a quasi-norm i f :
(i) ||x|| > 0 when x ^ 0

(ii) ||ouc|| == |a|||x||, for oceC , x e X
(iii) H x i + X z l l ^ C(||xi||+||x2||) for all X i , x ^ e X . Here C is a constant

larger or equal to one.

We call || || a p-norm for 0 < p ^ 1, if in addition it is p-subadditive,
that is

(iv) Hxi+x^r ^ llxir + ll^r, for xi, x , e X .

Note that the Aoki-Rolewicz theorem [KPR] asserts that every quasi-
norm is equivalent to a p-norm for somep(0<p^l). If (X,\\ ||) is
complete we say it is a quasi-Banach space and if it has a p-subadditive
quasi-norm we say it is a p-Banach space.

An upper-semi-continuous function (p : X-> [—oo, + oo) is called
plurisubharmonic if for every x , y eX,

[2?c JQ

Ĵo
(p(x)^ q>(x+^)—-

271

We denote by PSH(X) the space of all such functions. If the quasi-
norm || || on X is plurisubharmonic then X is called PL-convex by
Davis, Garling and Tomczak-Jaegermann [DGT]. If X can be equivalently
normed with a plurisubharmonic quasi-norm, then we shall follow
Kalton [Kl] and say that X is A-convex. (The terms locally pseudo-
convex and locally holomorphic have been used by Peetre [P] and
Alexandrov [A] respectively.)

A recent result of Kalton [Kl] shows that an ^4-convex quasi-Banach
space has an equivalent quasi-norm which is both plurisubharmonic
and p-subadditive for some 0 < p ^ 1. We shall say that such a space
is (A—p) convex. Note that Lp and Cp(0<p<l) are (A—p) convex
(Etter [Et] and Kalton [Kl]) while L F / H ? is not ^-convex (Alexan-
drov [A]). It is clear that all Banach spaces are (^-l)-convex since the
norm is then convex and subadditive.
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Let now A = {zeCJz |< l} be th^ open unit disc and denote by <9A
or T the unit circle {z e C;|z|== 1}. An X-valued holomorphic (or analytic)
function on A will be a function of the form

CC

/(z) = Z ^n^ where \z\ < 1, x^e X and lim sup HxJI^ ^ 1.
n^G n

For 0 < p < oo, let^(A,;n be the space of holomorphic functions
such that:

/ ^ pTi \l/p

ii/ll^w == sup — Wre^dQ < oo .^^v^jo 7
For j ? = o o , we let H^^X) be the space of such functions

verifying :
\\f\\H^{X) = SUp ||/(Z)|| < 00 .

|zl< 1

We shall also consider the Nevannlina class N(^X) consisting of
those holomorphic functions verifying :

i r271
WN(X) = sup — k^ ||/(^^)|| dQ < oo .

0 ^ r < l ZTCJo

It is clear that H^{X) c= H13 (X) c: ^^W c N(X) i f 0 < q ^ p < + w
and if |[ || is plurisubharmonic. We say that / has radial limit a.s. if
for almost all 9 e [0,27i], lim /(r^9) exists in A".

rf l

Let now (^)^ be Brownian motion in R2 == C starting at 0. Let
^ = 1 - 2-/c and define the stopping times

T, == i n f{ r>0 ; W,\^r,}, T^ = inf{r>0; |^ ^1}

so that T^Too and T^< oo a.s. The close connection between the radial
limits of / in H^^X) and the convergence of the process (f(W, ))„
is well known in the finite dimensional case [Du]. The same connections
hold in infinite dimensional Banach spaces (Edgar [E2]). We shall recall
these facts in Section 2 while dealing with quasi-Banach spaces.

We will also need the concept of Analytic martingales introduced by
Davis, Garling and Tomczak [DGT]. This is a sequence of Z-valued
random variables (FJ^o defined on Q = [0,271^ of the form :

n

W) = E fk(Qi,Q2, • • • A-i)e16* where 9 = (9,,Q,, . ..) belongs to 0
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and such that the coefficients/^: [O^Ti]^"1 -> X are ^-valued random
variables.

In the case where X is a Banach space, Dowling [D] showed that
functions in ^(A,^) have radial limits a.s. if and only if X- valued
analytic measures of bounded variation on 3A are differentiable. (Recall
that the analytic measures are those n defined on the Borel a-field of

i r271 -•cA, whose negative Fourier coefficients, [i(n) = — e lnt d[i(t), n<0
271 Jo

are zero.) Such spaces are then said to have the Analytic Radon-
NikodymProperty (A.R.N.P). The connection with the above stems
from the following correspondence: if |LI is an analytic measure on <9A,
then its «harmonic extension» to A defined by (^^(re^) =

^J^(e-t)^) is analytic. Here P^t) = y-̂ î'

0 ^ r < 1, r e R is the Poisson kernel. We shall use the classical fact
that if Brownian motion starts at a point Zo = re^ in A, then the
distribution of W^ on 5A will have density P^ = Pr. (See [Du] p. 36.)

2. Plurisubharmonic envelopes and hulls.

Let (X, || ||) be a quasi-normed vector space and \et ^>: X -> R u {— 00}
be an upper semi-continuous function that is bounded above on bounded
sets. Set (po = cp and define for each n > 0, the function :

r r271 /^o i
(p,^(x) = inf (p,(x+^)—i;e^.

Uo 2n )

The sequence (cp^ decreases pointwise to a function (p that we
shall call the plurisubharmonic envelope of (p since it is shown in [El]
that cp is the largest plurisubharmonic function less or equal to (p.

We are interested here in the case where the function (p is Holder-
continuous of order p(0<p^l) . We denote by LIPp(X) the set of
functions (p on X verifying |(p(x)-(p(y)| ^ K^x-y^ for some K> 0
and for all x, y in X. The following class of functions will also be
relevant to our study : denote by UC(X) the class of all functions that
are bounded and uniformly continuous on the bounded sets of X. We
shall write PSHp(X) for PSH(X) n LIPp(X) and PSH^X) for
PSH(X) n UC(X). The cone of plurisubharmonic and continuous
functions on X will be denoted by PSHc(X).
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In the sequel, the space PSHp(X) will be equipped with the following
norm: for (p e PSHp^X), we let

||(p||p = max{|(p(0)| ,sup{|(p(x)-(p(^)|/ | |x-^| |^;x^^}}.

We summarize in the following lemmas the properties of the envelope
that will be needed later on :

LEMMA 2.1. — Let (p be a function in LIPp(X) such that (p is not
identically — oo, then :

a) (p is the largest function in PSH(X) that is smaller or equal to
( p . Moreover (p belongs to PSHp(X).

b) For each n,(p^(x) = inf£'[(p(x +Un)] where the infimum is taken
over all analytic martingales (^7/c)?=o with UQ = 0 and whose coefficients
are finitely valued in X.

F271 /^A
c) For each x eX, (p(x) = inf (p(P(^8))— where the infimum is

Jo 2K

taken over all polynomials P : C -> X such that P(0) = x.

Proof. — a) Suppose \|/ e PSHp(X) and v|/ ^ (|), it is clear that
\|/ ^ cp,, ^ (p for each n. On the other hand if x, y belong to X, we
have for each e > 0 a v in X so that:

C271 JA
(pi(x) - (pi(}0 ^ (pi(x) - ^(y-^-e^v)— 4- s.

Jo 2n

It follows that:

r271 /7fl
(pi(x)^- cpi(^) ^ [(p(x4-^) - (p(^+A)]— + £ ^ K^x-y^ + £,

Jo 27r

where K is the Lipschitz constant of (p. An easy induction implies that
( ^ e P S H p W .

b) was proved in [El] in the case where X is separable-- but (p was
only upper semi-continuous. If (p^e UC(X) for each n — in particular
when (p e LIPp(X) — the separability assumption is not needed as the
following sketch shows : indeed, assume the formula in b) is true for
n — 1. Fix x G X and £ > 0. Choose v e X so that

r271 do-fJo
<Pn(x) < (p^i^+e'^)^ + e/2.

Jo IK
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Let Pi have the uniform distribution on the circle
C = {x-^-e^v ; 0^9^27i]. To get the formula for n , it is enough to
choose measurably for each 9, an analytic martingale (F^)^i with
Fi(9) = x + e% and (p,_i(;c+A) ^ ^[(p(F,)] + s/2. The analytic
martingale (^)^o with Fo == ^ will clearly verify (p^(x) ^ £'[(p(^)] + £.

To avoid the use of selection theorems which require the separability
of the space, we can use the following observation to make the selec-
tion finite: suppose (pn-i(z) ^ £'[(p(z+£/)] + e. Choose p > 0 so that
if \\z-z'\\ ^ p and z ' e C then ^^,(z)-^^,(zf)\ <^ s and
^(z)-^(z')\\ ^ 8 . We then get for such z ' e C ,

(p^-^) ^ (p,-i(z) + e ^ ^[<p(z+(7)] + 2s ^ £[(p(z'+<7)] + 3s.

It follows that the same random variable U can be used to realize
an approximation for both z and z provided they are close enough.
The details of the proof as well as the fact that the coefficients can be
chosen to be « step functions » are left to the interested reader.

c) was proved by Kalton [Kl] in the case (p(x) == ||^||^ for some
p-norm || | |(0<p^l). It also follows from b) and the correspondence
between analytic martingales and analytic functions established in the
Appendix. D

In many cases, we shall consider the envelopes of functions which
are not in LIPp(X) but there p^-power are, such as (p(x) = ||x|| or if
(p is the distance function to a given set, provided of course, the space
is j?-normed. Here are some properties of the envelopes of such
functions :

LEMMA 2.2. — Let (p be a positive function such that ^p e LIPp(X) for
some 0 < p ^ 1 . Then for each n ^ 0, (p^ belongs to UC(X) and (p
belongs to PSH^X).

Proof. - Write (p =/a where a = 1/p ^ 1 and feLIPp(X). Let x,
h e X and consider a random variable U. Apply the following two
elementary inequalities: for all a, b in R+ and a ^ 1 ;
la'-fc3 ^a\a-b maxdfl]01"1, |b[01-1) and for all a, k and p > 0,
(a+Kf ̂  ̂  + ^(|fe|+|fc|p)(l+^), to obtain:

£'[(p(x4-/z+^)-(p(x+£/)] ^ a||/^||p£'[/(x+(7)a-l

+^-l(||^||p+||^||^(a-l))(l+/(x+C/)a-l)].



PLURISUBHARMONIC MARTINGALES 1015

By Holder's inequality, we get:

(*) £[(p(x+h+^)-(p(x+£/)] ̂  ̂ WW^x+U)^

+^-1(11/111^ ̂ ^-^(l+^cpCx+^M].

Suppose now we have for some x e X and e > 0, a vector v so that
i r271

<PiOO ^ — (p(x + e^v) + e. By applying (*) to the uniform distribution
^Jo

on the circle we obtain

9l(x+A)-(pl(x)^a||fo^(pl(x)v+^,(||^||^||^^<a-l>)(l+9,(x)^

This coupled with the fact that 0 ^ (pi ^ (p implies that (pi 6 UC(X).
An immediate induction gives that (?„ e [/C(JT) for all n and that
(pePSH^X).

Remark 2.3. — a) The above proof actually uses the easy fact
that if (p is positive and verifies for all x, heX,
(p(x+n) - (p(x) ^ o)(||h||){l+(p(x)], where co is any modulus of conti-
nuity, then the same will hold for (p.

b) Note that the proof of Lemma 2.1b and the result in Lemma 2.2
give that if (p ^ 0 and ^ e LIPp(X) for some 0 < p ^ 1, then
<p(x) = mf E[^>(Fn)] where the infimum is taken over all analytic
martingales (F^)n starting at x. D

Let now C be a subset of X and denote by LIP^C) the class of
all normalized p-Holder-continuous functions on C, that is
(peL/Pj,(C) if |(p(x)-(p(}0| < ^x-y^ for all x, y e C . When C= X
we denote by PSH^X) the set PSH(X) n LIP^X). The next lemma
deals with "maximal" extensions of elements in LIP^(C) to functions
that are p-Holder-continuous on the whole space X.

LEMMA 2.4. — Suppose X is a p-normed space for some p (0<p^l ) .
For cp in LZP^(C), define cp by (p(x) == inf {(p(j) +|ly-x||p ; ̂  e C} /or
eacft x m A^. TTien :

a) (p = (p on C and (p 6 LIPp(X).

b) 7f \|/ e LIP^(X) and \|/ < (p on C, tnen v)/ ^ 9 on JT.

c) Tjf (p nfl5 an extension in PSH^X), then (p = 9 is tn^ largest
extension of (p fn PSHp(X).
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Proof. — a) and b) follow immediately from the p-subadditivity of
the norm. For c) note that if \|/eZJP^(T) and v|/ = cp on C, then
\)/ ^ (p on X by b) and if \|/ e PSH^X) then \|/ ^ $ ^ (p on X by
Lemma 2.1. It follows that (p = ^ on C. D

Denote now by PSH^C) the set of all functions on C admitting
extensions in PSH^X). If we equip these spaces with the distance of
uniform convergence on C (resp. X) it is easy to see that the map
(p -> (p defines an isometric embedding from PSHp(C) to PSH^X). In
other words, for any (pi, (pa in PSHp(C) we have:

SUp |((pi-(p2)(x)| = SUp |((pi-(p2)(c)| = rf( (pi , (p2) .
;ceX ce C

It follows that (PSH])(C), d) is a complete metric space.

Finally we define PSHp(C) to be the closure of |j nPSHp(C) for
n=l

the metric d, i.e. those functions on C which can be approximated
uniformly on C by functions which are restrictions on C of functions
in PSHp(X). It is clear that PSHp(C) is a closed convex cone.

We now discuss the notions of plurisubharmonic hull of a subset
A of X. For that denote by d^ the distance function to A that is
dA^x) = mf{\\y-x\\,yeA}. We shall say that the set
A == [x E X \d^(x)=Q} is the plurisubharmonic hull of A. One can easily
verify the following observations :

PROPOSITION 2.5. — Let A be a subset of a quasi-normed space X.
Then

(a) A c: A.

(b) A vector x belongs to A if and only if for each £ > 0, there
exists an analytic martingale (F^^o with Fo = x and E[d^(Fn)} < 6.

(c) The plurisubharmonic hull is not altered by an equivalent renorming
of X.

On the other hand, for any subset Jf c PSH(X), we can define
the ^-hull of A to be :

A^ = {x e X; (p(.x;) < sup (p for all (p e J^}.
A
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The cases we are concerned with are Jf = PSH^(X) and
Jf == PSHp(X). It is clear that if ^i c: ̂  then i^ c: i^.

PROPOSITION 2.6. — Z^r A be a subset of a p-normed quasi-Banach
space X(fi<p^:l). For a vector x in X, the following conditions are
equivalent :

(i) x e ApsHp.

(ii) dW = 0 .
(iii) For each s > 0, there exists an analytic martingale (F^^o mth

F, = x and E^Fn)} ̂  8.
(iv) For each s > 0, there exists a polynomial P : C -^ X such that

P(0) = x and E[dWW,J)] ^ 8 .
Moreover, if A is compact the above are then equivalent to

(v) There exists a Radon probability measure [i supported on A such

that cp(x) ^ (p d\ji for all (p in PSHp(X).

Proof. - i) => ii) x e Apsn implies that there is no (p e PSHp(X) so
that (p ^ 0 on A and <p(x) > 0. This means that there is no (p e PSHp(X)
with (p ^ d\ and (p(x) > 0. Lemma 2.1.a then implies that
0 ^ d^x) ^ 0.

ii)=>i) If (p ^ 0 on A and ^>ePSHp(X), then (p ^ d^ on JT by
Lemma 2.4.b. Hence (p ^ rf^ o11 ^ and (p(x) ^ 0.

(ii), (iii) and (iv) are readily equivalent in view of Lemma 2.1. Also
note that (v) always implies (i).

To prove that (i) => (v) consider the set

^ = {ue C(A);3^ePSHp(X), (p(x)==0 and (p<M on A},

where C(A) is the space of continuous functions on A. Note that %
is a convex cone that contains C+(A). Moreover, the hypothesis i)
implies that the constant function -1 does not belong to the closure of
^. By Hahn-Banach theorem, if A is compact there exists a Radon

f
measure [i on A such that \u d[i ^ 0 for all u ^°U and — [x(A) < 0.

Since ^ =3 C+(A), [i is positive and since [i(A) ^ 0, v = [t(A)~1 ^ is
a Radon probability measure on A. Moreover, if (p e PSHp(X), (p — (p(x)
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r
restricted to A belongs to %, hence (q)-(p(x)) dv ^ 0 and ^>(x)

^ (prfv.
J D

The following proposition clarifies the relations between the various
types of plurisubharmonic hulls.

PROPOSITION 2.7. - Let C be a bounded subset of an A-convex quasi-
Banach space X and let x be an element in X. The following conditions
are then equivalent :

(i) x e C.
(ii) x e H CpsH^

0<p^l

(iii) There exists q(0<q^l) such that X is (A-q) convex and
X E CpsH -

(iv) x e CpsH^.

Proof. - (i) ==> (ii) If 0 ^ (p ^ d^, (p e PSH(X) and 0 < p ^ 1, we
have 0 ^ (p^ ^ dc and (p^ e PSH(X). It follows that ^ ^ (d^ and
C c CpsHp for all 0 < p ^ 1.

(ii) ==> (iii) is immediate in view of the result of Kalton [Kl] mentioned
in section 1 about the existence of an equivalent ^-norm that is also
plurisubharmonic.

(iii) => (iv) Assume || [|9 is plurisubharmonic and subadditive. Without
loss of generality we can suppose that 0 e C and C c: {z e X,\\z\\^l} = B.
We shall first show the following
claim : If ||z||9 ^ 2 then d^z) ^ 2^(z).

Indeed, first note that for each z in B we have
iijT ^ l l^-z l l ' + l lzr ^ l l ^ - z l l 9 + 1. Hence [|^||9 ^ d^y) + 1 and
since y -^ ^y^ is plurisubharmonic we have ||^||9 ^ d^y) + 1 for all
y in X. On the other hand d^y) ^ d^y) ^ d^y) ^ ||^||^ for all y ,
hence if z is such that ||z||9 ^ 2, we get: d^z) ^ ||z||9 ^ ||z[|9

+ (Hzir-2) = 2(||z[|9-l) < 2rfi(z) and the claim is proved.

Suppose now d^x) = 0. For each 8 > 0 there exists by Prop. 2.6
(iv) an ^-valued polynomial P on C such that P(0) = x and
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E{dqcQP(W^ )] ^ s. Let T be the stopping time defined by

+ oo if sup||F,(co)||9 < 2
T(O))=

( inf{r;||F,(w)||^2} otherwise

where (F^) is the martingale (P(PF^T ))<.

Let Q, == {T< 00} and note that on Q.,, ||FJ|9 = 2 since the martingale
(F^ is continuous. Hence ^(F,) ^ 2rf|(F,) by the claim.

Since 3^ is plurisubharmonic we get on 0.^:

^Wx) < W,) ̂  E[di(F^\F,] ^ F[^x)l^].

Since F^ == Fy, outside D^ we obtain :

EWW] < lEW^)] ^ 28 and P^^F.) >^£]^2^8.

Suppose now (p is in PSH^cW such that (p ^ 0 on C. There
exists M > 0 so that ||^||9 ^ 2 => | (p (0) - (p (y) | ^ M hence
(p(^) ^ (p(^) - (p(0) ^ M.

Fix now T| > 0. Since (p e (7C(JT), we can find s > 0 so that
^x-y^ ^ 2^/e implies |(p(x)-(p(^)| ^ T| . For each co, find Z(co) e C
so that IIF^cot-ZOB)^ ^ d^(F,(co)) + ^/s. It follows that on the set
{co; ^(F,(o));Ky£} we have (p(F,) < (p(F,) - (p(Z) ^ r| since
IIF.-ZH^ ^ 2^/e. We finally obtain F[(p(F,)] ^ T| + 2^/eM and since
(p ePSH(X), (p(x) ^ F[(p(F,)] ^ TI + 2^/sM. Hence (p(x) ^ 0 and
x e CpsH^ •

(iv) => (i) It is enough to notice that d^ is in LIPp(X) for some
p(0<p^l) , hence dcePSH^(X) by Lemma 2.2.

We shall say that a subset C of A" is PSH-convex if C = C. On
the other hand, say that x is a Jensen barycenter of a probability

f
measure p, if (p(x) ^ (p ^p, for all ()> e PSHuc(X). In this case ^ is said
to be a Jensen measure representing x . We then say that C is J-convex
if the barycenter of any Jensen probability measure supported on C,
belongs to C. The following proposition follows immediately from the
above.
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PROPOSITION 2.8. — Let C be a closed bounded subset of am A-cowex
quasi-Banach space X . The following conditions are equivalent :

(i) C is PSH-convex.
(ii) For any p(0<p^l) such that X is p-normed, there exists a family

(<Pa)ae/ of functions in PSHp{X) such that C = Q {x e jf;^(x)^0}.
a e Z

Moreover, any of the above conditions implies
(iii) C i5 J-convex.

If C is compact then (iii) => (i).

3. Analytic functions, PtW-martingales
and Holomorphic injections.

Let (0,1, jP) be a probability space and let (Sra)n be an increasing
sequence of sub-a-fields of S. Suppose X is a quasi-normed space, and
let (F^)n be a sequence of J^-valued p-integrable (for some p > 0)
random variables such that 7\ is 2^-measurable for each n. We shall
say that (Fn,^n)n ls a PSH-martingale if for every (p GPSH^c(X),
cp ^ 0, the sequence (cp(F^))^ is a real-valued submartingale : that is
r r^(Fn)dP ^ (p(F^+i)^P for every n and any ^4e2^.

JA JA

It is clear that an analytic martingale is a PSH-martingale. Moreover^
(/(^))n is a P577-martingale whenever feH^^X). Note that PS^
martingales are martingales when X is a Banach space since continuous
linear functionals are Lipschitz harmonic functions on X and separate
the points of X. Note that in the quasi-Banach case, it is not possible
in general to define vector-valued conditional expectation operators and
hence martingales.

We shall say that (Fn)n is a closed PSH-martingale if there exists a
^-integrable (p > 0) J^-valued random variable F such that for every

^ e l j E ^ , we have: lim (p(FJAP== (p(F)AP for every (p in
n n JA JA

PSH^X).

We shall need the following :

LEMMA 3.1. — Let X be a separable A'convex quasi-Banach space.
Then there exists a countable family ((pw)m m PSHp(X) for some
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0 < p ^ 1 w^h the following property :• whenever ((y^n^y) ls a sequence
in X that verifies lim (p^(}^)==(p^(j)/or each m, then lim | | ^^—^ | |==0 .

n n

Proof. — Let || || be an equivalent plurisubharmonic p-norm on
Z(0<p<l). Let (Xm)m be a dense sequence in X with XQ ^ 0. It is
dear that the sequence of functions ((pm)m defined by (p^(x) == ^x—y^
for x e X will do the job.

We can deduce the following :

PROPOSITION 3.2. — Let X be an A-convex quasi-Banach space. Then
every closed PSH-martingale converges a.s.

Proof. — Let {Fn,F} be an X- valued uniformly bounded closed
P^^-martingale. Since it is almost surely separably valued, we can
assume that X is separable. Apply Lemma 3.1 to find suitable
plurisubharmonic functions (^m)m • Note that for each m, (p^(-Fn) -> (p^(F)
a.s. outside a set Q^ of measure 0. We then get lim \\Fn~F\\ = 0 outside

n

0° ^ [j DOT which is also of measure zero.
m

PROPOSITION 3.3. — Let X be an A-convex quasi-Banach space. Then
a function f in H^^X) has radial limits a.s. if and only if (f{W^ ))„
is a closed PSH-martingale.

Proof. — Assume g(e18) = lim f^re^) exists for almost all 9. For
^i

any (p e PSH^X), (po/ is a subharmonic function on A, hence by
the one-dimensional complex case (see [Du] p. 105]) ((p Q f(W^)n
converges a.s. to (p o g(W^ ) hence (f(W^ ))„ is a closed PSH-martingale.

For the converse assume (f{W^ ))„ converges a.s. to an Z-valued
random variable F. Again from the one-dimensional case we get that
for any (p e PSHc(X), (po/(^^) converges a.s. to k(W^^) where k
denotes the boundary limit of (po/. Hence < p o F = k{W^ ) a.s. By
applying this to the sequence (^m)m given by Lemma 3.1, we obtain
that F is measurable for the a-field generated by W^ , hence there
exists a measurable g : T -> X such that F = g o W^ . Moreover,
lim (p^ o/(r^10) = cp^o^(^19) for almost all 9 and all m, hence by
m
Lemma 3.1, lim f(re^) = g^) a.s.

rf l
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Another way to construct the candidate for the boundary limit g
of / is to argue that for almost all O e T , (/(H^? ))n also converges
when n -> oo, where (F^?)( is Brownian motion starting at 0 and
conditioned to exit A at e^ ([Du] p. 94). It is then enough to
setg(eiQ)= limf(W^). D

n-»x

The following proposition is known in the Banach space setting
([D], [E2]). We shall only indicate how the proofs can be adapted to
the quasi-normed case, just to emphasize the role of ^4-convexity.

PROPOSITION 3.4. — Let X be a quasi-Banach space. The following
conditions are then equivalent :

1) Every function f in H^^AyX) has radial limits a.s.
2) Every function f in 7V (A, A") has radial limits a.s.
3) X is (A-p) convex for some p(0<p^l) and all X-valued Lp-bounded

analytic martingales converge a.s.

Proof. - 1) => 2) By a result of Kalton [K2], 1) implies that X is
A -con vex. That is there exists an equivalent quasi-norm || || on X such
that log+ || || is plurisubharmonic on X. Suppose now feN(^X).
Since log4' ||/|| is now subharmonic on A and

sup 1 ^log+\\f(reiQ)\\dQ< oo.
0^r<l 271 JQ

we can use a standard technique to find g e H ^ ^ X ) and heH^^C)
such that / == g / h . Actually, it is enough to find a positive harmonic
function u: A -> R+ such that \og+ \\f\\ ^ u , to take its harmonic
conjugate v and then to let^(z) = ^"^"^/(z) while h(z) =
^-(U(Z)+H,(Z)) ^ ̂  instance [Ko]). 2) then follows immediately.

2) ==> 3) was proved in the Banach space case by Edgar [E2]. It also
follows immediately from the « embedding » of analytic martingales into
analytic functions established in the Appendix.

3) ==> 1) can be obtained from the geometrical characterizations of
section 4. Edgar [E2] proved it in the Banach space case by showing
that analytic images of Brownian motion are approximable in the
Z^-norm by analytic martingales. We sketch the proof of this fact for
completeness.

LEMMA 3.5. — Let X be (A — p)-convex Banach space for some
p(0<p^l) , and letf e H^^X) and 8 > 0. There exists then an analytic
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martingale CFJ^= o ^h Fo = /(O) and integers n^ < n^ • ' • < n^ < • • •
so that E[\\F^f{W^\\p}<^.

Sketch of proof. — Modulo a standard induction, it is enough to
show the following claim : If/is ^-valued and analytic in a neighborhood
of A , then for any s > 0 and any Z y e A, there exists an analytic
martingale (^)^=o wlt^ ^o == f(zo) ^d a random variable H distributed
on 8 A with density P^ such that E(\\F^- f(H)\\P) < s.

To do that, it is enough to notice that d^(f(zo),Zo) = 0 where A
is the set A = {(/(^9),^0); 6 e [0,27r]} in JT © C and where the
plurisubharmonic envelope of the function d^ is taken in the open set
X @ A. By Proposition 2.7, there exists for any e' > 0, an analytic
martingale (Y^o valued in Z ® A such that E^^Y^)] < £' and
YQ = (/(zo),zo). Write Y^ = Fn + (^ where F^ e JT and Gn e A are
both analytic martingales. Let now 7^ be Brownian motion stopped on
<9A after having started at G^. It is clear that E[\H-Gn\2} ^ 1E[\ -\Gn\}
and if M > 0 is such that ||/(zi)—/(z2)ll ^ M\z^—z^\ for Zi , Zz in A
we get E[\\f{H)~ f(Gn)\f\ ^ 2M2E\ This coupled with the estimates
E[dist(Fn,fWY] < £' and E[d\st(G^9Ay] < s' easily gives the above
claim. D

It is clear that the properties discussed in Proposition 3.4 are stable
under isomorphic linear embeddings. We shall show in the sequel the
stability of such properties under much weaker types of injections. We
then give few examples where this simple method is applicable to prove
that various spaces have A.R.N.P.

Let us say that a subset C of a quasi-normed space X is a PSH^-
set if C\C = [j Fn where each Fn is closed and PSH-convex. By

n
Proposition 2.8, this implies the existence of a family {(po^} of functions
in PSH^X) such that C = Q (J [x e C; (poc,n(x)>0}.

n a e I

We shall say that C is a strict PSH^-set in C if there exists a
sequence (^n)n °f reals so that for each n, sup (pa,^ ^ o^ > 0 on C while

a _

sup (pa, n ^ 1 f01" all a a^ n - I11 other words, C\C can be written asc
a countable union of closed sets (F^)n ^Gh ^a1 ^or anv x e ^ anc! anv

n e N , there exists (p e PSHuc(X) with sup (p ^ 1 such that (p(x) > oc^
c

while (p ^ 0 on Fn.
Say that a one-to-one (not necessarily linear) map S : X -> Y is a
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PSH^injection (resp. a semi-embedding) if the image by S of the unit
ball of X is a bounded strict PSH^ (resp. bounded closed) set in Y.
We shall only consider here the cases where X is a linear or a
holomorphic map. More general types of maps will be considered in
section 5. Facts about the holomorphic ones can be found in the book
[C].

PROPOSITION 3.6. — Let X be a separable Banach space and let S
be a holomorphic PSH^-injection from X into a quasi-Banach space Y.
Let f be in H^^X) and suppose that Sf has radial limits a.s. in V,
then f itself has radial limits a.s. in X.

Proof. — Suppose S o f(re^) converges for almost all 9 when r f 1
and denote by g(eiQ) its limit. Note that S o f e 7r°(A, Y) since 5' is
holomorphic [C, p. 202]. Assume without loss of generality that
/(A) c BalKT), we shall first show that g(<9A) c ^(Ball (Z)) a.s.

To do that write 5'(Ball (Z))\5'(Ball (X)) = [j F, where each F, is
n

PSH-convex. Suppose there exists n so that the set
A = { 6 G <9A \g(e^) eFn} has strictly positive Lebesgue measure. It
follows that for every 8 > 0, there exists ZQ e A such that Brownian
motion starting at ZQ exits A at A with probability larger than 1 — e ;
that is P^(A) > 1 - e. Since 5'(Ball (JT)) is a strict PSH^-sei, we can
find (p in PSH^(Y) such that (p(5' o /(zo)) > o^ and (p ^ 0 on Fn while
sup (p(5'(Ball (X))) ^ 1. Since (p o S o f is subharmonic we have :

r
0 < oc,< (p(^o/(zo))^ \^(g)dP^

= f ^(g) dP^ + f cpte) dP^ ^ P^) ̂  s.
JA JAC

If we choose e < oc^ we get a contradiction. Hence m(A) == 0 and
g(8A) c: 5<Ball (Z)) a.s.

Consider now f = S ~ 1 o g : <9A -> X and notice that it is measurable
in view of Lusin's theorem. Moreover, the P^Tif-martingale
(f(W^ ),/(^^)) is clearly closed, hence / has radial limits a.s by
Proposition 3.3.

COROLLARY 3.7. — Let X be a separable Banach space. Suppose
there exists a holomorphic PSH ̂ -injection from X into a Banach space
Y with the A.R.N.P, then X also verifies the A.R.N.P.
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Remark 3.8. - A typical example where Corollary 3.7 is applicable
is when X is a Banach lattice not containing C o . In this case there
exists a «linear semi-embedding» from X into L1 and the latter has
the A.R.N.P. (See [GR] or [D].) D

We shall now present an example of a different nature where a
certain holomorphic and non-linear map arises in a natural way. It is
in the context of the predual of James-tree space J^T defined below.
We note that in [GMS] it is shown that J^T has the A.R.N.P via a
construction of a linear PSH^injection from J^T jnto Hilbert space. In
the following, we shall establish the existence of a holomorphic semi-
embedding from J^T into a separable dual Banach space. This will also
imply that J^T has the A.R.N.P in view of Corollary 3.7.

First we construct the appropriate separable dual. Let T =

IJ {0,1}" be the usual diadic tree and let Y be the set of infinite
n=o

branches y of T. Denote by J the James space of complex-valued

( K 2\ 1/2

sequences x = (x^ such that ||x||j = sup S E x^ ) < + oo,
k=0 i e l ^ /

where the supremum is taken over all families (7&)^o of mutually
disjoint segments in N.

Denote by Vthe Banach space of complex-valued functions x = (x^e T
on the tree T, verifying

| |x||y= SUp||(x^))^olL7 < + 00.
y e r

Let YQ be the closed subspace of Y generated by the finitely
supported vectors x = (x^ in Y verifying ^ Xi = 0 for all y e F.

t e y

PROPOSITION 3.9. - The dual of Yo is isomorphic to the closed
subspace Z of 7* generated by the coefficient functionals (ef)t. In
particular, Yf is a separable dual.

Proof. - Let q* : F* -^ V? be the quotient map. We show first
that for any x* e Z c F* we have II^Oc*)!! ^ ||x*|| ^ 2||^*(x*)||.
Indeed, the first inequality is evident. For the second^ assume without
loss that x* is finitely supported, that is: x* == ^ x*e* with x* == Q

te T

when \t\ > n. Consider x == (x^ e Y with ||x|| ^ 1 and define a vector
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x by x\ == Xt if \t\ ^ n , x\ == 0 if \t\ > n 4- 1 and x\ = — ^ Xs if
s«

| r | = n + 1. It is clear that x*(x) = x*(x'), ^ e Vo and \\x'\\ ^ 2. It
follows that ||x*|| ^ 2||^*(x*)||.

It remains to show that q*(Z) = 7?. For that, let a* e 7*. For
each t e T and n > \t\ define /^ = ^ — ^ ^s. We have that/^ e Yo

s
s> t,\s\=n

and \\ft,n\\== -\/2. Note that for each strictly increasing sequence
0^)?=o with no > \t\, the sequence (/^^-/^)/c = (^)fc is (in the
r-norm) equivalent to the canonical basis of ^2 - I1 follows that
^C^c) -^ 0 and oc^ ^= lim a*(/^) exists for each ?.

n

It is easy to see that the partial sums ^ a^* are bounded and
\t\^n

that they converge weak* to an element y * in V* such that (?*(j*) = oc*.
We now prove the convergence in norm that insures that y* e Z.

Indeed if not, there is § > 0 such that for all m, there exist n ^ m
with ||w* ^ oc^||y^ > 8 . We can then construct a strictly increasing

te T
t'^n

sequence (n/c)^ °t integers, a bounded sequence (yk)k m ^o such that
for all f e ,

(i) ^ -O if |?t^[n,,n,^[

and

<ii) ( E o ^ * , ^ ) > 5 .
^^^^"/c+l

But (i) gives that (3^ is dominated by the canonical basis of ^2
which implies that lim a* ( y ^ ) == 0 . On the other hand (ii) gives that

k
^(^fe) > 8 for all k . A contradiction which completes the proof of
Proposition 3.9. D

We now recall the definition of J T . It is the space of functions x :

( m 2 \ l / 2
T -> C such that ||x||jr == sup ^ ^ x^ ) < oo where the sup is

;=l ^eS ; /

taken over all families 5\, . . . , Sm of disjoint segments in T. Denote
by J^T the subspace of JT* spanned by the coefficient functionals
0?*),er. It is well known [LS] that (J^T)* = JT. A molecule of JT* is
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n n
an element of the form m = ^ ^^ where X ^ e C , ^ |^|2 ^ 1 and the

7-1 7-1

a/s are the indicators of mutually disjoint (possibly infinite) segments.
It is easy to verify that the molecules form a norming subset of the
unit ball of JT*. It is also shown in [SSW] that the convex combinations
of the molecules form a norm dense subset of the unit ball of J T * .
We have the following.

LEMMA 3.10. — For any couple of molecules m, n in JT* we have
\\m-n\\Y^ ^ 2.

Proof. — Let m = ^ ^Oi and n == ^ ̂ jbj be two molecules. Let s^
i J

(resp. tj) be the origin of the segment a, (resp. bj). We define a* and
bf in the following way : If there exists an index j so that 5; e bj and
Si < tj we set a* = bj. If not we let a* = 0. If there exists an index
i so that tj e Oi we set bf = a,. If not we let b* == 0. Define now

a\ = ^-a* a'/ = a; — ^
f c — ^ . f c * b ' ; = b j - b ^

and note that a^ and a^ are disjoint as well as b'j and h ] . Less
straightforward but easily verifiable is the fact that a\'b} = 0 and
a'[ • bj = 0 for all (ij). The details are left to the reader.

Let now I(j) = {i ;^-f l ;^0} and J(i) = {j;a^;.^0}. The sets (ZQU
(resp. J(00 are mutually disjoint. Set

/ M/2 / M/2

H*- Z l^l2 and ^* = Z ^1 .
\ i e l ( j ) / \jeJW /\ i e l ( j ) / \ j e J ( i )

We have
^ [^^ l and ^ | X * | 2 ^ ! .

Let x; = ^ \^flib'j and ^ = ^ ̂ fc/^. Note that the non-zero terms
J i

(a^j are mutually disjoint segments that are contained in the segment a,
and are affected with coefficients (|̂  such that ^ ^J ^ (X*)2- ^t follows

j
— from the structure of J — that ||x;||y* ^ X-*.

Similarly we have Hy/ l ly* ^ H*.
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We finally get:

m-n = ^^(a;+0(^+fcD = ^ ̂ j^b'j + Z ̂ l^W
!j U U

= ̂  Xpc, + ̂  ̂  .
!• !

/ V^Y ^ l /2
But ^^ ^SW< r^J2! t r i ^ l 2 ^ ^1. The same

!• y* i \ i / \ i /

is valid for ^ ^^, hence ||mn||y^ ^ 2 and the Lemma is proved. D
j

Now we can deduce the following,

PROPOSITION 3.11. — There exists a holomorphic semi-embedding from
J^T into 7?.

Proof. - Let S be the map that associates, to m etemwt x sst (x^
in JT* its square Sx 3S; (x^)(. The a.N>ve kmo^ shows that S maps
each molecule in ^T* to an element in T*. Suppose now (Qoc)(x and
(rip)p are positive coeffirients such that ^0a ^ 1 ^d ^r|p ^ rt ^ 1.

a I?

Let (mj^ and (np)p be two families of molecules. We have:

A-fse^+s^) -(se^) -2(seam.)(l^n,)
\ 3 & / \ a 7 \ % / \ P /

+ IS^^j % 2^e^(m^n^) + ^ T|pii^(n^HpQ.
V P / a,? M*

From Lemma 3.10 we have:

l|A|[y. ^ 2\2^Q^ ^TI^I < 2[2ri+r(2] ^ 6n.
L ^ p' J

It follows that S : jr* -^ F* maps bounded sets in JT^ into
bounded ones in V* and that it is uniformly continuous on bounded
subsets of 7T*. It is also clear that S(B(JT*)) is norm closed in V*.
If we restrict 5' to J^T we see that the range falls in Z (or V*), By
the results in [LS], the elements of J^T are those in J T * that go to
xero on the branches. This implies that S(B(W)} ̂  S(B(JT*)) n Z
and hence it is also closed.
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To remedy the fact that S is.^iot one-to-one, it is enough to take
any linear one-to-one map R: J^T-> Y^ and to notice that the
map (S, R): J^T -> F? © ^? is still a holomorphic semi-embedding.
Another way to do it is to take for R the cube operator (x^ -> (x?)^
which also maps J^T into V?.

Remark 3.12. - Say that a map 5': X -^ Y is an H^embedding if
5(^«(^))\5C8a«00) == (J F, where each F, is closed and convex.

n
By taking any dense range compact operator .IT: /a -^ ^o and by
composing T* with the map obtained in Proposition 3.11, we obtain a
holomorphic 77§-embedding from J^T into^. It is worth noting that one
cannot find a linear ^"embedding from J^T into ^3 ^or a linear semi-
embedding from J^T into a separable dual [GMlj. However, as noted
above, it is shown in [GMS] that there exists a Imear PSH^-injection
from J^T into ̂ . For more general type of injections that are compatible
with the A.N.R.P, we refer to section 5.

4. Plurisubharmonic denting points and barriers.

We start by defining various types of geometrically distinguished
points. Let C be a bounded subset of a quasi-Banach space X and let
x be a point in C. We shall say that:

(a) x is a complex extreme point of C if there is no non-zero vector
y e X with {x+r^;0^r^l,0^9^27c} c: C.

(b) x is a Jensen boundary point of C if the Dirac measure S^ is
the only Jensen Radon probability measure on, C with bary center x.

(c) x is a plurisubharmonic denting point of C if for each e > 0,
x ^ A g where Ag == C\2?(x,c) and J5(x,e) is the ball centered at x with
radius e.

(d) x is a barrier (resp. strong barrier) of C if there exists a
plurisubharmonic function (p in PSHuc(X) that exposes (resp. strongly
exposes) C at x : that is :

(i) (p(x) = sup (p
c

(ii) (p(c) < (p(x) for each c in C (resp. sup (p < (p(x) for each
As

8 > 0).



1030 N. GHOUSSOUB AND B. MAUREY

Such a function (p will be called a plurisubharmonic barrier (resp. strong
plurisubharmonic barrier) for C.

Note that any (real) extreme point is a complex extreme point. On
the other hand, any point in the unit sphere of L1 is complex extreme
for the unit ball (Theorem 2.8 [C]) while none of these points is extreme.

It is clear that a barrier point is a Jensen boundary point which in
turn is a complex extreme point. Moreover, every strong barrier point
is a plurisubharmonic denting point.

We shall start by dealing with the case of a compact subset K of
X. The proofs in the following proposition are modelled on standard
techniques. We include sketches for completeness.

PROPOSITION 4.1. — Let K be a compact subset of an (A—p) convex
quasi-Banach space X -where 0 < p ^ 1. Then :

(a) Every function in PSHc(K) attains its maximum on K at a Jensen
boundary point of K.

(b) Every Jensen boundary point of K is exposed by a function in
P S H p ( K ) .

(c) K is contained in the plurisubharmonic hull of its barrier points.

Proof. — The proof of (a) can be modelled on a standard proof
of the Krein-Milman theorem. Say that a closed subset F of a compact
space M is a J-face in M if any Jensen Radon probability measure on
M is supported on F whenever its bary center belongs to F . The
following observations are easy to check :

(i) A singleton {x} is a J-face in K if and only if x is a Jensen
boundary point mK.

(ii) For any (p e PSHc(K) and any compact Me X, the set
2?<p(M) = {x e M; (p(x)= sup (p} is a /-face in M.

M

(iii) The family of J-faces of a given compact set is an inductive
family once ordered by inclusion.

Let now (p e PSHc(K). By Zorn's lemma, there exists a minimal
/-face FQ of K contained in B^{K). If Fo is not a singleton, we use
the .^-convexity assumption to find \)/ e PSHp(K) that separates two
distinct points of Fo. The set 2?^(Fo) contradicts then the minimality of
FO • This clearly establishes claim (a).
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For (b) we shall use a technique developed by E. Bishop (see
[Gam]). Let XQ be a Jensen boundary point of K and let h be a
function in LIPp(X) that attains its maximum on K uniquely at XQ.
We shall prove the existence of a function (p e PSHp(K) such that
(p ^ h on K and (p(xo) == ^i(xo). This will clearly establish (b).

Fix real numbers b and c so that b < min h < max h < c. For any
j? A"

compact subset E <^ K not containing Xo, we have x ^ ^ E since ^o ls a

Jensen boundary point. We can use Proposition 2.6 to find a function u
in PSHp(X) such that: u ^ c, u(xo) = /z^o) and M ^ b onE.

Indeed, for 6 > 0, let g be a continuous function on K such that
g(xo) = A(xo), ^ ^ b — e on E and ^ ^ A(xo) on K. We claim that
g(xy) = sup {(p(xo);(p e PSHp(X),(^^g on A^} since if not the function
8 ~ g^o) does not belong to the closure of the cone
^ = {feC(K),^ePSHp(X)^(xo)=0 and (p^/ onK}. By the Hahn-
Banach theorem, there exists a non-zero measure \x on K, positive on

f H^ while (^""^(^o))^ < 0- I1 follows that v = ——- is a Jensen
J HC^)

probability measure on K with barycenter Xo while it is different from
6x . A contradiction that implies the above formula for g(xo). Now,
we can find (p e PSHp(X) with cp ^ g on K while
^(xo) = ^(^o) ~ £ = h(xo) — £. If £ is small enough, then u = (p + s
will do the job.

Let now X(0<?i<l) so that (l—?i)c + \b — min h < 0 and choose
K

a sequence (£^)m °f positive reals decreasing to 0 in such a way that
for every m ^ 1 we have :

(l-^s^ + ^[(l-^c+^b- min A] < 0.
K

Define, by induction a sequence (^i)i in PSHp(X) in the following
way: Ko is the constant function h(xo) and if M o , . . . , i ^ - i have
been chosen so that Uj(xo) = h(xo)(Q^j^:m— 1), the compact set
I^^xe^; max ^(x)^/i(x)+s^} does not contain X o , hence by

O^j^m- 1

applying the above observation, there exists Um e PSHp(X) so that
^m(^o) = ^(^o). u^ ^ c on K and i^ ^ fc onE^.

00

We now show that the function u = (1-^) ̂  ̂  which is in
7=0

PSHp(K), verifies our claim. (If the u/s are not uniformly bounded
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below, we replace them by max (- M,u^^^SMp(X) where M is a large
enough constant.) Indeed u^Xo) = h(xo) .and 1.0 prove that M < h on ^
we first note that it is obviously the case tf mp-Uj^h. Otherwise,

j

l e t m ^ O be the first integer such that .there -exists x e f ^ + i while
x ^ E^. Then Uj(x) < h(x) + e^ for 0 ^ j ^ m - 1 while Uj(x) < A for
j > m. It follows that:

W — 1 00

U(X) < (l-^)[(/l(x)+€j ^ •k' + X'".C + & ^ I7]
j=o ./='m+'i

= (l-^X/iOO+eJ + (l-^'c + ^^^
== h(x) + (l-^)s, + ^[(l-^c+Xb-A-Cx)] < fr(x).

For c) we shall prove that the functions ia PSfI^K) that
.are exposing for K are dense. 8y the Baire category theorem, it is
enough to show that for each e > 0, the set
D(£) = {(peP5f^(ir»;3T>0,dialn5((^,(p,T)^6} is open an4 dense in
PSH^K). Here S(K^^) denotes the set {x e K ' , <p(x)> sup<p-r}.

^

Assume K c: Ball(X) and note first that <9(s) is trivially open. To
show it is dense, consider an open set 0 in PSH],(K) and cover K
by a finite union of balls Bj, = B(Xk,&/231p). Denote by
Ff, = {<p 6 PSH^K); (p attains its maximum on ^ at a point of J?J.
Since Q = (JD nF^, there exists - by Baire's category theorem - a

k

ko such that il n F^ has a non-empty interior. Assume 5(\|/,a) c: ^ n F^
for some ^ e PSH^K) and a > 0. We shall show that \ ) / eQn Ofs).
Actually we claim that 5(A:,\|/,r) c 5(x^,s/21/p) for a small enough
T > 0.

Indeed if yeS (K,\l/,x) but ^^^(xA^c/l1^), we consider the function
g in PSH^K) equal to ^(x) == (HX-X^I^-^/^ . Note that ^ vanishes
on B^g(y) > s^/4 and 0 ^ g < 2 on K. If ^€5'(A:,vt/,T), we claim

that \|/ + —pg does not attain its maximum on B^ . Indeed
0

/ 8r \sup \(/ + — g ] = sup \|/, while%v £ ) %
sup(\t /+^^)^(i | /+^g)(3;)> sup\|/-T+2T> supv|/= sup\)/.
^ \ £ / \ 6 / A: 2C B^
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This contradicts the fact that (1 + -^ ] (\|/ + -r g ]' e ̂ (\|/, a) c: Q n ̂

for a- small' enough u> Q.

Bsmark 4.2. — The assumption of ^-convexity is essential for the
abow results to hotdl Indeed, Kalton constructed recently m [K4]; a
convex compact siafes&t K of a quasi-BanacJti space such that any
coiaQtaaiiiu^Ms plurisublaaroonic function on K is necessarily constant. This-
mieaas that K ha& no barriers.

The following' is; the main result of this section.

THEOREM 4.3.. - Let X be a quasi-Bmuch space. The following
properties are then equivalent :

(1) Every fwwtion in H^^X) has radial lim^ a.s.

(2) X is A-^^wey and every closed bow^d subset of! X m cowbrni^d
in the closed plurisubharmQW Wt of te plurisubhwmsmw d^twg
points

(3) X is (A-p) convex for some p. (Q'<p^l), and far any closed
bounded subset C of X, PSHp(X); contains a dense G^et consisting
of plurisubharmonic strong baintiers, for C.

(4) X is (A-p) convex for some p(Q<p^l), and for any closed
bounded subset C of X and every bounded above upper semi-
continuous function f on C\ the set {(p e PSH^X) ;/+<? strongly
exposes C} is a dense Gg m PSHp(X).

(5) X is {A-p) convex far some p(Q<p^l) and all X-valued, Lp
bounded PSH'martmgales converge a.s.

Remarks. - The implication 1) => 5) was proved recently (for Banach
spaces) by Bu-Schaclwrmayer in [BS] where they show that PSH-
martingales can be appropriately approximated by analytic martingales,.
Our proof is less direct and goes first through the optimization
principle (4) which is the « analytic analogue » of results of Bourgain
[Bo] and Stegall [St] established in the context of the Radon-Njkodym
theory, and where they show that the perturbations can then be chosen
to be linear.

We shall deduce the above theorem from the following propositions.
The key will be the following - slightly more technical - condition
which is also equivalent to the above assertions.
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(4 bis) X is (A—p) convex for some p (0<p<l) and for every
application F from a set K into X such that F(K) is separable
and any real-valued function f on K verifying for some a e R
and P > 0, thatf(t) ^ a - MF^ for all t e K, there exist
for every £ > 0, a T > 0 and (p e PSH^X) such that
p = sup {/(r)+(p(F(r)) ; t e K} < oo and diam {F(t) ; t e Kand
/(0+cp(F(r))>p-T}<e.

First define a plurisubharmonic slice of a set C to be any non-empty
subset of the form 5'(C,(p) = C n {x € X\ (pt(x) > 0} where (p is a function
in PSH^X).

It is then easy to see that a point x in C is P57^-denting if and
only if it is contained in plurisubharmonic slices of C of arbitrarily
small diameter.

We first prove the following :

PROPOSITION 4.4. — Let X be a p-Banach space for some p(0<p^l) .
Suppose for any e > 0 and every non-empty bounded subset C c: X not
contained in B^Qy^e/lY^), there exists a plurisubharmonic slice 5'(C,(p)
of C such that 5'(C,(p) n 5(0, (s/2)1^) = 0 and diam (5'(C,(p)) < £1^.
Then any F in H^^X) has radial limits a.s.

Proof. — Let F be an analytic function from A into X such that
||F(z)|| ^ 1 for all z e A . To show it has radial limits a.s, it is enough
to prove — modulo a standard exhaustion argument — the following :

(*) For every measurable subset Q c: T with m(Q) > 0 and any
e > 0, there exists a measurable subset fi,' c Q, with m(Q7) > 0 such
that limsupllF^9)-^^9)!! < £1^ for almost all 9 in fi.'. (Here m is

r , r ' t l

Lebesgue measure on T.)

To prove (*), first choose an outer function H in ^^(A.C) such
that H(z)\ == 1 if z eQ and \H(z)\ = (E/4)^ if z eT \Q. This can be
done by taking H = exp (log k+ih) where k is equal to 1 on Q and
(s/4)1^ on T\Q and h is the Hilbert transform of log k.

Let C = HF(^) c: X\ We distinguish two cases:
(1) If C = H-FW <= 5(0, (s/2)^), then

{imsup^H^re^-F^re^-H^'e^F^'e1^ < c^
r,r ' t l
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for aH 6 in T and the conclusion follows since \im\H(reiQ)\ = 1
r f l

if QeQ.

(2) If C==jy-F(A) is not contained in ^(s^)^), find a
plurisubharmonic slice 5'((p,C) of C with 5'((p,C) n ^(O.^)^) = 0
and diam (5'((p,C)) ^ e1^. The function <f = ^ > o ( H ' F ) is continuous
subharmonic on A, hence it has radial limits for almost all 6 e T. Let
?(6) = lim^(^19) and consider the set Q' = {9eT;?(6)>0}. Let us show

rfi
that Q' verifies the claims in (*).'

(i) m(Q') > 0: Indeed if ? ^ 0 a.s. on T, then since £ is bounded
and <f(W,) is a submartingale, <f(^) ^ E\?(W,)\Ff\ ^ 0 where
T = inf {?; | Wf\ ̂  1}. This contradicts the fact that
m^)>0] = 7W e (^^-^((p.C))! > 0.

(ii) Q.' c= Q : For that we shall prove that ? ^ 0 on T\Q. Indeed
if 6eT\Q, then lim sup ̂ (re^F^re1^ < E/21^. It follows that

rf l

for r close enough to 1, we have ( H ' F ) ( r e ^ ) e B^g/^),
hence H-F(re^ i 5'((p,C) and ^(r^19) = (p(7:f.F(^19)) ^ 0. Since
(p is continuous, we get that ?(9) ^ 0 for all 9 in T\Q.

(iii) If 6eQ\ then lim ^(re^) > 0, hence for r close enough
rf l

to 1, we have H ' F ( r e ^ ) e 5'((p,C). It follows that
limsupll^-FQ^0) - H-F^'e^ < ̂ . The rest follows again

r.r'Tl

from the (act that if QeQ.' c= Q, then lim IT^O-^I = 1. D
rfl

PROPOSITION 4.5. — Let X be a p-Banach space for some p(0<p^l)
and assume that all X-valued Lp-bounded analytic martingales converge
a.s, then X verifies Property (4 bis).

Proof. — Define for each ( e K the following function on X,

E^) == mf{f(t)-f(u)+\\y-FW;ueK and ||F(u)-F(0||^ > c/2}.

If A is a countable subset of K such that F(A) is dense in F(K), it is
clear that the above infimum can be restricted to the elements of A.
Note also that the function £< is in LIPp(X) and is bounded below by
the constant/^) — a, it then follows from Lemma 2.1 that s^ is also
finite and belongs to PSH^(X). To establish the above Proposition, it
is enough to prove the following claim :

There exists t in A such that £((F(Q) > 0.
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Indeed, in this case the set A == {5eX;^(5)+8((F(s))>/(0} is non-
empty since it contains t . Moreover, if s e K is such that
F(s)-F(t)^ > c/2, then by taking u == s to get an upper bound for

e^(F(s)) we obtain

£,(F(5)) ^ 8,(F(5))</(t)-/(5).

This means that s ^ A and consequently diam F(^) ^ s1^.

Back to the claim and assume it is not true: that is e<(F(0 ^ 0
for all t e K. Let (r^ be a sequence of positive reals so that

x
T = V T^ < oo . We shall construct two sequences of random variables

n=l

(T^o and (^)^i on T^ such that .for each n e N
(i) F, is A-valued and ||F(7^ ,)-F(W > e/2.

(ii) Un is the fe^ - th variable of an Z-valued analytic martingale
starting at 0 and

^U(Tn)-f{Tn^)+\\F(T^Un^-F{Tn^W} < ̂ r

Start with any to in A and set To == ' t o . Suppose Tj and Uj have
been constructed for j ^ n. Since for every coeT" we have that
e^ (^(T^(co)) ^ 0, we can. use Lemma 2.1 to find Un+i that is the
fe^+i - th variable of an ^-valued analytic martingale starting at 0 such
that

E[£r^)(^(o))+^i)] < T,^.

Use now the definition of e^«a) to find a A-valued random variable
7^+i such that (i) and (ii) hold.

Note that (ii) gives
E[/(ro)-/(7^)]^T

and hence that

EtPIITO+Oin ^ a - E[/(T^O] ^ a + T - f(Q.

On the other hand we have

f Go 1(*) E ^ IK^T^-^T^O+^^II^ < T - /(To) + a.
Ln=0 J

Hence
EI^T^O-^To))--^^ ^ T - f(Q + a
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where (Mn)n is the subsequence of an analytic martingale defined by
Mo .= 0 and Mn = U, + . . . + ^ for n > 0. Note that (M^\ is
clearly Z/-bounded and hence must converge a.s by the hypothesis. But
(^ implies that the sequence F(Tn)n also converges a.s. This clearly
contradicts (i) and the claim is therefore established.

We now deal with the problem of convergence of P57^-martingales.
Consider first a measurable function/from a probability space (Q,^,P)
into a complete metric space (Z,rf). We shall say that a point coeQ
is regular for (/,^) if for every c > 0, there exists Be ^ with P(B) > 0
such that for every o' e B we have d(/((o),/(o/)) ^ c. It is easy to see
that if (/„)„ is a countable sequence of random variables and if (Z,rf)
is separable, then there is 0.' c= Q with P(07) = 1 such that every coeQ'
is regular for each /„.

PROPOSITION 4.6. — Let X be an (A—p) convex Banach space for
some p (0<p^ l ) which verifies Property (4 bis). Then

(i) Every X-valued and Lp-bounded PSH-martingale converges a.s.
(ii) Every function in ^(A,^) has radial limits a.s.

Proof'. — Let (Mn)n be an ^-valued and I^-bounded J^ST^-martingale.
By a standard exhaustion argument, it is enough to prove the following :

claim': For every measurable set A a Q with P(A) > 0 and any
6 > 0-, there exists a measurable set A' c= A with P(A') > 0 such that
for all (o e A',

limsup||M,(co)-M,(o)T< s.
m,n

Note first that (HMJI^2),, is an Z^-bounded real submartingale. It
follows from Doob's inequality that sup ||MJ|^ e L1. The real submar-

n

tingale convergence theorem gives the L1 as well as the almost sure
convergence of (IIMJI^ to a random variable that we denote by Z.
Fix A cz Q and £ > 0 and let ^ > 0 be such that A = A n {Z^}
has non-zero measure. Set D^=Q\A^, h = — l^(Z+?i+l) and
hn = E|7i;^J. By the above remark we can find a measurable set
Q' c: Q of full measure such that VcoeQ7 we have h(co) == lim/^(o)),

77

Z(co) = lim HM^co)!^ and co is regular for the sequence {((7^,M^),^);
n

n ̂  0}.
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We want to apply Property (4 bis) to the set K = N x Q,' and the
functions F(n,co) = M^(©) and /(n,CD) = /^(ff>)- For that let us check
that we have the right hypothesis. First / is clearly bounded above by
0. On the other hand we have for all (n,co) e K that

/(n,co))^- ||F(n,co)r

Indeed, if (n,G))e^ and since co is regular, there exists for every s > 0,
a set C e ^'„, with P(C) > 0 such that

\\^nW ^ ——— f \\M^dP + e ^ ——— [ z d P + s
r[^) Jc l { < ^ ) J c

^TOlc^^^^^^^'wJc'^^6

^ X - ^ ( c o ) + 2 8 .

Apply now Property (4 bis) to obtain (p e PSH^(X) such that

p = sup{^(co)+(p(M^(o)));(n,(o)eA:} < oo

and a T ( O < T < I ) such that diam(F(A:o)) ^ ^lp where

TCo = {(n,co)eA:;Vco)+(p(M,(co))>p-T}.

The real submartingale (p(M^ converges a.s and in L1 to a random
variable \|/. Let

^l' = {coeQ";(^+v|/)(co)>p-T}

where 0" is the subset of Q' on which (p(M^)^ converges to v|/. It is
clear that if we A ' then (n,co)e^o for n large enough which implies
that

lim sup IIM^coy-AUo))^ < e.
n,m

So it remains to show that A' c: A while having a non-zero measure.

For that, we first show that

\t/ ^ Z + K + p on the set Q".

Indeed, for c O o G ^ n Q " we have lim /i^(o)o) = 0 hence
m

\|/(c0o) = lim(U®o) + (p(M/,(cOo))) ^ p.
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It follows that for any coeQ" we have

v|/(co)-v|/((Oo)^lim[|M,(o))-M,(o)o)||^Z(G)) + Z(o)o) ^ Z(co) + ?i.
71

But this implies that A' c= A^ since if (oe0"\^ we have

(/l+l|/)((D) = {\|/-1^(Z+X+1)}((0)

== ^(co)-Z(co)-X-Kp-T,

hence co^\ To show that the latter has a non zero measure, pick
(ni,o)i) eKo. Since ©i is regular for {(^,M^),^J there exists Ce^
with P(C) > 0 and /^((o) + (p(M^(o))) > p - T for all oeC. By the
submartingale property, we get

p ~ T < p^J^i^^))^ ̂  p^f (h+^dP.

This clearly implies that P ( A ' ) > 0 and claim (i) of the proposition is
proved.

(ii) Let now F be a function in H^^X). As above we shall prove
that for any s > 0, any measurable subset A of T with Lebesgue
measure m(A) > 0, contains a set A ' such that m(A') > 0 and

limsup IIFQ-O-FQ-Dr < e.
r,r 'Tl

To do that, note first that the real-valued subharmonic function HFI^
has radial limits almost surely and in L1 . L e t Z : T - ^ R be such a
limit and choose 'k > 0 such that the set A^ = A n {Z^} has non-
zero measure. Set ^ = T\A^ and let / be the harmonic extension of
- 1^(Z+^+1) to A. Again the function / admits radial limits in L1

and almost surely. If z e A we have

||F(z)r^ f Z(t)dP,(t)

^ {^+IB,(Z+?I+I)}^(O = K - f(z)
JT

hence f(z) < X - ||F(z)r for all z e A , and we can therefore apply
property (4 bis) to /, F, and K = A, to obtain (p e PSH^X) such
that

p = sup{/(z)+(p(F(z));zeA} < oo
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and a T ( O < T < I ) such that diam(F(Ao)) < e^ where

A o = { z E A ; / ( z ) + ( p ( F ( z ) ) > p - T } .

Since sup (p(F(rt)) e L^T), the real-valued subharmonic function (pop
r<l

converges almost surely and in L1 to a limit \|/£ L^T). Let

^'={reT;(/+v|/)(0>p-T}.

It is clear that for almost all t e A ' , rt e Ao if r is close enough to 1,
and consequently

limsup IIF^O-F^OH^ ^ £.
r.r'fl

So it remains to show that A ' c A and that m(A') > 0.

For that, note first that if toEA^ we have lim/(rto) = 0, hence
r f l

^o) = lim{/(rto)+(p(F(rto))} ^ P.
r f l

If r e T , then

^(0 - ^(^o) ^ lim ̂ (r^-F^rt^ ^ Z(Q + Z{t,) ^ Z(Q + ?i
rt l

hence \|/(0 ^ Z(t) + X + p . But this implies that A ' cz A^ since if
teB^ = T\A;,, then

(/+WO = - (Z(0+^+i) + v|/(r) ^ p - l < p - T
and hence t ^ A ' . To show that the latter has a non-zero measure,
pick Z I & A O and note that

p - T < /(zQ + (p(F(zO) ^ f(/+v|/)^.

This clearly implies that m(A') > 0 and claim (ii) of the Proposition is
proved.

Now we can prove Theorem 4.3.

(1) => (4 fofs). By Proposition 3.4, there exists p (0<p^l) such that
an equivalent quasi-norm is p-subadditive and for which all L^-bounded,
A^-valued analytic martingales converge a.s. The rest follows from
Proposition 4.5.

(4 bis) => (5) and (1). This is Proposition 4.6.
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(4 bis) => (4). Let C be a closed bounded subset of X and let / : C -^ R
be a bounded above upper semi-continuous function. Apply (4 bis) to
/, K = C and F(x) = x to obtain for each s > 0 a (p e PSH^X) and
T > 0 such that the set

5(C,/+(p,T) = {xeC;(/+(p)(x) > sup(/+(p)-r}
C

has a diameter less than g . The rest of the claim will follow from a
standard application of the Baire category theorem. (See for instance
[Bo] or [GLM].)

(4) => (3) is obvious.

(3) => (2) Let (p e PSH^X) such that C n {(p > 0} ^ (3. Choose
v|/e PSH^X) such fhat sup |v|/(x)—(p(x)| < c and v|/ strongly exposes C

x e C

at X Q ^ C . It is clear that when e is chosen small enough, XQ would
belong to C n {(p > 0}.

(2) => (1) Let || |[ be a plurisubharmonic equivalent quasi-norm such
that || 1^ is subadditive. If C ^ 5(0, s), this means that Cn {(p>s} is
a non-empty P5^-slice where (p(x) = ||x|| is clearly in PSHuc(X).
Hence 2) implies the hypothesis of Proposition 4.4 which in turn
implies 1).

We also note that (4) can be used to prove (4 bis) directly. Indeed,
if K, f, F and s are as in the hypothesis of (4 bis), consider the
function g defined on C = F(K) by

g(x) = sup{h(t),teK and F(t)=x}.

It is clearly bounded above on C and let g be its «upper semi-
continuous regularization » on C, i.e. for every x e C ,

g(x) = limsup^fj).
y e C,y->x

Apply the optimization principle (4) to find (p e PSH^(X) such that the
set Co = [x e C: ̂ (x)+(p(x)>0} is non-empty and diam (Co) < s. The
set Ci = [x e C: g(x)^-^)(x)>0} is non-empty and is contained in Co.
Let^o= {tf=K:f(t)+^>(F(t))>Q}. It is easy to verify that it is also
non-empty, that its image under F is contained in Co and hence
diam(F(^o)) ^ c.

Remark 4.7. — a) Recently S. Bu [Bu] showed that the existence of
a function in 7^°°(A,^0 that does not have radial limits on a set of
positive measure, actually implies the existence of a function in H^^AyX)
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that has radial limits nowhere - i.e. there is T| > 0 such that for
almost all 9eT , limsup ll/^6)-/^16)!! > T| . This clearly implies

r.r'tl

that Theorem 4.3 holds if and only if every closed bounded subset of
X has plurisubharmonic slices of arbitrarily small diameter : a hypothesis
which is slightly weaker than assertion (2) of Theorem 4.3.

b) One may ask whether Theorem 4.3 implies the existence of
holomorphic slices of arbitrarily small diameter for closed subsets of X:
that is slices of the form {xeC,<^(x)> sup^-a} where (() is the real

c
part of a holomorphic function on X (i.e. a pluriharmonic function).
The example of L1 gives a negative answer. Indeed any holomorphic
function on L1 is necessarily weakly continuous since one can easily
see that monomials p(/i, . . . ,/J on L1 can be written as

P(/l,/2, . . . Jn) = j f . . . (f^)f,(x,) . . . fn(^n)

K(x^ X2, . . . , xj dx^dx^, . .. , dxn

where K(x^x^ ... ,xJ is an L^-bounded kernel.

It follows that slices determined by holomorphic functions give rise
to weak neighborhoods in L1. Since the unit ball of L1 has no points
of weak to norm continuity, one cannot expect such slices to have
arbitrarily norm small diameter. The case where slices can be determined
by weakly continuous plurisubharmonic or pluriharmonic functions is
studied in [GMS].

5. A plurisubharmonic renonning
and an integral representation.

The following is the main result of this section

THEOREM 5.1. - Let X be a separable quasi-Banach space. The
following assertions are equivalent :

1) Every function in H^^X) has radial limits a.s.

2) X is (A-p) convex for some 0 < p ^ 1 and there exists a
uniformly bounded countable family {^,r; (n, i) e N2} in PSHp(X) such that
every bounded sequence (x^ in X is convergent if and only if it verifies :

a) (^n,i(^k))k is a Cauchy sequence for each (n , f )eN 2 .
b) lim sup ̂  ,(Xk) = sup lim ̂  ,(x^) for each n e N.

k i i k '
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We start by proving 1) ==> 2) which can be seen as the «plurisub-
harmonic » analogue of the Asymptotic-norming property introduced by
James-Ho [JH]: A property shown to be — for separable Banach spaces
— equivalent to the Radon-Nikodym property in [GM2]. Let us say
that a subset C of X verifies the PSH-optimization principle if for every
proper (i.e. not identically +00), bounded below and lower semi-
continuous function / : C - > R u { + o o } , the set {(p e PSHp(X) ; /— cp
strongly exposes C from below} is a dense 65 in PSHp(X). We shall say
that a fonction g p-strongly exposes C from below for some p > 0 if
there exists a>0 such that Cr\{g<v}^ 0 and diam (Cn{^<oc})^p.

We denote by P37?p(C), the set of functions on C that are supremum
(on C) of families of functions in PSHp(X). In the sequel we shall
assume that the set C is contained in the unit ball of X. The following
lemma is borrowed from [GMS].

LEMMA 5.2. — Let C be a separable closed bounded subset of X
verifying the PSH-optimization principle, then there exists a separable
closed convex subset ^o °f ffSHp(Xy such that for every proper lower
semi-continuous fonction f: C -> [0, + oo] and any e > 0, there exists
(pe^o, II (p lip ^ £ and f — (p strongly exposes C from below.

N
Proof. — We proceed in two steps. First we establish the following :

Claim. — For a given s > 0 and a separable subset <F c: PSHp(X),
there exists a sequence ((pn)n in PSHp(X) such that for every v)/ in ^
and any proper l.s.c. /: C -> [0, + oo], there is n e N so that
11^ ~ (pn l l p < £ Bnd / ~ (pn £-strongly exposes C from below.

Indeed, first fix \|/ in ^ and proceed with the following transfinite
induction: Start with (po = (po = 0 and suppose that up to the ordinal
a, functions ((pp)p<a in PSHp(X) and ((pp)p<oc in PSHp(C) have been
chosen. We denote by Fp = Epi((pp) = {(x,?t)e C x [0,ool; (pp(x)<^}.

(i) If a = P + 1 and Fp ^ 0, use the hypothesis to find (p^ e PSHp(X)
and c^eR such that

ll^-(pjlp < £/2 and S^ = {x e C ; ((pp-(p,)(x)<c,}

non-empty while diam(5a) < £. Then set (pa = <Pp V ((pa+^J-
(ii) If a is a limit ordinal, we let (pa = \|/ and (pa == sup (pp on C.

P<0t

Since C x [0, + oo] is separable, and since (FJa is a decreasing
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family of dosed subsets, there exists y < Q (the first uncountable
ordinal) such that Fy = 0. This implies that (pat + °° •

Suppose now /: C -> [0, + oo] is proper and lower-semi-continuous
and let a ^ y be the first ordinal such that (pa is not less or equal to
/. That is, (pp < /hfbr .all (3 < a while (pa ^ /. It follows that oc is
necessarily of the form ' P + 1 1 and (pa + Ca is not less or equal than /.
Hence 5 == {x e C; (/-(pa)(x)<cj is a non-empty subset of 5a. In
other words, / - (p e-exposes C from below, while | |v|/-(pallp < s/2.

To finish the proof of the claim, it is enough to do the construction
for a dense sequence Ol/1)^! of ^, to obtain a countable set
{(p^ e PSHp(X) ; a < y,, i e N} that will do the job.

To establish the lemma, we proceed with the following induction:
>Set ^ i = {0} and apply the above claim to ^ = ^ i and s = 1 to obtain
a sequence ((p^ in PSffp(X). Then let ^2 be the convex set generated
by ((p^/i- More generally, assume ^ i c: ̂ \ c=. • • • c^ have been
defined. Apply the claim to (F = ̂  and c = 1/fe to obtain an appropriate
sequence ((p^ in / PSHp(X). We then let ^+1 be the convex set
generated by ^iarid ((p^)n. Finally set ^o = the closure of |j ̂  in
PSHp(X).

If now /: C^[0,+oo] is proper and lower semi-continuous, we
obtain that for every E > 0, the set (9(e) = {(pe^o;/-(P s-strongly
exposes C from below} is dense and open in e^o. The rest follows from
Baire's category theorem.

LEMMA 5.3. - Let C be a separable closed bounded subset of X
verifying the PSH-optimization principle, then there exists a separable
convex cone c97 c PSffp(X) such that if \ve denote by 8 the evaluation
map from C into the ̂ dual of P = ^ - ^ equipped, with || \\p, the
following then holds :

(i) 8 : C -> P* is.a p-isometry from C onto its image 8(C), that is
ll^x-M]" = ^ ' y ^ /or ^^y x^ y in c '

(ii) 8(C) \8(C) = (J Ln where each L^ is a weak*-compact subset

( \ ( N n \
of P* of the form : Ln = H {^,m<0} n Q {-^,.<0}

\meN / \i=o )

where ((p^J^N (resp. (\K,̂ o) is a countable (resp. finite) family
of elements in PSHp{X) with \\ \\p-norm less than one. Moreover,
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(iii) There exists a sequence Ckn)n of reals such that for each n e N
we have for all x e C

h,(x} = (sup (p^(x)) V ( sup (-vK.M)) ^ ^ > 0.
w e N O^i^N^

Remark. — In the above Lemma and the sequel we will be identifying
——*

functions on C with their extensions to the weak*-closure 8(C) of
5(C) in P*. No confusion can occur as long as we are dealing with
functions in y .

Proof. — Let c^o be the separable subset of PSHp(X) obtained in
Lemma 5.2. We can assume without loss that it contains the constant
functions. Let (Xn)n be a dense sequence in C and consider the countable
family ^i of functions ((p^ in PSHp(X) defined by (p^(x) ^ I j x -x j l ^
for each n. Let y be the separable convex subcone of PSHp(X)
generated by ^o ̂  ^\ anc! k1 P be the vector space y — y equipped
with || \\p. The evaluation map 5: C -> P* is defined for each x e C
by 5^((p) = (p(x) for all (peP . It is clear that ||8;c-8jj|j? = l l x - ^ H ^ for
all x, y in C and that §(C) is a bounded closed subset of P* which
is identifiable to C. One can also easily see that §(C) is a weak*-G'§

——*
in its weak*-closure K = 5(C) in -P*. This will also'follow from the
representation of 8(C) claimed in (ii) and that we shall establish in the
following three steps :

Step (1). — We claim that for any closed subset F c C and any
s > 0, there exists a non-empty slice S = F r\ {(p > 0} where (p e c^o
such that diam(5')^£. Indeed, let /: C-^[0,l] be defined by
f(x) == 0 if x e F and f(x) = 1 if xeC\F. Since / is l.s.c, use
Lemma 5.2 to find (p e c^o, l | (pl[p < 1/2 such that / — (p strongly
exposes C from below at a point X Q . It is clear that Xo^F and that
lim diam {x e F ; (p(x)>(p(xo)—oc} = 0.
ai0

5'̂ p (2). - We now prove that 5(C) = F| (A^ u 0^ where each
^

^ is w*-compact in jP* and each 0^ i&sa countable union of w*-open
sets in P* of the form {(p>0} where (pe^o-

Indeed, for each 8 > 0, we define by transfinite induction a decreasing
family of norm closed subsets (7^) of C in the following manner :

(i) Fo = C.
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(ii) If a = P + 1 and Fp ^ 0, use step(l) to find (ppe^o with
||(pp||p ^ 1 such that H^ n Fp is non-empty and has diameter
less than e, where H^ = {x e X\ (pp(x)>0}. Then set F^ = Fp\7^p.

(iii) If a is a limit ordinal, let F^ = 0 ̂  •
P<a

Since C is separable, there exists a countable ordinal Yg so that
F ^ = 0 . Let A:p be the w*-closure of §<Fp) in P* and let
H^ = { u e P* ; cpp<a)>0} for each P < 7^. It is clear that:

8(o^ nf^ufu^Vl-
a<ye \ \(3<a //

If now u belongs to the right hand side, there is P < y^ such that
u e K^ n H^. Hence there is a sequence (Xj)j in Fp n H^ such that
a = weak* - lim6^. Since diam(Fpn7:aTp) < e we get that

distp* (u,(5(C))) < e^. It follows that if we repeat the construction for
each e = 1/n, we obtain from the fact that 5(C) is norm closed in
P*, that

§(0= n nf^uu^V
n a<7^ \ p<a /

This clearly gives the above claim.

Step (3). — After relabeling we can write 8(C) = Q (A^u6^) where
A:

each Of, is of the form uA/^. Since each Kk is w*-compact, we can
write P*\Kk as a countable union of sets of the form

/ L \ / M \F= Ft { - ^ ^ ^ j n t p( {(p;^0}j where v|/; and <p; belong to y
Vi-O / \ j=L+l , /

and | ( p ^ | | p ^ l . On the other hand, each P*\6^ is of the form
x

n {^,/^Q} where again (p^e^ for all (fe,<f). An obvious relabeling
/=0

______ ̂
gives now conclusion (ii) of the Lemma. That is 8(C) \§(C) = |j L'n

( °° \ / N n \
where each L, is of the form Ln==( Q Wn,m^0} n H {-^,.<0}

\m=0 / \i=0 /

where (p^ and \|/^ belong to c97 and their [| lip-norm is less than one.

We shall now split each L'n in such a way that conclusion (iii) holds
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true. This will be done in the next two steps. We need the following
——^

notation: for each weak*-compact subset L c= K = 8(C) , we define
the function (p^ on K by (p^(x) = sup {(p(x)-sup (p ; (p € y and

_ L

| |(p[|p^l}. Note that (p^, is always non-negative.

Step (4). — We now show the following :

(*) Let / be a function on 8(C) that is lower semi-continuous and
——*

bounded above by one. Let L be a weak*-compact subset of 8(C) such
that : % ^ 0 on L and (cpL^XX-^) > 0 for each x in 5(C). There exists
then K > 0 and \|/ e y c PSHp(X) with ||\|/||p ^ 5 such that
S = L n {\|/>0} ̂  0 and ^ V 50 V (-\|/) ^ ^ > 0 on 5(C).

Indeed, use Lemma 5.2 to find he^o with ||A||p ^ 1/4 and an XQ
in C such that (<PLV^) — /i attains its minimum on C at Xo. That is

4>L V xM ̂  (cpLVx)(Xo) + h(x) -, A(xo) for all x e C .

Let ?L = -($LV/)(xo) and \|/ = 4/z - 4/i(xo) + 3X which is in y . Note

that X > 0 and ||v|/||p ^ 5.

Moreover, <PL V X ^ ^ on ^n {h>h(xo)—'k}, while — \|/ ^ ^ on
Cn{/i^^(xo)-X}. Hence (p^ V ^ V (-v|/) ^ X on C.

On the other hand, note that if y e L \ S , then 4h(y) ^ 4h(xo) - 3?i
hence:

($L\5Vx)(^o) ^ $L\s(^o) ^ 4/i(xo) - sup4A
L\S

^ 4fc(xo) - 4/i(xo) + 3^ == 3/2((p,Vx(xo)).

This clearly implies tilat S ^ 0 and the claim is proved.
——*

Step (5). — Consider now a weak*-compact subset L c: §(C) such
/ oc \ / M \

that L n 8(C) = 0 and L = Q {(p^O}) n ( H {-^;^0}) where (p^
\A=0 / \l=0 /

t ———+

and v|/; belong to y for all (fe.Q. Define ^ = sup (~v|/;) on 5(C)
l^t^N

and note that 7 ^ 0 on L while ((pV5c)(x) > 0 for each x in C. Use
step (4) — with an appropriate normalization — to find 'ko > 0 and
v|/o6^ with ||v|/oll ^ 1 such that 5'o == L n {\|/o>0} + 0 and
^L V X V ("^o) ^ ^-o > 0 o11 (^' Set Z/i = L\5'o. By transfinite induction,
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we can define a decreasing family of weak*-compact subsets (L^ of L
and a family (v|/^ of functions in y c PSH,(X) in the following
manner:

(i) If a == p + 1 and Lp = 0 apply step (4) to ̂  V ^ to get \)/p G ̂
and ^ > 0 such that 5'p = Lp n i\|/p>0} ^ 0 and
^ V 7 V (-\|/p) ^ Xp > 0 on C. Then set L, = Lp\5p.

(ii) If a is a limit ordinal we write L^ = ?) Lp.
P<a

Since L is weak*-metrizable, there exists a countable ordinal such
that L , = = 0 . It follows that L = |j 5p* and for each P < y,

P<Y

(Psp V 5c V (-\|/p)^p > 0 on C while cp^ V ^ V (-^/p) ^ 0 on S^ .
——*

Since 8(C) is weak*-metrizable we can find for each P < y , a countable
family (7^)/ in y such that for every x, (ps (x) =
sup{^(x)- sup/i^e^ and ||^||p ^ 1}. For a fixed P < y we can

Sp

relabel the countable family {^- sup ̂  of functions in y to set
sp

{(p^L and also add to the finite family (M/;)?^ the function i)/p to obtain
- after relabeling - the family {\|/^1. It is now clear that

^^(^{(p^O^nf^^-^^O})
\k=0 / \i=i J

while
(sup q^(x)) V ( sup - \|/,(x)) ^ )ip > 0 for each x in C.

k e N l^i^M+1

By splitting in a similar fashion each L^ obtained in step (3) we
finally obtain claim (iii) of Lemma 5.3. D

Now, we can prove the implication 1) ==> 2) of Theorem 5.1. By
Theorem 4.3, every closed bounded subset C verifies the PSH-optimization
principle. Assume now X is separable and apply Lemma 5.3 to C equal
the unit ball of X, to obtain functions {(p^ ;(n,m) e N2} and
{\ | /^ ;n6N, l^ i^^} in PSHp(X) verifying the conclusion of the
lemma. Let (x^ be a dense sequence in Ball(JT) and consider the
functions (p^(x)= Hx-xJ^ which are also in PSHp(X). The double
indexed family (^ ̂ .) required in Theorem 5.1 can be defined as follows :
Let Mi, Mg and Ms be three independent copies of N. Define the
family {^,,; n e M, f e N} where M = Mi u Mz u Ms in the following
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fashion : If n e M, let ̂  == (p .̂ for all f e N . If neM^ let .̂ = \|/^,
•for 1 ̂  z ^ N^ and 0 otherwise. If n e M^ we let ̂  = (p^ for all i e N.

Let (x^ be a sequence in C verifying a) and b) of assertion (2) in

Theorem 5.1. Let x* be a weak*-cluster point of (5^ in 8(C)*. We
claim that x*e8(C). Indeed if not, there exists n such that X * G Z ^ ,
hence (p^(x*) ^ 0 for all i and - \)/^(x*) ^ 0, for all 0 ^ i ^ N ^ .
On the other hand from b) we get lim sup (p^ ,(x^) = sup (p^ ,(x*) = yi

k i ' i '

and since A^ is finite, a) gives

lim max (-v|/^.(x^) = max (-v|/^,(x*)) = y,.
k Os^i^N^ O^i^N^

But yi V 72 ^ ̂  > 0 which is a contradiction. Hence x* e C. Finally,
since (pn(x^)-> (p^(x*) for each n, we have lim ||x^-x*|| = 0 as in
Lemma 3.1. ^

Proo/ o/ 2) => 1). — In view of Proposition 3.4 we need to show
that uniformly bounded ^-valued analytic martingales converge almost
surely. Our proof will actually cover the case of all P577-martingales.

Let (Fk)k be a P5^-martingale with values in the unit ball of X.
Apply assertion (2) of Theorem 5.1 to obtain an appropriate sequence
{^;(n,OeN2} in PSHp(X) so that \\^^\\, ̂  1 for all (n,f) . We shall
need the following result ([N], Lemma V.2.9).

LEMMA 5.4. — Consider a countable family I of real valued
submartingales {(A^;fe7} such that sup £'sup (Zy+ < + oo . Then for

k i

each ie I , (A^ converges a.s. to a random variable X1^. Moreover,
(sup Xk)k converges to sup X1^ a.s.

i i

To finish the proof of assertion (1) of Theorem 5.1, it is now
enough to apply Lemma 5.4 for each n to the family of submartingales
{(A^=(^(F^))^;f€N}. The conclusions of the Lemma correspond to
conditions a), b) of assertion (2) of the theorem. This implies that
{Fk)k converges a.s. in X. D

Remark 5.5. - By comparing to section 3, the conclusion of Lemma
5.3 looks like a certain PiST^-representation of C in some compactification
P*. However the injection of X into V* is not holomorphic and the

N

existence of components of the form R| {-\|/^0} where \|/,;e PSHp(X),
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destroys the symmetry in the representation of C. This is not surprising
since PSHp(X) is a cone and not a vector space. However, one can
remedy the situation by introducing the following concepts :

Say that a map S : X -> Y between X and a Banach space Y is
pluri-quasiharmonic if for every y * e Y * , y * o 5' is the difference of two
functions m__PSHuc{X). Say that such a map is a symmetrized PSH^-
injection if S(Bx)\S(Bx) = (J Fn where each Fn is a closed set which is

n

strictly separated from S(Bx) by a function h^ verifying that hn o S is
the difference of two functions in PSHuc(B^). In other words,
inf hn > sup hn, for each n.

S(B^) £„

Consider now any dense range operator T: ^^ -> P such that
T(/2') c e^ where P and e^ are the space and cone considered in
Lemma 5.3. Define S = T* o 8 where 5 is the evaluation map. Note
that for any positive linear functional x* in ^2? we have that
x* o S € PSHp(X) so that S : X -^ ^2 is a pluri-quasiharmonic map. On
the other hand the functions hn = (sup (p^) V ( sup -v|/^) appearing

m O^i^n

in Lemma 5.3 can easily be replaced by functions in PSH/p — P S H p ,
which means that S is a symmetrized P^g-injection. This combined
with an adaptation of the proof of 2) => 1) via Lemma 5.4, gives the
following :

PROPOSITION 5.6. — Let X be a separable quasi-Banach space. The
following properties are equivalent :

1) Every function in H^^X) has radial limits a.s.

2) There exists a pluri-quasiharmonic symmetrized PSH ̂ -injection from
X into ^2.

Remark 5.7. - A typical example of the above is when X is an
^(-convex quasi-Banach lattice not containing Co. Kalton [Kl] had shown
that there exists p so that the p-convexification of X is a Banach lattice
Y not containing Co. By representing Y as a function space between
L^ and L1 [LT], one can easily deduce that there exists a linear semi-
embedding 5'i from X into Z/. Since for any Borel set A c= [0,1], the

f
function / -> \f\p is plurisubharmonic on U\ we obtain that the map

•M
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i S g i Z ^ - ^ L 1 defined by S^) = f / l^ is a pluri-quasiharmonic semi-
embedding. The same is true for the map T = S^S^: X -> L1. Proposition
5.6 gives then another proof of the fact established in [Kl], that
functions in H^^X) have radial limits a.s. D

In the remainder of this section, we shall discuss the problem of
integral representation in terms of Jensen measures. The methods will
consist of appropriate modifications and refinements of those developed
by Edgar [E3], [4] in the non-compact but convex setting. So the proofs
will be sketchy when the adaptations are immediate. Other integral
representations — in terms of « analytic measures» — are also carried
out by B. Khaoulani in [KH].

In the sequel C will be a separable closed bounded and /-convex
subset of an (A-p) convex quasi-Banach space X. The set ^(C)
consisting of tight Borel probability measures on C will be identified
with a closed bounded convex subset of the space LIPp(C)*. It is also
known that if (pja is a net in ^(C) and p,e^(C), then ^ -> ^ in the
norm of L7Pp(C)* if and only if <HaJ*> -^ <^/> tor all continuous
and bounded functions / on C. For the proofs see Dudley [Dud].
Denote now by 7(C) the subset of ^(C) consisting of the Jensen
measures. It is easy to see that J(C) is norm closed in ^(C). A Jensen-
dilation will be any Borel map T: C -> J(C) such that any x in C is
the J-barycenter of Tx. On J(C) we define the order \\. -< v if
<^,/> ^ <v,/> for every/in PSH^C).

The following proposition is well known in the case where the order
is defined by the cone of convex continuous functions. A proof of that
case - inspired by V. Strassen - and used in [E4] can be easily
adapted to show the following.

PROPOSITION 5.8. - Assume [i and v in J(C). The following are
equivalent :

1) ^ < v.

2) There exists a Jensen dilation T'. C -> J(C) such that <v,/> =

j <T(x),/) d\Ji(x) for all continuous bounded function f on C.

3) There exist a probability space (fl.^^P), a a-algebra ^^ c= ^\
and t\vo C-valued random variables (F^F^) adapted to (^'1,^2) such
that |LI (resp. v) is the distribution of F^ (resp. F^) and {F^,F^} is a
PSH-martingale.
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Sketch of proof. - 1) => 2) Let C^C) be the space of all continuous
bounded functions on C and define for each / e C^C) the function
f(x) = inf {(p(x); - (p e PSH,(X) and (p ̂ /}.

On the vector space 5' of all simple Borel functions 9: C -^ C^C),
f

define the sublinear functional p : S -^ R by p(9) = 0(x)A(x)^p(x). Let
5'o be the subspace of 5' generated by the functions of the form Xc ® /
defined by

/ if x e B(y (^ H(x} - ff 1{ X E BocB®y)(x)- ̂  ^ ^^

Define on 5'o the linear functional ^OCc®/) = <v,/>.

The order u << v implies that ^ < p on 5'o. Let ? be any Hahn-
Banach extension of ^ to the whole space 5'. One can then check that
the vector measure m : Z -> C^(C)* defined on the Borel o-field E of
C by (m(AW = ?(XA®^) for all A e E and h e C,(C), has average

range in ^(C): that is -^e^C) for all A e E. Since the latter has[i(A)
the R.N.P [E4], m has a density T: C ̂  ^(C). It is easy to check
that T is valued in J(C) and that v is a dilation of u by T ' .

2) => 3) Suppose v = T(u). Let Q. = C x c, ^ 2 = ^ x 1 and
j^i = {0,0} x E. Define Fi, ^ : ^ -> C by Fi(x,^) = x, ^(x,};) = y.

Define P on ^S by P(D) = T(x)(D^) d\i(x) where

D^ = [y e C,(x,y) e D)}. The reader can easily check that (Fi,^J,
(Fa?^) verify the claim in 3).

The implication 3) => 1) is immediate.

Now we can show the following :

THEOREM 5.9. — Let X be a quasi-Banach space such that every
function in H^^X) has radial limits a.s. Assume C is a separable closed
bounded J-convex subset of X then :

a) Any sequence (u^ in ^(C) such that ^ < ̂ 2 < ' - < ̂ n < • "
is convergent to n^ in ^(C) and [in < Hoo for each n e N.

b) The set 7br(C) of all Jensen boundary points is co-analytic and
non-empty.
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c) Any point in C is the bar y center of a Jensen Radon probability
measure supported on Jbr(C).

Sketch of Proof. — a) Follows immediately from Proposition 5.8
and the convergence of P577-martingale shown in Theorem 5.1.

b) That 7br(C) 7^ 0 follows from Theorem 4.3. For the rest, note
that the barycentric map r is continuous from J(C) -> C and that
C\Jbr(C) is the image by r of the set J(C)\{8^ ; x e C} which is clearly
open. Hence 7br(C) is co-analytic in C.

c) First notice that since ^(C) is a complete metric space, assertion
a) implies that for any ^ e J(C), the family A^ = {v e 7(C); n -< v} is
a Zorn family. It follows that for any x e C, there exists a maximal
element v in A^ . Since C is separable, the Von Neumann selection
theorem [E3] gives a universally measurable function S : C -> J(C) such
that r(S(x)) == x for all x while S(x) == 5^ if and only xeJbr(C). We
can assume that S is Borel measurable — modulo redefining S(x) = 5^
on a v-nul set — and hence that S is a Jensen dilation. Since v is
maximal we have that v = Sv which means that v(7br(C)) = 1.

6. Appendix : Embedding Hardy martingales
into analytic functions.

We shall now give a general result about «embedding» analytic
martingales (and more generally Hardy martingales) into analytic functions.
This procedure makes the connection between the two concepts more
transparent and allows direct proofs for some related results already
established by Edgar [E2] and Kalton [Kl]. (See also Lemma 2.1 and
Proposition 3.4.)

Let A" be a quasi-Banach space. Following Garling [Garl] we shall
call Hardy martingale any ^-valued PiW-martingale (MJn on Q = rTN

such that each martingale difference dn = Mn — Mn-\ is a function on
T" that is analytic in the last variable. Note that the martingale (Mn)n
is here adapted to the o-fields (Ln)n where for each n , Z^ is generated
by the first n coordinates. It is clear that if X is a Banach space the
above definition coincides with the one of Garling : that is (Mn)n. ls a

martingale verifying E^e1^ I^-i] = 0 for all k = 0, 1, 2, . . . . It is
also clear that analytic martingales are a special kind of Hardy
martingales.
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THEOREM 6.1. — Let X be an A-convex quasi-Banach space and
let (Mn)n be an X-valued Hardy martingale with corresponding martingale
difference (dn)n such that dn is a continuous function on T". Then, for
any sequence of positive reals (£„)„, there exists a surjective continuous
mapp :T-^T^ , a sequence of positive reals (rn)n strictly increasing to
1, and an X-valued analytic function F on A such that :

a) The image of Lebesgue measure on T by p is the product Lebesgue
measure on T^.

b) For all n e N and all 9 e T \ve have :

||F(r̂ 9) - F(r^) - d^(p(e^})\\ < 8,.

c) If \ve denote by T^ (resp. r) the first time complex Brownian motion
Wt starting at 0 hits the circle of radius r^ (resp. of radius 1) and by
^(co) the function p(^(w)(^)) then :

(E\\F{W^) - FW,_,) - d,(q)\\2)112 < Sn.

Proof. — For simplicity we shall assume that A" is a Banach space.
For every positive integer n, we denote by ;'„ the map from [0, 1]" onto
T" defined by :

f (c c ^ = r^2""! ^2I7ts7^^
jnV'3!? 9 • • • 5•J7I/ V^ ? » • • • ^ ) '

For n ^ m, we let Pyn,n be the natural projection from T'71 onto T"
or the natural projection from [O,!]7" onto [0,1]". Pn will be the
projection from the infinite product T^ or [0,1]^ onto T" or [0,1]".
The Lebesgue probability measure on T i& noted ^ and the measure
on T^ given by the infinite product of copies of ^ is denoted ^. The
metric on T" or [0,1]" will be the metric given by the supremum norm.
We shall need the following terminology:

Say that n = ((/a, Ca, (poc)aeA)? P) ̂  an n-dimensional P-family provided :
— A is a finite set with cardinality 2k for some integer k ;
— (4)aeA is a family of closed sub-intervals of [0,1] which is a

permutation of the family {[(/-1)!"^"*];^!,,... ,2*};
— each Ca is a closed convex subset of [0,1]" with Lebesgue measure

equal to 2~\ and such that

[o,i]"= u c,;
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- p is a continuous map from T into T";
- for every a e A, (pa is an affine map from 4 mto C, so that for

every se4 we have 7n((Pa(s))=p(/'i(5));

We shall call diam (71) the maximum of the diameters of the sets
Ca for a in A. If p = ((./p,^p,v|^)p,=B)?^) ls an w-dimensional P-family,
we say that p extends n if n ^ w and if the following conditions hold :

(+) the cardinality of B is greater than the cardinality of A;
(+ 4-) Jp c: 4 ==> P^Z>p <= Ca ? ^ furthermore Ja and Z, have a

common endpoint 5 then Pm,n^^(s) = (pa(5).

With the above notation, one can easily see that:

(*) If p extends n then |Pm,n^(0~ ?(t)\ ^ 27rdiam (n) for every
t e T .

Suppose now (jin) is a sequence such that for every n, Un is an
n-dimensional P-family, with an associated function pn from T into T",
while rc^+i extends n^ and diam (n^) decreases to 0; it is easy to see
that there exists a unique continuous mapping p from T onto T^ such
that Pn(p(t)) = lim^oo^m,/^(O for every n , and the image measure
p(X,) is equal to Xoo . We actually want to construct a sequence (nn)n
as above with some additional properties. First note that since d^ is a
continuous function on T" we can find a positive real number a» such
that [ M I — M Z < 27ia,, => l l ^ n ( M i ) — ^1(^2)11 < £n for all M i , M 2 inT".

We now construct inductively the sequence (^n^Pn)n an(! an increasing
sequence (r^)n in (0,1) in such a way that for each n:

(i) Kn extends n^-i a^ diam (n^) < a^.
(ii) ||rfn(pn(0) — 0^(011 < £n where 0^ is an J^-valued complex

polynomial such that \\Qn(rt)\\ < ̂ V for all teT and
0 < r ^ r^-,.

n

(iii) r^ is such that (1-r^) < 2-", ^ 110/^0-0/^)11 < £n+i for
7=1

n

all r e T and r, ^ r ^ 1, and ^ \\Q,\\wA)[W-rn)]1'2 < s^i.

Let us first show how the conclusion of the Theorem follows once
X'

the construction is accomplished. Consider F(z) == ^ Qn(z). Since r^
n=0
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tends to 1, (ii) implies that this series converges uniformly on compact
subsets of A . From (i) and (*) we deduce that Pn(p(f})-Pn(f)\ < ̂ n
hence

0) \\dn(Pn(p(t}))-d^(t))\\ < C , .

But (ii) gives

y- 00 •

(2) E 0/c(^-i0 <2s, and similarly ^ (?,OV) <2£,^.
k:=n k=n+l

We also get from (iii)

(3) E (2/^0-2,(^-i0) <£. and lie.(^)-Q,(0)|| < s,.
7=1

Adding (1), (2) and (3) we obtain

(4) \\F(r^-F(r^,t)-Q,{t)\\ < 6^

and

(5) \\F(r,t)-F(r^,t)-dn{Pn(p{tm\ < 8e,.

This clearly gives statement b). For c) we only need to change the
inequalities in (3); we actually have when m ^ n

^^-^^-^^(l-rj

and in the same way

E\W,-W^=\ - 4<2( l - r J .
Hence

2\ 1/2 n-1

^ E (a-(^)-a-(^-,)) ^ z (^ii0,(^)-0,(^^)ii2)1
i i j = i . / j= i

^ z m^{E\w.w. r2
''/z "n-l

7=1

< Z lla•llLlp(A)[2(l-^•„_o] l/2< £„.
7°!
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We also have

W\Qn^-Qn(^W2 ^ \\Qn\\^^-rn)112 < ̂ .

It follows as before that

(E\\F(W^)-F(W^_,)-d^p(WM2)112 ^ 8s,.

Now that we have proved how all conclusions follow from the
properties (i)-(iii) stated above, it remains to show how to pass form
n — 1 to n in the construction. To do that, suppose that (i)-(iii) are
satisfied for n — 1. It follows from the hypothesis that one can find
an integer Ln and continuous functions (p^: T"~1 -> X for ^ = 1, . . . , L^
such that

^
\\dn(u,t) - ^ cp^)^|| < Sn/2 for every ueT^1 and t e T .

Let M be an integer and (g^)^ be functions from C -> X such that for
every ^ = 1 , . . . , £ „ the function z -> zMg^z) is a polynomial and :

(6) W e T , ||^(0-(p,(^-i(0)|| < £./2L,.

Ln

Consider now Qn(z) = ^ g^(z)z^ where N is an integer of the form
£=\

N = 271 for some integer h, N > M large enough so that Qn(rt)\ < s^/2"
for all ^ e T and 0 ^ r ^ ^n- i . We can clearly find r^ close enough to
1 so that (iii) is satisfied. Next, we will use the following claim whose
proof is left to the interested reader :

SUBLEMMA. — Let C be a closed bounded convex subset ofRrl(n>l)
with a non-empty interior and consider x , y in C. For every c > 0,
there exists an integer k , a family { C ; ; f = 1, . . . ,2^} of closed convex
subsets of C and a continuous path q: [0,1] —> C such that :

2^

- C= [JQ.
1=1

- The Ci's have pairwise disjoint interiors, the same Lebesgue measure
while their diameter is less than £.

- q(0) = x , q(\) = y , q-\C^ = [Q-1)2-^2-^} and q is affine
on each [(i-W^il-^ for all i = 1 . . . . ,2'.

Using this sublemma we can find an (n— l)-dimensional P-family
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a^-i = (^A«^oc)o(6^_i which extends n^-i and such that
diam((j^-i) < a^. We can assume that the cardinality of B^-i is larger
than the previously defined N = 2\ and actually we can change N
and assume that TV is the cardinality of B^-i. Define now the
n-dimensional P-family n^ ln fhe following way :

Let k be an integer such that 2 ~ k < o^, and consider £'„ _ i == { 1 , . . . , 2^}
and ^ = ^-i x ^_,;

For every ae^-i, let Ma be the origin of the interval 4; for
PG^- , let Jp= [((3-1)2-^(32-^] and set 4,p = u, + 2-Vp and
C^-D, x J ^ .

It is clear that diam (TT^) < a^. Define now the functions (pa p
as: (p^,p(5) = ((pa(5), 2 / l(5—Ka)) for each sin /a. It is clear that for
every teT we have p^{t) = (pn-i^),^2^), therefore

^
^(Pn(0)- Z (p^-iW' < 6./2 and it follows from (6) that

^=1
\\dn(PnW) - Qn(f)\\ < 8^. This finishes the inductive step and the
proof of the Theorem.
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