Annales de l'institut Fourier

PIERRE LELONG

Fonctions plurisousharmoniques et fonctions analytiques de variables réelles

Annales de l'institut Fourier, tome 11 (1961), p. 515-562

http://www.numdam.org/item?id=AIF 1961 11 515 0>

© Annales de l'institut Fourier, 1961, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

FONCTIONS PLURISOUSHARMONIQUES ET FONCTIONS ANALYTIQUES DE VARIABLES RÉELLES

par Pierre LELONG (Paris).

1. - Introduction.

1. On se propose d'étudier ici certaines propriétés des fonctions plurisousharmoniques au voisinage d'un ensemble de points appartenant au sous-espace réel R^p , plongé dans l'espace C^p des p variables complexes $X_k = x_k + iy_k$, $1 \le k \le p$; dans la seconde partie du travail, des applications seront faites à l'étude des fonctions analytiques de variables réelles.

Précisons quelques notations. On désignera par des majuscules les variables complexes, par des minuscules les variables réelles. Les ensembles d'intérieur non vide pour la topologie de \mathbb{C}^p seront notés par des lettres grecques. On considérera en particulier la situation suivante : Δ est un domaine de \mathbb{C}^p qui coupe le sous-espace réel \mathbb{R}^p , $(y_k = 0)$, selon un ensemble D non vide, qui est un domaine pour la topologie de \mathbb{R}^p . On note \mathbb{F}_{Δ} , par abréviation, une famille localement bornée supérieurement de fonctions définies dans Δ .

On sait (cf. [6, c, IX]) que si $\nu_n(X)$ est une suite F_{Δ} de fonctions plurisousharmoniques, les fonctions $\omega(X) = \sup_n \nu_n(X)$ et $\omega'(X) = \limsup_n \nu_n(X)$ ne sont pas, en général, des fonctions plurisousharmoniques, mais appartiennent à une classe plus générale (M). La plus petite majorante semi-continue supérieurement d'une fonction $\omega \in (M)$ est une fonction plurisousharmonique ω^* , dite sa « régularisée », qu'on notera toujours par le signe *. On a $\omega \leq \omega^*$ partout et l'on est ramené à l'étude de l'ensemble $\mathscr{E}(\omega < \omega^*)$. On distinguera ici les

classes (M_0) et (M), $(M_0) \subset (M)$. La classe (M_0) contient les fonctions plurisousharmoniques et est fermée par rapport aux opérations qui consistent à construire:

 A_1 — l'enveloppe supérieure de suites F_{Δ} de fonctions de (M_0) . A_2 — la limite $(\not\equiv -\infty)$ de suites non croissantes de fonctions de (M_0) . Toute fonction $\omega \in (M_0)$ appartient aux classes de Baire et a, de ce fait, pour restriction à une sous-variété de $C^p = \mathbb{R}^{2p}$ une fonction mesurable.

La classe (M) est définie de même, A_1 étant remplacé par l'opération A_1' consistant à construire l'enveloppe supérieure des sous-familles F_{Δ} non nécessairement dénombrables.

On montrera que l'ensemble $\mathscr{E}(w < w^*)$ a pour restriction au sous-espace réel R^p un ensemble de R^p -mesure nulle. En fait des propriétés un plus peu précises seront établies. Comme la classe (M) est invariante par rapport aux homéomorphismes analytiques complexes, les restrictions de $\mathscr{E}(w < w^*)$ aux sous-variétés de $R^{2p} = C^p$ localement équivalentes à R^p , (par exemple les arêtes des polycercles), sont aussi des ensembles de mesure nulle. Ces précisions sur l'ensemble $\mathscr{E}(w < w^*)$ sont essentielles pour les applications. Elles ne peuvent évidemment, être obtenues à partir du fait que w est une fonction R^{2p} -quasi-sousharmonique et $\mathscr{E}(w < w^*)$ de R^{2p} -capacité nulle; d'une manière générale le sous-espace R^p de R^{2p} étant de R^{2p} -capacité nulle, les applications directes de la théorie du potentiel fourniraient ici des énoncés insuffisants.

L'étude faite conduit dans la deuxième partie de ce travail (§ 3) à des résultats concernant les fonctions analytiques de plusieurs variables réelles. En utilisant essentiellement les propriétés des fonctions plurisousharmoniques au voisinage de R^p, on étendra à certaines classes de fonctions analytiques de deux groupes de variables réelles, un résultat de F. Hartogs, d'après lequel une fonction de plusieurs variables complexes, holomorphe par rapport à chacune d'entre elles séparément, (c'est-à-dire quand on donne aux autres variables des valeurs fixes, quelconques), est une fonction holomorphe de l'ensemble des variables. La démontration de cet énoncé classique utilise, comme on sait, outre le théorème de Baire, une propriété des fonctions sousharmoniques que nous avons énoncée ailleurs (cf. [6, a], et [5]) sous la forme générale que nous rappelons ici:

Soit $\nu_t(x) = \nu_t(x_1, \ldots, x_s)$, a < t < b, une famille de fonctions sousharmoniques définie et localement bornée supérieurement dans un domaine G de l'espace euclidien \mathbb{R}^s ; si l'on a dans \mathbb{G} :

$$(1, 1) \qquad \lim \sup_{t \to b} \nu_t(x) \leqslant g(x)$$

où g(x) est une fonction continue, alors, à tout compact $K \subset G$ et à tout $\varepsilon > 0$, correspond une valeur t_0 , $a < t_0 < b$, telle qu'on ait

$$(1, 2) v_t(x) \leqslant g(x) + \varepsilon$$

pour $t > t_0$ et $x \in K$.

Cet énoncé, dans le cas d'une suite $\nu_n(x)$, donne une majoration uniforme, sur tout compact de G, des $\nu_n(x)$, à partir d'une majoration de lim sup $\nu_n(x)$ par une fonction continue.

Si maintenant, $o_l(X)$ étant une famille F_{Δ} de fonctions plurisousharmoniques, on fait l'hypothèse (1, 1) relativement aux seules restrictions $o_l(x)$ au sous-espace réel R^p , obtient-on encore une majoration uniforme, du type (1, 2), sur tout compact K pris dans $D = \Delta \cap R^p$? Il en est bien ainsi et l'on obtient une majoration uniforme non seulement sur tout compact de D, mais encore, ce qui est essentiel pour certaines applications, sur tout compact de Δ suffisamment voisin d'un compact de D, donc sur des voisinages ouverts de K dans C^p . C'est l'objet de l'énoncé suivant:

Théorème. — Soit $\wp_l(X)$, $X_k = x_k + iy_k$, a < t < b, une famille F_Δ de fonctions plurisousharmoniques localement bornées supérieurement dans leur ensemble dans un domaine Δ de C^p , dont l'intersection $D = \Delta \cap R^p$ avec l'espace réel R^p de C^p est un domaine; soit g(x) une fonction continue dans D, g(X) une fonction continue dans Δ ayant g(x) pour restriction à D. Si l'on a

$$(1, 3) \qquad \qquad \lim \sup \nu_{\ell}(x) \leqslant g(x)$$

sur D, alors:

1) A tout compact $K \subset D$ et à tout $\varepsilon > 0$, correspond t_0 , $a < t_0 < b$, tel qu'on ait

$$(1, 4) v_l(x) \leqslant g(x) + \varepsilon$$

pour $x \in K$, $t > t_0$;

11) A tout compact $K \subset D$ et à tout $\varepsilon > 0$, on peut faire correspondre un ouvert $\Delta' \subset \Delta$ de C^p qui contient K et une valeur t_0 , $a < t_0 < b$, tels qu'on ait

$$(1, 5) v_t(X) \leqslant g(X) + \varepsilon$$

pour $X \subset \Delta'$, $t > t_0$.

Il s'ensuit que la majoration uniforme (1, 5) vaut sur tout compact de C^p suffisamment voisin de l'ensemble K de R^p , pris compact dans D.

Le théorème 1 est la pièce essentielle de la démonstration donnée au § 3 : lorsqu'une fonction $f(x, u) = f(x_1, \ldots, x_p, u_1, \ldots, u_q)$ est, par rapport à chaque groupe de variables séparément, (c'est-à-dire les valeurs attribuées aux variables de l'autre groupe demeurant fixes, quelconques) une fonction analytique appartenant à une classe $\mathcal L$ définie au § 3, f(x, u) est analytique de l'ensemble des p+q variables x, u. Bien entendu, aucune hypothèse n'est faite concernant le comportement (par exemple la continuité) de f par rapport à l'ensemble des pariables.

Les classes $\mathfrak L$ de fonctions analytiques de variables réelles sont définies de la manière suivante : un ensemble de fonctions $f(x_1, \ldots, x_p)$ forme une classe $\mathfrak L$ dans un domaine D si tout point de D est centre d'un polycercle dans l'espace complexifié $\mathbb C^p$, ces polycercles formant une famille qui ne dépend que de $\mathfrak L$ et de D; leur réunion est un ouvert $\Omega(D)$, et toute fonction $f \in \mathcal L$ se prolonge en une fonction f(X) holomorphe dans $\Omega(D)$. De plus il existe une majoration de |f(X)| sur tout compact $\Gamma \subset \Omega(D)$ donnée par :

$$|f(\mathbf{X})| \leqslant C_{\Gamma} \sup_{x \in G} |f(x)|$$

G étant un compact de D associé au compact Γ de $\Omega(D)$ et C_{Γ} une constante qui ne dépend que de cette configuration. Enfin, on suppose que pour $f_1 \in \mathcal{L}$ et $f_2 \in \mathcal{L}$, on a : $a(f_1 - f_2) \in \mathcal{L}$, pour toute constante a. Cette condition impose à \mathcal{L} d'être un espace vectoriel si $f \equiv 0$ appartient à \mathcal{L} . Les fonctions harmoniques, les fonctions polyharmoniques dans D forment des classes \mathcal{L} ; il en est de même des solutions d'équations aux dérivées partielles linéaires, lorsqu'on peut établir l'existence de la majoration (1, 7). Toute fonction f(x, u), dont les restrictions $f_u(x)$ et $f_x(u)$ appartiennent respectivement à des classes \mathcal{L}_{x_1}

 \mathcal{L}'_u du type indiqué, est une fonction analytique de l'ensemble des variables $(x, u) = (x_1, \ldots, x_p, u_1, \ldots, u_q)$. Comme exemple citons: si f(x, u) est séparément harmonique des variables (x) et (u), alors f(x, u) est analytique — sans autre hypothèse — de l'ensemble (x, u) et est alors harmonique dans l'espace produit, des (x, u); ce résultat particulier peut être rapproché du résultat de F. Hartogs cité plus haut et le contient, comme on le voit aisément en considérant séparément la partie réelle et la partie imaginaire d'une fonction à valeurs complexes.

2. — Majoration des fonctions plurisousharmoniques au voisinage du sous-espace réel.

1. Rappelons qu'une fonction $\rho(X_1, \ldots, X_p) = \rho(X)$, à valeurs réelles, $-\infty \leqslant \rho < +\infty$, est dite plurisousharmonique dans un domaine Δ de C^p si elle est semi-continue supérieurement et si, étant donnée une composante ouverte D de l'intersection $P \cap \Delta$, où P est une droite complexe définie par $X_k = X_k^0 + a_k T$, T complexe, sa restriction $\rho \mid P = \psi_P(T)$ est la constante $-\infty$ ou une fonction sousharmonique (1) sur D. On convient d'exclure la constante $-\infty$ des fonctions plurisousharmoniques, ainsi que des fonctions sousharmoniques afin de n'avoir dans ces classes que des fonctions localement sommables.

Par définition, si ν est plurisousharmonique et si l'on explicite $\nu(X_1, \ldots, X_p) = \nu(x_1, y_1; \ldots; x_p, y_p)$ les restrictions de ν aux droites complexes $C^1(X_k)$ parallèles aux axes sont, localement, des fonctions R^2 -sousharmoniques des (x_k, y_k) , ou la constante — ∞ ; cette propriété sera parfois seule utilisée, avec la semi-continuité supérieure de ν ; de ce fait certains énoncés s'appliqueront à la classe plus générale, mais non invariante par les transformations linéaires de C^p , formée des fonctions R^{2p} -sousharmoniques qui sont séparément sousharmoniques des couples (x_k, y_k) .

⁽¹⁾ On dira encore que la trace $\psi_P(T)$, est localement, soit la constante — ∞ , soit une fonction sousharmonique. Pour la définition et les propriétés utilisées ici des fonctions plurisousharmoniques, cf. [6, b], [6, c], [6, d]. On rappelle que toute fonction plurisousharmonique (dans \mathbb{C}^p) est une fonction \mathbb{R}^{2p} -sousharmonique des variables x_k , y_k , $1 \leq k \leq p$.

La notation F_{Δ} désigne une famille de fonctions localement bornée supérieurement dans un domaine Δ . On adoptera les définitions suivantes, conformes notamment à [6, a] et à [6, c]:

1º Par régularisée supérieure (ou, simplement, régularisée quand il n'y a pas ambiguïté) d'une fonction discontinue, on entend sa plus petite majorante semi-continue supérieurement.

2º Par fonction quasi-sousharmonique, on entend, comme dans [6, a] et [6, c], une fonction égale à une fonction sousharmonique, sauf aux points d'un ensemble E, de capacité nulle, où elle lui est inférieure : les enveloppes supérieures des familles F_{Δ} de fonctions sousharmoniques sont quasi-sousharmoniques, au sens précis adopté ici (2). Si w(x) est quasi-sousharmonique, sa régularisée w^* est, par définition sousharmonique et $E = \mathcal{E}(w < w^*)$ de capacité nulle dans l'espace des (x).

Rappelons que si w(x) est quasi-sousharmonique et si $\lambda(w, x, r)$ désigne la moyenne de w sur la sphère

$$S(x, r) = \mathcal{E}[|x' - x| = r],$$

de centre x, de rayon r, on a, en tout point x:

$$(2, 1) \quad w^*(x) = \lim_{r=0} \lambda(w, x, r)$$

$$w^*(x) = \lim_{r \to 0} \sup w(x + \xi), \quad \xi \to 0, \quad \xi \in e$$

où e est un ensemble non effilé à l'origine $\xi=0$. La première égalité est conséquence du fait que $\mathscr{E}(w < w^*)$ est de mesure nulle sur S(x, r) frontière de la boule B(x, r) ce qui entraîne $\lambda(w, x, r) = \lambda(w^*, x, r)$. Pour établir la seconde égalité, rappelons que e est dit effilé à l'origine, au sens de la théorie du potentiel, s'il existe une fonction sousharmonique u(x) au voisinage de x=0, avec

$$u(0) > \limsup u(x), x \to 0, x \in e.$$

De cette définition, il résulte que la réunion de deux ensembles effilés à l'origine est encore effilée à l'origine. Dans (2, 1), l'ensemble $e_1 = \mathcal{E}(w < w^*)$ qui est de capacité nulle est effilé en x; alors x + e étant un ensemble non effilé en x, $e_2 = e - e$ n e_1

⁽²⁾ Signalons que M. Brelot emploie ce mot dans un sens différent et appelle quasi-sousharmonique toute fonction qui ne diffère d'une fonction sousharmonique que sur un ensemble de capacité nulle.

ne peut être effilé en $x: w = w^*$ sur e_2 entraîne donc la seconde égalité (2, 1).

Enfin rappelons un résultat de [3] qui nous sera utile dans l'étude des enveloppes supérieures de familles F_{Δ} non dénombrables de fonctions plurisousharmoniques : soit

$$V^{\mu_t}(x) = \int d\mu_t(a)g(a, x), \qquad \mu_t \geqslant 0$$

une famille ordonnée filtrante décroissante de potentiels de Green dans un domaine de l'espace R^m ayant une fonction de Green g(a, x), avec $|\mu_t|$ borné. Il existe une suite extraite $t = t_n$, $\mu_{t_n} = \mu_n$, soit $V^{\mu_n}(x)$, décroissante, telle que μ_n converge vers μ faiblement et qu'on ait

$$V^{\mu}(x) \leqslant \inf_{\iota} V^{\mu_{\ell}}(x) \leqslant \lim_{n} V^{\mu_{n}}(x).$$

Il en résulte, en faisant le changement de sens nécessaire dans les inégalités pour passer aux fonctions sousharmoniques:

Proposition 2, 1. — $Si \ v_t(x)$ est une famille F_D de fonctions sousharmoniques avec:

$$w(x) = \sup_{l} v_l(x)$$

il existe une suite $v_n \in F_D$, telle que

$$(2, 2) \qquad \begin{cases} \sup_{n} \nu_{n}(x) = w_{1}(x) \leqslant w(x) \leqslant w^{*}(x) \\ w_{1}^{*}(x) = w^{*}(x). \end{cases}$$

Démontrons d'abord qu'on peut, étant donnée une boule B_1 , dont l'adhérence \overline{B}_1 est compacte dans le domaine D de R^m trouver $\rho_n \in F_D$ vérifiant (2, 2) dans B_1 : on complète F_D par adjonction des enveloppes supérieures des ρ_t en nombre fini, puis, si C_1 est une borne supérieure des ρ_t dans une boule concentrique $B_1 \supset B_1$, on considère la famille des fonctions $\rho_t = \rho_t - C_1$ et on les représente dans B_1 sous la forme

$$\varrho'_t = -V^{\mu_t}$$

où V^{μ_t} est le potentiel d'une mesure $\mu_t > 0$ située dans B_t' , avec comme noyau la fonction de Green g(a, x) de B_t' . Alors d'après le théorème de convergence rappelé plus haut, il existe une suite extraite $\mu_n = \mu_{t_n}$ qui converge faiblement vers une limite μ , — V^{μ_n} étant une suite croissante et l'on a :

$$\omega_1 - C_1 = \sup (-V^{\mu_n}) = \lim_n (-V^{\mu_n}) \leqslant \sup_t (-V^{\mu_t}) \leqslant -V^{\mu_t}$$

et $\mathscr{E}(w_1 < C_1 - V^{\mu})$ est de \mathbb{R}^m -capacité nulle. Chaque $(-V^{\mu_n})$ est l'enveloppe supérieure d'un nombre fini de ν'_i ; on a donc $w_1 = \sup_q \nu_q$, pour une sous-famille dénombrable $\nu_q \in F_D$, ce qui établit (2, 2) dans B_1 .

On pourra d'autre part recouvrir D par une famille dénombrable de boules analogues à B_1 , compactes dans D soient $B_1, \ldots, B_s \ldots$ avec des constantes $C_1, \ldots, C_s \ldots$ et dans chacune d'elles construire une suite $v_{q,s}$, avec $\sup_q v_{q,s} = w_s$, $w_s^* = w^*$. Il suffira alors de prendre comme famille dénombrable $v_n \in F_D$ de l'énoncé la famille $\{v_{q,s}\}$, où q et s varient tous deux.

On énoncera encore:

Proposition 2, 2. — Soient $v_i(x)$ une famille F_D de fonctions sousharmoniques dans un domaine D de R^m et v une mesure positive sur D. A chaque sous-famille $(f) \in F_D$, faisons correspondre les fonctions

(2, 3)
$$\begin{cases} w_f = \sup v_t & v_t \in (f) \\ w_f^* = \lim \sup w_f(x+\xi) & \xi \to 0. \end{cases}$$

Si $\mathscr{E}(w_f < w_f^*)$ est de ν -mesure nulle pour toutes les suites extraites de F_D , il est de ν -mesure nulle pour toutes les familles $(f) \in F_D$.

La démonstration est immédiate: (2, 2) entraı̂ne que pour $(f) \in F_D$, il existe une suite $v_n \in (f)$ avec $w_1 = \sup_n v_n$, $w = \sup_f v_t$, et $w_1^* = w^*$. On a alors

$$\&(w < w^*) \subset \&(w_i < w^*)$$

ce qui établit l'énoncé. Ainsi que le précédent, il n'intervient pas dans les applications faites au \S 3. Il est toutefois utile dans le cas d'une famille F_{Δ} non dénombrable de fonctions plurisousharmoniques ν_t pour montrer la mesurabilité de sup. ν_t sur certaines sous-variétés.

Étendons enfin un résultat établi dans [6, c], concernant l'intégrale d'une fonction sousharmonique ou quasi-sousharmonique dépendant d'un paramètre t:

Proposition 2, 3: Soit $\varphi(x, t)$ une fonction réelle

$$(-\infty \leqslant v < +\infty),$$

définie pour $x \in D$, $t \in D'$; $\varphi(x, t)$ est pour t fixé une fonction quasi-sousharmonique de $x \in D$ ou la constante — ∞ ; pour x fixé $\varphi(x, t)$ est fonction semi-continue supérieurement de

 $t \in D'$; v(x, t) est borné supérieurement sur tout compact de $D \times D'$. Alors si μ est une mesure positive à support compact dans D', l'intégrale

(2, 4)
$$w(x) = \int d\mu(t) v(x, t)$$

est soit la constante — ∞ dans D, soit une fonction quasi-sousharmonique.

Pour la démonstration, remarquons d'abord que si $\varphi(t)$ est une fonction semi-continue supérieurement, l'intégrale de Lebesgue $\int d\mu(t)\varphi(t)$ vaut l'intégrale supérieure de Riemann. Soit $P_n = \{e_{n,i}\}$ un partage du support $S(\mu)$ de μ en ensembles disjoints et μ -mesurables, $e_{n,i}$, avec $\sum_i e_{n,i} = S(\mu)$.

Formons la somme de Riemann

$$\sigma(\mathbf{P}_n) = \sum_{t \in e_{n,i}} \varphi(t).$$

On considérera des partages P_n consécutifs, P_{n+1} résultant de P_n par subdivision des $e_{n,i}$ et l'on suppose que le diamètre maximum d_n des $e_{n,i} \in P_n$ tend vers zéro quand $n \to +\infty$. Dans ces conditions on sait que $\sigma(P_n)$ tend en décroissant vers l'intégrale de Lebesgue $\int \varphi(t) \, d\mu(t)$. Pour appliquer à l'étude de w(x) défini par (2, 4), remarquons que si $v_i(x)$ est une famille F_D de fonctions dont chacune est soit quasi-sous-harmonique, soit la constante $-\infty$ dans D, l'enveloppe supérieure

$$\sup v_t(x) = u(x)$$

est quasi-sousharmonique, ou la constante — ∞ . En effet soit

$$\sup \nu_t^*(x) = g(x).$$

Il existe une suite extraite $\rho_{t_n}^* = \rho_n^*$, avec

$$\sup \varphi_n^*(x) = h(x), \qquad h \leqslant g, \qquad h^* = g^*.$$

Alors h(x) est quasi-sousharmonique (ou $\equiv -\infty$), $\& (h < h^*)$ est de capacité nulle. On a alors

$$\sup \nu_n(x) \leqslant u(x) \leqslant g(x) \leqslant g^*(x)$$

D'où:

$$\mathcal{E}(u < g^*) \subset \sum_{n} \mathcal{E}(\nu_n < \nu_n^*) + \mathcal{E}(h < g^*).$$

Mais on a $h^* = g^*$, donc $\mathscr{E}(u < g^*)$ est de capacité nulle comme réunion dénombrable de tels ensembles, ce qui établit à la fois que u a pour régularisée g^* et que u est quasi-sousharmonique, à l'exception du cas où toutes les fonctions considérées sont la constante — ∞ .

Il en résulte que, si l'on calcule l'intégrale (2, 4) à partir des $\sigma(P_n)$, chaque $\sigma(P_n)$ est soit la constante — ∞ , soit une fonction quasi-sousharmonique de $x \in D$. Il en est donc encore de même de la limite de la suite décroissante $\sigma(P_n)$, ce qui établit l'énoncé. Il donnera lieu à un énoncé analogue particulier au cas plurisousharmonique.

Remarque 2, 1. — La démonstration précédente a montré : si $v_t(x)$ est une famille F_D de fonctions dont chacune est, soit quasi-sousharmonique, soit la constante — ∞ dans D, $u(x) = \sup v_t(x)$ est quasi-sousharmonique ou la constante — ∞ .

Si la famille est celle des translatées on a un résultat plus précis:

Soit e un ensemble de points d'adhérence \overline{e} compacte dans D, domaine de R^m , et v(x) une fonction sousharmonique ou quasisousharmonique dans D; si e n'est effilé en aucun point de sa frontière f, alors:

$$w(x) = \sup_{y \in e} v(x + y)$$

est une fonction sousharmonique continue de x.

En effet, d'après l'hypothèse faite sur e, on a:

$$\omega(x) = \sup_{y \in e} \varphi(x+y) = \sup_{y \in e} \varphi^*(x+y) = \sup_{y \in f} \varphi^*(x+y) = \sup_{y \in f} \varphi^*(x+y)$$

de sorte que w est semi-continue supérieurement. De plus il existe $y_0 \in f$ tel qu'on ait

$$w(x_0) = \sup_{y \in f} \varphi^*(x_0 + y) = \varphi^*(x_0 + y_0).$$

Alors s'il existait une suite $x_n \to x_0$ avec $w(x_n) \le w(x_0) - \alpha$, $\alpha > 0$, on aurait, $w'(y) \le w(x_0) - \alpha$, pour $y \in \overline{e}$, en posant $w'(y) = \sup_{n} \varphi^*(x_n + y)$.

La régularisée w'^* est quasi-sousharmonique; comme e n'est effilé en aucun point de \overline{e} , on aurait, d'après une remarque faite plus haut

$$w'^*(y) \leqslant w(x_0) - \alpha$$
 pour $y \in \overline{e}$

qui entraînerait $w^*(y) \leqslant w(x_0) - \frac{\alpha}{2}$ pour y appartenant à un voisinage ouvert du compact \bar{e} , et enfin $v(x) \leqslant w(x_0) - \frac{\alpha}{2}$ pour x appartenant à un voisinage ouvert de $x_0 + \bar{e}$, contrairement à la définition de $w(x_0)$; ainsi w est fonction quasisousharmonique continue, donc fonction sousharmonique continue.

Rappelons (cf. [6, d]) que pour qu'une fonction soit plurisousharmonique dans un domaine Δ de $C^p = R^{2p}$, il faut et il suffit qu'elle soit sousharmonique et le demeure pour les homéomorphismes linéaires sur les variables complexes de C^p ; l'enveloppe supérieure d'une famille F_{Δ} de fonctions plurisousharmoniques, l'intégrale $w(X) = \int d\mu \ (t) v(X, t)$, où $v(X, t) \in F_{\Delta}$ et où $\mu > 0$, sont des fonctions plurisousharmoniques lorsqu'elles sont des fonctions w(X) semi-continues supérieurement (cf. [6, c]). De ce qui précède, résulte encore que si l'on considère $w(X) = \sup_{r \in e} v(X + y)$, où v est plurisousharmonique et e un compact, w(X) est encore plurisousharmonique.

2. Enveloppes supérieures de suites localement bornées supérieurement de fonctions plurisousharmoniques.

Dans ce qui suit on désignera par Δ un domaine de l'espace complexe C^p , par F_{Δ} une famille localement bornée supérieurement de fonctions définies dans Δ . On commencera par étudier le cas d'une suite F_{Δ} , de fonctions plurisousharmoniques, en démontrant des propriétés locales de l'enveloppe supérieure

(2, 5)
$$w(X) = \sup_{n} o_n(X), \quad o_n \in F_{\Delta}.$$

Le domaine Δ pourra être pris sous la forme

$$\Delta = \Delta_1 \times \Delta_2 \times \ldots \times \Delta_p,$$

produit topologique des domaines $\Delta_k \subset C^1(X_k)$.

Remarquons tout d'abord:

Si l'on a $w = \sup v_n$, ou les v_n sont des fonctions semi-continues supérieurement, dans D et si l'on pose

$$(2, 6) w'(X) = \sup_{y \in e} w(X + y)$$

où e est un ensemble compact dans Δ , alors w' est encore une fonction de Baire.

La propriété n'utilise que la semi-continuité des ν_n ; on a $w'(X) = \sup_{y \in \epsilon} w(X+y) = \sup_{y \in \epsilon} \sup_{x \in \epsilon} \nu_n(X+y) = \sup_{y \in \epsilon} \nu_n(X+y)$

Or $\sup_{y \in e} \nu_n(X + y) = \nu'_n(X)$ est semi-continue supérieurement, e étant compact; donc, finalement, $w' = \sup_{n} \nu'_n$ est une limite croissante de fonctions semi-continues supérieurement.

Régularisées partielles. A côté de la régularisée supérieure $w^*(X) = \limsup_{\xi \to 0} w(X + \xi)$, $\xi \in \mathbb{C}^p$, nous considérerons des régularisées partielles obtenues en assujettissant le vecteur ξ à appartenir à un sous-espace complexe. Nous poserons ainsi:

$$(2, 7) \quad w_q(X) = \lim \sup_{\xi \to 0} w(X + \xi), \qquad \xi \in C^q(X_1, \ldots, X_q).$$

D'après la remarque précédente si w est la fonction définie par (2, 5), les régularisées partielles sont des fonctions de Baire; on a en effet, par exemple,

$$w_q(X) = \lim_n \sup_{\xi \in \ell_n} w(X + \xi)$$

où e_n est la boule $|\xi| \leqslant \frac{1}{n}$ de l'espace $C^q(X_1, \ldots, X_q)$.

Nous démontrerons maintenant

Théorème 1. — L'enveloppe supérieure w(X) définie par (2,5) où $v_n(X)$ est dans Δ une suite localement bornée supérieurement de fonctions plurisousharmoniques, possède les propriétés suivantes:

- P₁. En tout point $X \in \Delta$, on $a \infty \leq w$ $(X) < + \infty$; w(X) est borné supérieurement sur tout compact de Δ ; $\mathscr{E}(w = -\infty)$ est de \mathbb{R}^{2p} -capacité nulle.
- P₂. La restriction de w à une droite complexe $X_k = X_k^0 + a_k T$ est, localement, soit la constante ∞ , soit une fonction $\psi(T)$ quasi-sousharmonique.
- P_3 . L'ensemble $\mathscr{E}(w < w^*)$, où w^* est la régularisée de w est la réunion de p ensembles η_1, \ldots, η_p , appartenant aux classes de Baire, et de R^{2p} -capacité nulle, η_k étant de plus coupé par les droites complexes $C^1(X_k)$ selon des ensembles de R^2 -capacité nulle; w^* est une fonction plurisousharmonique.
- P_{\star} . Soit $X \to X'$ un homéomorphisme analytique complexe quelconque: alors la fonction transformée w'(X') = w[X(X')] possède encore les propriétés P_1 , P_2 , P_3 .

Démonstration. — P_i : d'après la définition de w(X) donnée par (2, 5), w(X) est localement borné supérieurement; d'autre part les fonctions ν_n sont plurisousharmoniques, donc des fonctions sousharmoniques dans Δ considéré comme un domaine de R^{2p} : w(X) est donc quasi-sousharmonique, $\mathcal{E}(w < w^*)$ est de R^{2p} capacité nulle.

 P_2 : la restriction $\nu_n(X_k^0 + a_k T) = \psi_n(T)$ de la fonction plurisousharmonique ν_n à une droite complexe issue de (X_k^0) , de paramètres (a_k) complexes est une fonction R^2 -sousharmonique, où la constante — ∞ , localement; $\omega = \sup_n \nu_n$ a alors pour restriction $\sup_n \psi_n(T)$, qui est une fonction de même nature.

P₃: Pour établir la propriété P₃, on considérera les régularisées partielles successives de w:

$$w = w_0 \leqslant w_1 \leqslant w_2 \leqslant \cdots \leqslant w_q \leqslant \cdots \leqslant w_q = w^*$$

où les variables sont considérées dans l'ordre X_1, X_2, \ldots, X_p ; w_q défini par (2, 7) est, d'après une remarque précédente, une fonction de Baire. Posons

$$\eta_k = \mathcal{E}(w_{k-1} < w_k).$$

On a alors

$$6(w < w^*) = \sum_{k=1}^{p} \eta_k.$$

On a ainsi décomposé $\mathscr{E}(w < w^*)$ en une réunion de p ensembles de Baire, de \mathbb{R}^{2p} -capacité nulle. Pour établir la propriété indiquée des η_k on va montrer que la régularisation qui fait passer de w à w^* peut être faite en régularisant successivement par rapport à chacune des variables, d'ailleurs dans un ordre quelconque; conformément à (2, 7) on appelle régularisée par rapport à la seule variable X_k d'une fonction w, la fonction

$$(2, 9) \qquad \mathrm{R}_{\mathbf{k}} w(\mathrm{X}) = \lim \sup_{\xi \to 0} w(\mathrm{X} + \xi), \qquad \xi \in \mathrm{C}^1(\mathrm{X}_{\mathbf{k}}).$$

La méthode qui suit est celle de notre mémoire [6, c, IX]; elle utilise les moyennes

$$L(w, X_k, r_k) = \left(\frac{1}{2\pi}\right)^p \int_0^{2\pi} \cdots \int_0^{2\pi} w(X_1 + r_1 e^{i\theta_1}, \ldots, X_p + r_p e^{i\theta_p}) d\theta_1, \ldots, d\theta_p$$

de w sur l'arête d'un polycercle

$$P(X_k, r_k) = \mathcal{E}(|X_k' - X_k| \leqslant r_k).$$

On établira successivement :

Proposition 2, 4. — Si w est l'enveloppe supérieure (2, 5) d'une suite v_n localement bornée supérieurement de fonctions plurisousharmoniques dans Δ , on a pour tout $X \in \Delta$:

$$(2, 10) \qquad \qquad \omega^*(X) = \lim_{r_k \to 0} L(\omega, X_k, r_k).$$

En effet pour $P(X_k, r_k) \subset \Delta$, $L(\omega, X_k, r_k)$ existe car ω , fonction de Baire, a pour restriction à l'arête du polycercle $P(X_k, r_k)$ une fonction bornée supérieurement, mesurable des $\theta_1, \ldots, \theta_p$; l'intégrale $L(\omega, X_k, r_k)$ pour $r_k > 0$, a de plus une valeur finie car il en est ainsi des $L(\nu_n, X_k, r_k)$. Elle vaut l'intégrale itérée calculée à partir de l'intégrale

$$\frac{1}{2\pi}\int_0^{2\pi} w(X_1+r_1e^{i\theta_1}, X_2, \ldots, X_p) d\theta_1.$$

Celle-ci est fonction croissante convexe de $\log r_1$; $L(w, X_k, r_k)$ est donc fonction convexe, croissante de chacune des variables $u_k = \log r_k$. Dans ces conditions, elle a ses nombres dérivés bornés, donc elle est continue de l'ensemble des u_k , et elle est croissante des u_k . La limite au second membre de (2, 10) existe donc; elle vaut au plus $w^*(X)$, puisque w^* est la plus petite majorante semi-continue supérieurement de w.

Pour établir l'inégalité de sens contraire, on supposera sans inconvénient $X_k = 0$ et $w \le 0$ sur un polycercle $P(0, r'_k)$, ce qui entraîne $L(w, 0, r_k) \le 0$ pour $r_k < r'_k$.

Pour une fonction sousharmonique $\nu(X) < 0$ dans le cercle |X| < r' de $C^1(X)$, on a la majoration de Poisson:

$$(2, 11) \qquad \nu(X) \leqslant \frac{1}{2\pi} \int_0^{2\pi} \Re\left(\frac{re^{i\theta} + X}{re^{i\theta} - X}\right) \nu(re^{i\theta}) \ d\theta,$$

 $\mathfrak R$ désignant la partie réelle. Pour $|X| \leqslant \tau r, \ 0 < \tau < 1$, on obtient

$$\nu(\mathbf{X}) \leqslant \frac{1}{2\pi} \frac{1-\tau}{1+\tau} \int_0^{2\pi} \nu(re^{i\theta}) d\theta = \frac{1-\tau}{1+\tau} \mathbf{L}(\nu, 0, r).$$

En appliquant (2,11) par rapport aux variables X_1, \ldots, X_p , on

obtient pour une fonction plurisousharmonique

$$\begin{split} & \nu(\mathbf{X}) = \nu(\mathbf{X_1}, \dots, \ \mathbf{X_p}) \leqslant 0, \quad \text{cf. [6, c, $p. 310]:} \\ & \nu(\mathbf{X}) \leqslant \left(\frac{1-\tau}{1+\tau}\right)^p \mathbf{L}(\nu, \ 0, \ r_{\mathbf{k}}) \qquad \text{pour} \qquad |\mathbf{X_k}| \leqslant \tau r_{\mathbf{k}}. \end{split}$$

On en déduit

$$w(\mathbf{X}) = \sup \nu_{\mathbf{n}}(\mathbf{X}) \leq \left(\frac{1-\tau}{1+\tau}\right)^{\mathbf{p}} \sup \mathbf{L}(\nu_{\mathbf{n}}, 0, \mathbf{r}_{\mathbf{k}}) \leq \left(\frac{1-\tau}{1+\tau}\right)^{\mathbf{p}} \mathbf{L}(w, 0, \mathbf{r}_{\mathbf{k}})$$

valable pour $|X_k| < \tau r_k$. Choisissons τ tel qu'on ait

$$1-\varepsilon<\left(\frac{1-\tau}{1+\tau}\right)^p<1.$$

On aura:

$$w^*(0) = \lim \sup_{\xi \to 0} w(\xi) \leqslant (1 - \varepsilon) L(w, 0, r_k).$$

L'inégalité étant valable quel que soit $\varepsilon > 0$, on obtient

$$w^*(0) \leqslant L(\omega, 0, r_k), r_k > 0,$$

$$w^*(0) \leqslant \lim_{r_k \to 0} L(\omega, 0, r_k)$$

qui achève la démonstration de la Proposition 2, 4. On l'utilisera pour établir:

Proposition 2, 5_a . — Si w est l'enveloppe supérieure (2, 5) d'une suite F_{Δ} de fonctions plurisousharmoniques on a:

$$(2, 12) \qquad \qquad w^* = \mathbf{R}_{p}[\mathbf{R}_{1, \dots, p-1} w]$$

qui exprime qu'on passe de w à w^* par l'opération $w \to R_{1,\dots,p-1}w = u$, suivie de $u \to R_p u = u' = w^*$, où

$$(2, 13) \quad u(X) = R_{1, \dots, p-1} w(X) = \limsup_{\xi \to 0} w(X + \xi),$$

$$\xi \in C^{p-1}(X_1, \dots, X_{p-1}^{\xi})$$

est la régularisée de w par rapport à l'ensemble des variables (X_1, \ldots, X_{p-1}) et où

(2, 13)
$$u'(X) = R_p u(X) = \lim \sup_{\xi \to 0} u(X + \xi), \quad \xi \in C^1(X_p)$$

est la régularisée de la précédente par rapport à la seule variable X_p . La démonstration se fait en utilisant (2, 10) et le théorème de Lebesgue : la restriction de w(X) à X_p constant est en effet

soit la constante $-\infty$, soit l'enveloppe supérieure d'une famille F_{Δ} de fonctions plurisousharmoniques; on suppose $\Delta = \Delta_1 \times \Delta_2 \times \cdots \times \Delta_p$. On a donc d'après la proposition 2, 4:

$$u(X) = \lim_{\substack{r_i = 0, \ r_{p-i} = 0 \\ \cdots}} \left(\frac{1}{2\pi}\right)^{p-1} \int_0^{2\pi} \cdots \int_0^{2\pi} w(X_i + r_i e^{i\theta_i}, \dots, X_{p-i} + r_{p-i} e^{i\theta_{p-i}}, X_p) d\theta_i \dots d\theta_{p-i}.$$

La fonction $u(X) = u(X_1, \ldots, X_p)$ est d'après (2, 13), à X_1, \ldots, X_{p-1} constants, une fonction quasi-sousharmonique de X_p , ou la constante — ∞ dans Δ_p . On a alors d'après (2, 1): $u'(X) = R_p u(X_2, \ldots, X_p)$

$$(2, 14) = \lim_{\substack{r_{p} \to 0 \\ r_{p} \to 0}} \frac{1}{2\pi} \int_{0}^{2\pi} u(X_{1}, \dots, X_{p-1}, X_{p} + r_{p}e^{i\theta_{p}}) d\theta_{p},$$

$$u'(X) = \left(\frac{1}{2\pi}\right)^{p} \lim_{\substack{r_{p} \to 0 \\ r_{p} \to 0}} \int_{0}^{2\pi} d\theta_{p} \lim_{\substack{r_{1} \to 0, \dots, r_{p-1} \to 0 \\ 0}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} w(X_{1} + r_{1}e^{i\theta_{1}}, \dots, X_{p} + r_{p}e^{i\theta_{p}}) d\theta_{1} \dots d\theta_{p-1}.$$

Le second membre s'exprime en appliquant successivement les théorèmes de Lebesgue et de Fubini, par:

$$\lim_{r_p \to 0} \lim_{r_i \to 0, \dots, r_{p-i} \to 0} L(w, X, r_k).$$

où L est fonction croissante des r_k ; d'après la Proposition précedente, on a donc:

$$u'(X) = R_p u(X) = R_p[R_{1,\ldots,p-1} w](X) = w^*(X)$$

ce qui établit l'énoncé.

Proposition 2, 5_b . — Si w est l'enveloppe supérieure définie à la Proposition 2, 5_a , on a

$$w^* = R_{i_1}R_{i_2}\dots R_{i_p}w$$

où R_k désigne l'opération de régularisation par rapport à la seule variable X_k , définie par (2, 9).

Démontrons par récurrence, l'énoncé étant vrai pour p=1; s'il est vérifié pour p-1, on a, en considérant la restriction \tilde{w} de w à X_p constant:

$$(2, 15) R_{1, \dots, p-1} w = R_{p-1} R_{p-2} \dots R_1 \tilde{w}.$$

En effet $\tilde{\omega}$ est soit la constante $-\infty$ dans $\Delta' = \Delta_1 \times \Delta_2 \cdots \times \Delta_{p-1}$,

soit l'enveloppe supérieure d'une suite F_{Δ} de fonctions plurisousharmoniques $\tilde{\rho}_n$ restrictions des ρ_n .

On aura alors d'après (2, 12):

$$w^* = R_p[R_{i_1,\ldots,p-i}w] = R_pR_{p-i_1}\ldots R_iw.$$

D'autre part on peut opérer sur les variables X_k une permutation quelconque sans modifier les hypothèses faites sur w, ni sur w^* , ce qui établit l'énoncé.

Pour achever la démonstration de la propriété P₃, reprenons la suite

$$(2, 16) \quad w = w_0 \leqslant w_1 \leqslant w_2 \leqslant \cdots \leqslant w_q \leqslant \cdots \leqslant w_p = w^*$$
où w_q est défini par $(2, 7)$. On a d'après la Proposition $2, 5_b$:
$$w_q = R_q w_{q-1} = \lim \sup_{\xi \to 0} w_{q-1}(X_1, \dots X_q + \xi, X_{q+1}, \dots X_p).$$

Mais w_q , pour X_q seul variable, est fonction quasi-sousharmonique (ou $\equiv -\infty$) dans Δ_q ; donc $\mathscr{E}(w_{q-1} < w_q)$ est coupé par les espaces $C^1(X_q)$ selon des ensembles de R^2 -capacité nulle. Ainsi dans la décomposition (2, 8) on a

$$\mathscr{E}(w < w^*) \subset \Sigma \eta_k$$

où $\eta_k = \mathcal{E}(w_{k-1} < w_k)$ est de \mathbb{R}^{2p} -capacité nulle et est coupé par les espaces $\mathbb{C}^1(X_k)$ selon des ensembles de \mathbb{R}^2 -capacité nulle. De plus la régularisée $w^*(X)$ vérifie d'après (2, 10), $\mathbb{L}(w, X_k, r_k)$ étant fonction croissante des r_k :

$$(2, 17) w^*(X) \leqslant L(w, X, r_k) \leqslant L(w^*, X, r_k)$$

qui établit $w^*(X) \leq L(w^*, X, r_k)$; cette inégalité demeure valable après un changement d'axes quelconque et l'on sait qu'elle entraîne, si w^* est semi-continue supérieurement, que w^* soit plurisousharmonique (cf. [6, c,]). La propriété P_3 est donc établie.

La propriété P_{\downarrow} est immédiate, un homéomorphisme analytique complexe $X \to X'$, (c'est-à-dire une transformation analytique complexe biunivoque) conservant le caractère plurisousharmonique des fonctions ν_n (cf. [6, c,]) et toutes les propriétés utilisées. Le théorème 1 est donc établi.

Remarque. — a) La régularisée partielle $w_q(X_1, \ldots X_p)$ est plurisousharmonique (ou \equiv — ∞) dans $\Delta_1 \times \cdots \times \Delta_q$ à $X_{q+1} \ldots X_p$ constants.

b) L'opération R_q de régularisation par rapport à la variable X_q peut être faite, la variable ξ étant prise dans $C^1(X_q)$ sur un ensemble e_q non effilé à l'origine $X_q = 0$:

$$R_q w(X_1 \ldots X_p) = \limsup_{\xi \to 0} w(X_1, \ldots X_q + \xi, \ldots X_p),$$

$$\xi \in e_q \subset C^1(X_q).$$

D'où le résultat utile, mais assez peu précis:

COROLLAIRE. — L'ensemble $w(X + Y) < w^*(X) - \alpha, \alpha > 0$, ne peut contenir le produit $e_1 \times \ldots \times e_q \times \ldots \times e_p$ d'ensembles non effilés à l'origine dans les espaces $R^2(X_q)$.

3. Les classes (M₀) et (M). — Avant de tirer des conséquences du théorème 1, on va montrer que les propriétés P₁, P₂, P₃, P₄ sont conservées par deux opérations simples.

Définition. — On appellera (M_0) une classe de fonctions à valeurs réelles comprenant les fonctions plurisousharmoniques et fermée par les opérations suivantes effectuées en infinité dénombrable :

 A_1 . Construction de l'enveloppe supérieure d'une suite $w_n \in (M_0)$ localement bornée supérieurement dans un domaine Δ de C^p .

 A_2 : Construction de la limite w (autre que la constante — ∞) d'une suite décroissante $w_n \in (M_0)$.

Nous démontrerons alors :

Théorème 2. — Les fonctions de la classe (M_0) possèdent les propriétés $P_1,\ P_2,\ P_3,\ P_4.$

Démonstration. — Il suffit d'établir que A_1 et A_2 maintiennent les propriétés en question.

Pour P_1 : il suffit de remarquer que ni A_1 ni A_2 ne font sortir de la classe des fonctions R^{2p} -sousharmoniques (dont on exclut la constante — ∞).

Pour P₂: on applique la remarque précédente aux restrictions des fonctions à une droite complexe quelconque.

Pour démontrer P_3 , on va établir que si $w_n \in (M_0)$ est une suite F_{Δ} , et si $w = \sup_n w_n$, $\mathcal{E}(w < w^*)$ a encore une décomposition (2, 8). Il suffit d'établir qu'on a :

$$\mathcal{E}(w < w^*) \subset \sum_{i=1}^{p} \gamma_{ik}$$

les η_k ayant les propriétés indiquées. A la suite $\omega_n \in (M_0)$ faisons correspondre la suite ω_n^* des régularisées plurisous-harmoniques. On pose :

$$\omega = \sup \omega_n \leqslant \sup \omega_n^* = \omega' \leqslant \omega'^*$$

On a alors:

$$(2, 18) \quad \mathcal{E}(\mathbf{w} < \mathbf{w}'^*) \subset \sum_{n=1}^{\infty} \mathcal{E}(\mathbf{w}_n < \mathbf{w}_n^*) + \mathcal{E}(\mathbf{w}' < \mathbf{w}'^*).$$

Mais les ω_n^* sont une suite F_{Δ} de fonctions plurisousharmoniques; chacun des ensembles du second membre a alors les propriétés à établir et l'on a :

(2, 19)
$$\mathscr{E}(w < w'^*) \subset \sum_{k=1}^{k=p} \left[\sum_{n=1}^{\infty} \eta_{k,n} + \eta'_k \right] = \sum_{1}^{p} \eta_k$$

où η_k a bien les propriétés voulues : être de R^{2p} -capacité nulle, appartenir aux classes de Baire et être coupé par les sous-espaces complexes $C^1(X_k)$ selon des ensembles de R^2 -capacité nulle, ces propriétés se conservant par l'addition dénombrable. En même temps on voit que $w'^* = w^*$, $\mathcal{E}(w < w'^*)$ étant de R^{2p} -capacité nulle; donc l'opération A_1 conserve P_3 .

Pour voir que A_2 conserve également P_3 , on procède de même; à la suite w_n décroissante et tendant vers $w(\not\equiv -\infty)$ on associe la suite décroissante des w_n^* . On a

$$\lim w_n = w \leqslant \lim w_n^* = w' \leqslant w'^*;$$

on conclut alors comme plus haut à partir de (2, 18) et de (2, 19). Il est d'autre part immédiat que P₄ est conservé par A₁ et A₂ ce qui achève la démonstration de l'énoncé.

On va étendre les propriétés précédentes aux enveloppes supérieures de familles F_{Δ} quelconques de fonctions plurisous-harmoniques.

DÉFINITION. — On appelle (M) une classe de fonctions à valeurs réelles, contenant les fonctions plurisousharmoniques et fermée par les opérations A_1' et A_2 :

 A'_i : Construction de l'enveloppe supérieure w_f d'une famille (f) de fonctions $v_i \in (M_0)$, localement bornée supérieurement dans un domaine Δ de \mathbb{C}^p .

Nous démontrerons encore:

Théorème 3. — Toute fonction w de la classe (M) possède les propriétés P₁, P₂, P'₃, P₄, où P'₃ s'énonce:

 $P_s': \&(w < w^*)$ est contenu dans un ensemble de Baire possédant les propriétés de décomposition énoncées P_s et il existe une fonction w' de classe (M_0) , telle qu'on ait

La démonstration repose sur la Proposition (2, 1); nous montrerons d'abord que A'_i conserve la propriété P'_i . Soit w_i une famille F_{Δ} de fonctions de classe (M), w_i^* leurs régularisées; par hypothèse à w_i correspond w'_i de classe (M_0) avec

$$w'_t \leqslant w_t \leqslant w_t^*; \qquad w'^*_t = w_t^*.$$

Dans ces conditions montrons que

$$w = \sup_{t} w_{t}$$
.

possède encore la propriété P_3' : posons $w_1 = \sup w_t^*$, et $w_2 = \sup w_{t_n}^*$ pour une suite (t_n) extraite de la famille w_t^* et choisie, selon la Proposition (2, 1) de manière qu'on ait $w_2^* = w_1^*$. On a alors $\sup w_{t_n} \leq w \leq w_1$; $w_1^* = w_2^*$ est plurisousharmonique; de plus:

$$\sup w_{t_n} \leqslant \sup_{\infty} w_{t_n}^* = w_2 \leqslant w_1, \qquad w_1^* = w_2^*$$

$$(2, 21) \quad \&(w < w_1^*) \subset \sum_{t=1}^{\infty} \&(w_{t_n} < w_{t_n}^*) + \&(w_2 < w_2^*) = E.$$

Par hypothèse chacun des ensembles écrits au second membre a la propriété P_3 ; donc $\mathscr{E}(w < w_1^*)$ est contenu dans un ensemble de Baire, de \mathbb{R}^{2p} -capacité nulle, qui admet la décomposition $\mathbb{E} = \sum_{i=1}^{p} \eta_k$, où chaque η_k est de plus coupé par les espaces $\mathbb{C}^1(X_k)$ selon des ensembles de \mathbb{R}^2 -capacité nulle. Comme on a $w < w_1^*$, on voit que $w_1^* = w_2^* = w^*$ est la fonction plurisousharmonique régularisée de w^* . Enfin on a aussi:

(2, 22)
$$w' = \sup_n w'_{t_n} \leqslant \sup_n w_{t_n} \leqslant \sup_n w^*_{t_n} = w_2$$
 ce qui entraîne $w' \leqslant w \leqslant w^*$, avec:

$$(2, 23) \quad \mathscr{E}(w' \subset w^*) \subset \sum_{i=1}^{\infty} \mathscr{E}(w'_{i_n} > w^*_{n} + \mathscr{E}(w_2 < w^*_2))$$

Le second membre est encore de R^{2p}-capacité nulle; on a donc

 $w'^* = w^*$; w' d'après (2, 22) est de classe (M₀), ce qui établit que A' conserve P'₃, et l'on a (³)

$$w' \leqslant w \leqslant w^* = w'^*, \qquad w' \in (M_0).$$

D'autre part A_i conserve P₁: en effet

$$\mathscr{E}(\mathscr{W}=-\infty) \subset \mathscr{E}(\mathscr{W}^*=-\infty) + \mathscr{E}(\mathscr{W}<\mathscr{W}^*)$$

est de R^{2p} -capacité nulle. De même A'_{ι} conserve P_{2} car le raisonnement précédent, appliqué aux restrictions \tilde{w}_{ι} de w_{ι} à une droite complexe, montre que sup \tilde{w}_{ι} est quasi-sousharmonique ou la constante — ∞ . Enfin l'invariance (propriété P_{ι}) de la classe (M) par les homéomorphismes analytiques complexes est évidente.

On a vu plus haut que l'opération A_2 conserve les propriétés P_1 , P_2 , P_4 . Reste à montrer qu'elle conserve P_3' , c'està-dire que si w_n est une suite décroissante de fonctions de (M), $w = \lim w_n$ a encore la propriété P_3' ; les w_n^* forment une suite décroissante; on a $\lim w_n^* = w_1$, $(w_1 \not\equiv -\infty)$, sinon $w \equiv -\infty$); w_1 est plurisousharmonique; $w < w_1$. D'autre part

$$\mathscr{E}(\omega < \omega_i) \subset \sum_{n=1}^{\infty} \mathscr{E}(\omega_n < \omega_n^*),$$

montre que $\mathscr{E}(w \leqslant w_i)$ est de \mathbb{R}^{2p} -capacité nulle, de sorte qu'on a

$$w^* = w_1$$

et que $\mathscr{E}(w < w^*) \subset \sum_{i=1}^{n} \mathscr{E}(w_n < w_n^*)$ possède la propriété de décomposition $\mathscr{E}(w < w^*) = \sum_{i=1}^{p} \eta_k$, où η_k , de R^{2p} -capacité nulle, est coupé par les $C^i(X_k)$ selon des ensembles de R^2 -capacité nulle. De plus si à w_n on associe la fonction de Baire w_n' , avec

$$w_n' < w_n, \qquad w_n'^* = w_n^*$$

on a, $w' = \lim w'_n$, $w'^* = w^* = w_1$ comme plus haut et $\mathcal{E}(w' < w^*) \subset \Sigma \mathcal{E}(w'_n < w'^*_n)$

avec $w' \leqslant w \leqslant w^* = w'^*$, ce qui établit P_3 , la fonction w' étant de la classe (M_0) . Finalement le théorème 3 est établi.

⁽⁸⁾ Remarque. — On a établi chemin faisant: si w_t est une famille F_{Δ} de fonctions de classe (M), $w = \sup w_t$, $w_1 = \sup w_t^*$ sont de classe (M) et ont des régularisées $w^* = w_1^*$ identiques.

4. Restrictions à \mathbb{R}^p et aux variétés S. — Considérons, comme dans l'Introduction un domaine Δ de \mathbb{C}^p , coupant le sous-espace réel \mathbb{R}^p selon un domaine D non vide, et une famille F_{Δ} (c'est-à-dire localement bornée supérieurement) de fonctions plurisousharmoniques. Les enveloppes supérieures de sous-familles $(f) \in F_{\Delta}$, les lim sup de suites extraites de F_{Δ} appartiendront à la classe (M); pour une telle fonction $w \in (M)$ on cherchera à déduire du comportement de la restriction $\tilde{w}(x)$ de w(X) à \mathbb{R}^p , des majorations uniformes, sur un voisinage ouvert de D dans \mathbb{C}^p pour les fonctions de la sous-famille (f) ou de la suite considérée. Cette recherche fait intervenir l'ensemble $\mathscr{E}(w < w^*)$, w^* étant la régularisée de w(X) dans Δ ; une majoration de $w^*(x)$ sur \mathbb{R}^p entraîne ensuite une majoration de $w^*(X)$ dans un voisinage ouvert de \mathbb{C}^p .

Nous établirons d'abord :

Théorème 4. — Soit Δ un domaine de C^p coupant le sousespace réel R^p selon un domaine de R^p , soit $D = \Delta \cap R^p$, et w(X)une fonction de classe (M) dans Δ . Alors

$$\&(w < w^*) \cap \mathbf{R}^p$$

est localement la somme de p ensembles $\tilde{\eta}_1, \ldots, \tilde{\eta}_p, \tilde{\eta}_k$ étant coupé par les droites réelles de R^p parallèles à l'axe des x_k selon des ensembles de R^2 -capacité nulle (*). De plus un homéomorphisme analytique réel quelconque $x_k' = \varphi_k(x_j)$ pour lequel on a $\frac{D(x_k')}{D(x_j)} \neq 0$ conserve cette propriété.

En effet P_3' entraîne l'existence d'une fonction $w' \in (M_0)$ avec $w' \leq w \leq w^* = w'^*$, $\mathscr{E}(w < w^*) \subset \mathscr{E}(w' < w'^*) \subset \sum_{i=1}^{p} \eta_k'$ où η_k' , ensemble de Baire de R^{2p} -capacité nulle, est coupé par les espaces $C^1(X_k)$ selon des ensembles de R^2 -capacité nulle. Considérons les restrictions $\tilde{\eta}_k'$ à $R^p: \tilde{\eta}_k'$ est coupé par les droites $R^1(x_k)$ selon des ensembles de R^2 -capacité nulle; posons

$$\eta_k = \mathbb{E}(w < w^*) \cap \eta_k'.$$

⁽⁴⁾ On dira qu'un ensemble de points sur une droite réelle est de R²-capacité nulle s'il est de capacité nulle dans un plan R² passant par cette droite.

On a $\tilde{\eta}_k \subset \tilde{\eta}'_k$ et $\mathcal{E}(w < w^*) \cap \mathbf{R}^p = \sum_{i=1}^p \tilde{\eta}_k$, ce qui établit la première partie de l'énoncé.

Pour établir la seconde partie remarquons que l'homéomorphisme $x'_k = \varphi_k(x_j)$ se prolonge en un homéomorphisme complexe, $X'_k = \varphi_k(X_j)$, les φ_k étant développables en série de Taylor à coefficients réels au voisinage d'un couple $x'^0 = \varphi(x^0)$ de points correspondants: $\frac{D(X'_k)}{D(X_j)}$ demeure en effet non nul, sous l'hypothèse faite sur un voisinage de x^0 dans C^p ; il existe alors deux voisinages respectivement de x^0 et de x'^0 dans C^p entre lesquels $X'_k = \varphi_k(X_j)$ établit un homéomorphisme analytique complexe conservant R^p et se réduisant sur R^p à l'homéomorphisme analytique réel $x'_k = \varphi_k(x_j)$: la propriété P_k entraîne alors la propriété énoncée.

Il en résulte, \tilde{w}^* étant la restriction de w^* à \mathbb{R}^p :

Théorème 5. — Si w(X) est de classe (M) dans Δ , avec $\Delta \cap \mathbf{R}^p = \mathbf{D}$, sa restriction $\tilde{w}(x)$ à \mathbf{R}^p est \mathbf{R}^p -mesurable; l'ensemble $\mathcal{E}(\tilde{w} < \tilde{w}^*)$ est de mesure nulle; l'intégrale $\int_{\mathbf{E}} \tilde{w}(x) \, d\tau_x = \int_{\mathbf{E}} \tilde{w}^*(x) \, d\tau_x$ a une valeur finie pour tout ensemble mesurable $\mathbf{E} \subset \mathbf{D}$ de mesure $\tau_x(\mathbf{E})$ non nulle.

En effet si w est de classe (M_0) , $\tilde{w}(x)$ est une fonction de Baire, donc mesurable; on a $\mathcal{E}(\tilde{w} < \tilde{w}^*) = \sum_{i=1}^{p} \tilde{\eta}_k$, où $\tilde{\eta}_k$ est un ensemble de Baire; les sections de $\tilde{\eta}_k$ par les droites $R^1(x_k)$ de R^p sont des ensembles de Baire de R^2 -capacité nulle; ils sont donc de R^1 -mesure nulle. Si $\psi_k(x_1, \ldots, x_p)$ est la fonction caractéristique de $\tilde{\eta}_k$ mesurable pour la mesure $d\tau_x = dx_1 \ldots dx_p$ de R^p , on a, d'après le théorème de Fubini:

$$\int \psi_k d\tau_x = \int dx_1 \dots dx_{k-1} dx_{k+1} \dots dx_p \int \psi_k(x_1, \dots, x_p) dx_k = 0$$
 qui montre $\tau(\tilde{\eta}_k) = 0$; $\mathcal{E}(\tilde{w} < \tilde{w}^*)$ est donc de \mathbb{R}^p -mesure nulle, ce qui établit

(2, 24)
$$\int_{\mathbf{E}} \tilde{\mathbf{w}}(x) \, d\tau_x = \int_{\mathbf{E}} \tilde{\mathbf{w}}^*(x) \, d\tau_x,$$

pour tout ensemble E qui est R^p -mesurable. On a vu de plus (cf. [6, d]) que la restriction d'une fonction plurisousharmonique $w^*(X)$ à R^p était une fonction $w^*(x)$ localement sommable sur R^p :

l'intégrale qui figure au second membre de (2, 24) a donc une valeur finie pour tout ensemble E de mesure $\tau_x(E)$ non nulle.

Si maintenant w est de classe (M), il existe d'après P'_3 une fonction $w' \in (M_0)$ avec $w' \leq w \leq w^* = w'^*$, et l'on a d'après (2, 24)

$$\int_{\mathbb{E}} \tilde{w}'(x) d\tau_x = \int_{\mathbb{E}} \tilde{w}(x) d\tau_x = \int_{\mathbb{E}} \tilde{w}'^* d\tau_x,$$

pour tout ensemble E qui est R^p-mesurable, ce qui établit l'énoncé.

Les résultats précédents se transposent à une classe de variétés dans C^p qui sont localement l'image analytique complexe de \mathbb{R}^p .

DÉFINITION. — Un sous-ensemble A de C^p , est dit une variété S, s'il existe un recouvrement dénombrable, localement fini de A par des cartes u_i , où l'on a $u_i = \Delta_i \cap A$, $\Delta_i = T_i(\Delta_0)$; Δ_0 est un domaine de C^p , T_i un homéomorphisme analytique complexe $\Delta_0 \to \Delta_i$, avec $T_i(u_0) = u_i$, et $u_0 = \Delta_0 \cap R^p$.

L'arête d'un polycercle $|X_j| \leq 1$, $1 \leq j \leq p$, définie par $X_j = e^{ij}$ est évidemment une variété S. De même l'arête des polyèdres analytiques de la forme $II = \mathcal{E}(|f_j(X_1, ..., X_p)| \leq 1)$, $1 \leq j \leq p$, où l'on suppose que les f_j établissent une correspondance biunivoque entre II et le polycercle précédent.

Une carte u_i sur A, variété S, est munie de coordonnées locales réelles $(x_{k,i})$ obtenues en attribuant au point de u_i les coordonnées du point de u_0 dans $R^p(x)$ qui lui correspond par T_i^{-1} . Si un point appartient à $u_i \cap u_j$ sur A, il existe dans C^p des ouverts Ω_{ij} , Ω_i , Ω_j et deux homéomorphismes complexes T_i , T_j , tels que l'on ait $\Omega_i \subset \Delta_0$, $\Omega_j \subset \Delta_0$, et

$$\Omega_{ij} = T_i(\Omega_i) = T_j(\Omega_j).$$

D'où $\Omega_i = T_i^{-1}T_i(\Omega_i)$, ce qui établit :

Sur une variété S, le changement de coordonnées locales (réelles) s'interprète comme la restriction à R^p d'un homéomorphisme analytique complexe conservant R^p.

analytique complexe conservant R^p . Sur un compact de $u_i \cap u_j$, le déterminant $\frac{D[(x)^{(i)}]}{D[(x)^{(j)}]} = \frac{d\tau_i}{d\tau_j}$ est compris entre deux nombres strictement positifs. Si l'on munit chaque carte u_i de la mesure $d\tau_i = dx_{i,i} \dots dx_{p,i}$, le changement de coordonnées locales, ne conserve pas la mesure, mais conserve cependant la classe des ensembles de mesure nulle. On pourra énoncer:

DÉFINITION. — Une partie E de A, variété S, est dite de mesure nulle sur A si E est de mesure nulle sur chaque carte u_i de A rapportée à ses coordonnées locales.

Le théorème 5 entraîne alors:

Théorème 6. — Si w(X) est de classe (M) dans un domaine de C^p contenant A, variété (S), $\mathscr{E}(w < w^*)$ est de mesure nulle sur A; w a sa restriction \tilde{w} à A mesurable et $\int_{\mathbb{R}} \tilde{w} d\tau_x = \int_{\mathbb{R}} \tilde{w}^* d\tau_x$ a une valeur finie pour tout ensemble E de mesure non nulle sur A.

COROLLAIRE. — $\mathscr{E}(w < w^*)$ est de mesure nulle sur les arêtes des polyèdres analytiques II définis plus haut. Pour un polycercle $\mathscr{E}(|X_k' - X_k| \le r_k)$, on a en particulier $L(w, X_k, r_k) = L(w^*, X_k, r_k)$.

Pour les applications, il est utile de remarquer que les Propositions $(2, 5_a)$ et $(2, 5_b)$ s'étendent aux fonctions de classe (M); on remarquera aussi que la trace de $\omega \in (M)$ sur un sous-espace \mathbb{C}^q , q < p, est, localement, soit la constante $-\infty$, soit de classe (M) dans \mathbb{C}^q .

Théorème 7. — Si w est de classe (M) dans Δ , et si l'on applique à w les régularisations successives; R_{i_1}, \ldots, R_{i_p} définies par : $R_k w = \limsup w(X_1, \ldots, X_k + \xi_k, \ldots, X_p), \quad \xi \in C^1(X_k)$ on a $w^* = R_{i_1} \ldots R_{i_p} w$.

En effet la Proposition 2, 4 s'applique à $w \in (M)$, car on a (cf. la corollaire précédent): $L(w^*, X_k, r_k) = L(w, X_k, r_k)$, d'où

$$\boldsymbol{\omega}^*(\mathbf{X}) = \lim_{r_k = 0} \mathbf{L}(\boldsymbol{\omega}^*, \ \mathbf{X}_k, \ r_k) = \lim_{r_k = 0} \mathbf{L} \ (\boldsymbol{\omega}, \ \mathbf{X}_k, r_k).$$

D'autre part pour $w \in (M_0)$ la démonstration de la Proposition 2, 5_a s'applique sans modification, l'intégrale au second membre de (2, 14) portant sur une fonction de Baire, donc mesurable. Si $w \in (M)$, on utilise la Propriété P'_3 : il existe $w' \in (M_0)$ avec $w' \leq w$, $w'^* = w^*$. Alors le théorème 7 étant vrai pour w', on a

$$w'^* = R_{i_1} \dots R_{i_p} w' \leqslant R_{i_1} \dots R_{i_p} w \leqslant w^*$$

et l'égalité des extrêmes établit l'énoncé.

COROLLAIRE 1. — On peut passer de $w \grave{a} w^*$, par la suite (2, 16) obtenue en régularisant successivement w sur des ensembles $e_1 \in C^1(X_1) \ldots, e_p \in C_1(X_p)$ non effilés \grave{a} l'origine.

On aura ainsi:

$$(2, 16) \quad w = w_0 \leqslant w_1 \ldots \leqslant w_{p-1} \leqslant w_p = w^*,$$

$$w_q = \operatorname{R}_q w_{q-1} = \lim \sup_{\xi \to 0} w_{q-1}(X_1, \ldots, X_q + \xi, \ldots X_p),$$

$$\xi \to 0, \quad \xi \in e_q$$

ou encore

$$w^*(X) = \lim \sup_{\xi_p \to 0} \lim \sup_{\xi_{p-1} \to 0} \dots \lim \sup_{\xi_p \to 0} w(X_1 + \xi_1, \dots X_p + \xi_p)$$

avec $\xi_1 \in e_1, \ldots, \xi_p \in e_p, e_q$ étant non effilé à l'origine dans $C^1(X_q)$.

COROLLAIRE 2. — Si w est de classe (M) l'ensemble des X tels que:

$$w(X_0 + X) \leq w^*(X_0) - \alpha, \quad \alpha > 0.$$

ne peut contenir le produit $e_1 \times \cdots \times e_p$ si chaque e_k est non effilé à l'origine dans $C^1(X_k)$.

COROLLAIRE 3. — Si x^0 est un point de $\mathbb{R}^p \subset \mathbb{C}^p$, et $w \in (M)$, $\mathscr{E}[w(x^0+y) < w^*(x^0) - \alpha], \alpha > 0, y \in \mathbb{R}^p$, ne peut contenir un ouvert de \mathbb{R}^p contenant x^0 .

COROLLAIRE 4. — Pour passer de w à w^* en un point $x^0 \in \mathbb{R}^p$, on peut « régulariser » sur l'espace réel \mathbb{R}^p , c'est-à-dire qu'on a

$$w^*(x^0) = \limsup_{y \to 0} w(x^0 + y), \qquad y \in \mathbf{R}^p.$$

En effet $\mathscr{E}[w(x) < w^*(x^0) - \alpha]$, pour $\alpha > 0$, ne peut contenir le produit d'intervalles $I_k \in R^1(x_k)$ ouverts, I_k ayant x_k^0 comme point intérieur.

Ces résultats s'appliquent en particulier si w est plurisousharmonique. Rappelons qu'un ensemble e est dit [cf. (6, d)] C^n -effilé à l'origine s'il existe une fonction V(X), plurisousharmonique dans un voisinage de l'origine, vérifiant:

$$V(0) > \limsup V(X), \quad X \to 0, \quad X \in e.$$

On obtient alors

COROLLAIRE 5. — Un ensemble C^n -effilé à l'origine ne peut contenir le produit $e_1 \times \cdots \times e_p$ d'ensembles e_k , e_k étant non effilé à l'origine dans $C^1(X_k)$; en particulier il ne peut contenir un ouvert de \mathbb{R}^p contenant l'origine.

5. — Intégrale d'une fonction de classe (M). La proposition 2, 3 a un équivalent sous la forme suivante:

Théorème 8. — Soit w(X, t) une fonction réelle

$$(-\infty \leqslant w < +\infty),$$

définie pour $X \in \Delta$, $t \in D'$; w(X, t) est pour t fixé une fonction de classe (M) dans Δ ou la constante $-\infty$; pour X fixé, w(X, t) est fonction semi-continue supérieurement de $t \in D'$; on suppose w(X, t) borné supérieurement sur tout compact de $\Delta \times D'$. Alors si μ est une mesure positive à support compact dans D', l'intégrale

$$w_0(X) = \int d\mu(t) w(X, t)$$

est soit la constante — ∞ dans Δ , soit une fonction de classe (M). La démonstration se fait comme celle de la Proposition 2, 3, la seule modification étant que les sommes $\sigma(P_n)$ sont des fonctions (M) — ou la constante — ∞ .

6. — Application à des problèmes de majoration. Comme première application du théorème 5 démontrons:

Théorème 9. — Soit w(X) une fonction de classe (M) dans un domaine Δ de C^p , $\Delta \cap R^p = D$ étant un domaine de R^p ; soit g(X) une fonction continue dans Δ . Si $\mathscr{E}[w(x) < g(x)]$ est de R^p -mesure positive sur R^p , il existe dans Δ un ouvert (pour la topologie C^p) qui intersecte R^p et sur lequel on a w(X) < g(X).

En effet on a $w(X) \leq w^*(X) \leq g(X)$; d'autre part $\mathcal{E}[w(x) < w^*(x)]$ étant de \mathbb{R}^p -mesure nulle, il existe au moins un point x^0 sur $D = \mathbb{R}^p \cap \Delta$, en lequel on a $w^*(x_0) < g(x^0)$; $w^*(X)$ étant semi-continue supérieurement et g(X) continue, il existe alors un voisinage de x^0 dans \mathbb{C}^p sur lequel on a encore $w^*(X) < g(X)$.

Le problème posé dans l'Introduction est résolu par l'énoncé suivant : Théorème 10. — Soit $v_l(X)$, a < t < b, une famille localement bornée supérieurement de fonctions plurisousharmoniques (ou plus généralement de fonctions de classe (M)) dans un domaine Δ de C^p , $\Delta \cap R^p = D$ étant un domaine non vide de R^p . Soit g(X) une fonction continue dans Δ ; si l'on a sur D

$$(2, 25) w(x) = \limsup_{t \to b} v_t(x) \leqslant g(x)$$

alors:

- i) $A \in > 0$ donné correspond un ouvert Ω de la topologie C^p , avec $D \subset \Omega \subset \Delta$ tel qu'on ait $w^*(X) < g(X) + \varepsilon$ pour $X \in \Omega$.
- ii) A un compact K donné dans D (pour la topologie \mathbb{R}^p), et à $\varepsilon > 0$, correspond $t_0(K, \varepsilon)$ tel qu'on ait

$$(2, 26)$$
 $v_t(x) \leqslant g(x) + \varepsilon$ pour $x \in K$, $t > t_0(K, \varepsilon)$.

iii) A un compact K donné dans D et à $\varepsilon > 0$ correspondent t_0 et un domaine de \mathbb{C}^p , soit $\Delta_1 \subset \Delta$, tel qu'on ait $K \subset \Delta_1$ et

$$(2, 27)$$
 $v_t(X) \leqslant g(X) + \varepsilon$ pour $X \in \Delta_1, t > t_0$

Démonstration. — On peut se ramener au cas où $\nu_i(X)$ est plurisous harmonique car $\limsup_{t\to b} \nu_i(x) \leqslant g(x)$, entraîne

$$w'(x) = \lim \sup_{t \to b} \, \varphi_t^*(x) \leqslant g(x).$$

En effet si b_n , $a < b_n < b$, est une suite de nombres tendant vers b en croissant, et si l'on pose

 $w_n(X) = \sup_t v_t(X)$ et $w'_n(X) = \sup_t v'_t(X)$, $b_n < t < b$ on a (cf. remarque p. 535):

$$\omega_n^*(X) = \omega_n^{\prime *}(X).$$

II en resulte : $\lim w_n^*(X) = \lim w_n'^*(X)$, c'est-à-dire $w^*(X) = w'^*(X)$.

Ainsi $w = \lim \sup v_t$ et $w' = \lim \sup v_t^*$ ont même régularisée. D'autre part, d'après le Corollaire 4 du théorème 7, on peut calculer cette régularisée par régularisation sur le sous-espace \mathbb{R}^p . Donc en un point $x \in \mathbb{D}$, on a

$$w^*(x) = \limsup_{y \to 0} w(x+y), \quad y \in \mathbf{R}^p.$$

Alors $w(x) \leqslant g(x)$, g(x) étant continue, entraîne

$$w^*(x) \leqslant g(x),$$

 $w'(x) \leqslant w^*(x) \leqslant g(x),$

et par suite

de sorte que (2, 25) est encore vérifié si on remplace o_t par o_t^* ; les majorations à obtenir résulteront d'autre part des majorations correspondantes sur les o_t^* . On est donc ramené au cas où les $o_t(X)$ sont plurisousharmoniques.

La partie i) est une conséquence du théorème 9: on a $w^*(x) \leq g(x)$ pour $x \in D$; tout $x \in D$ a donc un voisinage ouvert dans C^p sur lequel on a encore $w^*(X) < g(X) + \varepsilon$; il existe dans Δ un ouvert de C^p , soit Ω , avec $D \subset \Omega \subset \Delta$, sur lequel l'inégalité est vérifiée.

Démontrons iii): D'après i), tout $x \in D$ a un voisinage dans C^p sur lequel on a :

(2, 28)
$$w(X) < g(X) + \frac{\varepsilon}{2} = g'(X)$$

donc il existe un domaine Δ' de C^p , avec $K \subset \Delta' \subset \Delta$ dans lequel on a (2, 28). On choisit alors un domaine Δ_i de C^p d'adhérence compacte dans Δ' soit:

$$K \subset \Delta_i \subset \overline{\Delta}_i \subset \Delta'$$

et on utilise maintenant le fait que les $\rho_l(X)$ sont des fonctions sousharmoniques dans Δ' considéré comme un domaine de R^{2p} : d'après la propriété que nous avons appelée « propriété de Hartogs », (cf. [6, a] et [5]) des familles localement bornées supérieurement de telles fonctions, la majoration dans Δ'

$$\limsup \, \nu_t(X) \leqslant g'(X)$$

où g' est continue, entraîne qu'à ϵ et au compact $\overline{\Delta}_i$ corresponde un t_0 , tel qu'on ait

$$(2, 29) \qquad \nu_i(X) \leqslant g'(X) + \frac{\varepsilon}{2} = g(X) + \varepsilon$$

pour $X \in \Delta_i$, $t > t_0(\Delta_i, \epsilon)$, ce qui établit iii), Δ_i étant un ouvert de C^p contenant le compact K donné dans R^p .

Si maintenant au lieu du compact $\overline{\Delta}_i$, on considère $K \subset \Delta'$, la « propriété de Hartogs » montre encore qu'il existe $t_0(K, \varepsilon)$ tel qu'on ait

$$w(x) < g'(x) + \frac{\varepsilon}{2} = g(x) + \varepsilon$$

pour $x \in K$, $t > t_0(K, \epsilon)$, ce qui établit ii).

Remarque. — Le théorème 10 s'applique aux suites $\nu_n(X)$ localement bornées supérieurement de fonctions plurisous-harmoniques et de fonctions $(M): w(x) = \limsup_n \nu_n(x) \leqslant g(x)$, g(X) continue, entraîne l'existence d'un indice N à partir duquel (2, 26) respectivement (2, 27), sont vérifiés.

7. Il est possible de préciser les majorations données en utilisant des configurations particulières. Considérons dans le plan de la variable complexe X = x + iy, le demi-cercle

$$\Gamma_a = \mathcal{E}[|\mathbf{X}|^2 \leqslant a^2, \ y \leqslant 0]$$

et posons
$$\psi = \arg^t \frac{X - a}{X + a}$$
, $X \in \mathring{\Gamma}_a$; $\frac{\pi}{2} < \psi < \pi$.

Si on calcule au point $X \in \mathring{\Gamma}_a$ la valeur dh de la fonction harmonique dans $\mathring{\Gamma}_a$ qui vaut 1 sur le segment [x', x' + dx') du diamètre de $\mathring{\Gamma}_a$, et zéro sur le reste de la frontière de Γ_a , on obtient

$$\begin{split} dh(x',\mathbf{X}) &= \frac{1}{\pi} \, d \, \arg^t \! \left[\left(\frac{x'-a}{x'+a} \right)^2 - \left(\frac{\mathbf{X}-a}{\mathbf{X}+a} \right)^2 \right] \!, \\ dh(x',\mathbf{X}) &= \frac{y}{\pi} \, \frac{(a^2-x^2) \, (a^2-r^2) \, dx'}{\left[(x-x')^2 + y^2 \right] \left[(a^2-xx')^2 + y^2 x'^2 \right]} = \gamma(x',\mathbf{X}) \, dx'. \end{split}$$

On notera $\chi(\theta, X)d\theta$, la mesure harmonique en $X \in \mathring{\Gamma}_a$ de l'arc θ' , $\theta' + d\theta'$ du demi-cercle frontière de Γ_a . Alors pour une fonction $\rho(X)$ sousharmonique ou quasi-sousharmonique sur Γ_a , on a

(2, 30)
$$\nu(\mathbf{X}) \leqslant \int_{-a}^{+a} \nu(x') \, \gamma(x', \mathbf{X}) \, dx' + \int_{0}^{\pi} \nu(ae^{i\theta'}) \, \chi(\theta', \mathbf{X}) \, d\theta'$$
$$= \mathbf{I}(\nu) + \mathbf{J}(\nu)$$

avec

$$I(1) = \frac{2\psi}{\pi} - 1, \quad J(1) = 2 - \frac{2\psi}{\pi}$$

Si maintenant on considère le produit

$$\Gamma = \Gamma_{a_k} \times \cdots \times \Gamma_{a_p} = \mathcal{E}[|X_k] \leqslant a_k, \ y_k \geqslant 0, \qquad 1 \leqslant k \leqslant p]$$
et si l'on pose

$$(I_1 + J_1) \dots (I_p + J_p)(w) = \sigma_w$$

on a, en itérant (2, 30), pour une fonction φ plurisousharmonique:

$$(2, 31) \qquad \qquad \nu(X) \leqslant \sigma_{\nu}(X)$$

pour $X \in \Gamma$. Mais (2, 31) est valable aussi pour une fonction ω de classe (M); l'arête de Γ est une réunion de 2^p variétés de classe S; on a donc

$$\begin{array}{c} \sigma_{\mathbf{w}}(X) = \sigma_{\mathbf{w}^*}(X), \\ w(X) \leqslant w^*(X) \leqslant \sigma_{\mathbf{w}^*}(X) = \sigma_{\mathbf{w}}(X). \end{array}$$

D'où

A partir de (2, 32) et en opérant comme dans (6, d) on retrouve aisément le résultat que w(x), pour w de classe (M), est localement sommable sur \mathbb{R}^p . On pourra au lieu de (2, 30), utiliser la forme simplifiée de la majoration:

$$w(X) \leqslant m\left(\frac{2\psi}{\pi} - 1\right) + M\left(2 - \frac{2\psi}{\pi}\right)$$

valable pour $X \in \mathring{\Gamma}_a$, $\nu(x) \leqslant m$ sur le diamètre, $\nu(X) < M$, (M > m), sur $\mathring{\Gamma}_a$. On obtient pour $X \in \Gamma$, p quelconque:

$$\begin{split} w(X) \leqslant m \Big(\frac{2\psi_1}{\pi} - 1 \Big) \dots \Big(\frac{2\psi_p}{\pi} - 1 \Big) \\ &+ M \left[1 - \left(\frac{2\psi_1}{\pi} - 1 \right) \dots \left(\frac{2\psi_1}{\pi} - 1 \right) \right] \end{split}$$

où $\psi_k = \operatorname{Arg}^t \frac{X_k - a_k}{X_k + a_k}$. Considérons le domaine

$$\Gamma' = \mathcal{E}[|X_k| \leqslant b_k < a_k, \ 1 \leqslant k \leqslant p]$$

avec $b_k = a_k \operatorname{tg} u_k$, $0 \leqslant u_k \leqslant \frac{\pi}{4}$. On aura alors, en posant

(2, 33)
$$\lambda = \left(1 - \frac{4u_1}{\pi}\right) \cdots \left(1 - \frac{4u_p}{\pi}\right)$$
$$\varphi(X) \leqslant m\lambda + M(1 - \lambda).$$

D'où l'énoncé suivant, pour deux polycercles centrés à l'origine ou en un même point de l'espace réel \mathbb{R}^p :

Proposition 2, 6. — Si w (X) est une fonction de classe (M) sur le polycercle $II = \mathcal{E}[|X_k| \leqslant a_k]$ et y vérifie $w(X) \leqslant M$; si d'autre part on a:

$$w(x) \leqslant m$$

sur $\Pi \cap \mathbb{R}^p$, alors elle vérifie

$$w(X) \leqslant w^*(X) \leqslant m + \varepsilon < M$$

dans le polycercle concentrique $|X_k| \leqslant b_k < a_k$ avec $b_k = a_k \operatorname{tg} u$, où l'on a

$$(2, 34) \quad 0 \leqslant u \leqslant \frac{\pi \varepsilon}{4p (M - m)}, \quad \varepsilon < M - m.$$

Il suffit en effet de vérifier que la condition (2, 34) assure

$$1 \geqslant \lambda \geqslant 1 - \frac{\pi \varepsilon}{M - m}$$

ce qui entraîne (2, 33): on a ainsi un moyen de préciser les ouverts de C^p dont l'existence a été établie précédemment.

Application aux fonctions analytiques de variables réelles.

- 7. DÉFINITION 3, 1. Soit $f(x, u) = f(x_1, \ldots, x_p, u_1, \ldots u_q)$ une fonction de 2 groupes de variables $x = (x_k)$, $u = (u_j)$, réelles; f sera dite analytique de x et de u séparément dans un ouvert D du produit $R_{p,u}^{p+q} = R_p^p \times R_u^q$ si:
- a) pour chaque u fixé quelconque, les fonctions $f_{u}(x)$ sont analytiques des x_k sur les ouverts sections de D obtenus en donnant aux u_i des valeurs constantes.
- b) pour chaque x fixé quelconque, les fonctions $f_x(u)$ sont analytiques des u_j sur les ouverts sections de D obtenus en donnant aux x_k des valeurs constantes.

On établira que l'appartenance des fonctions $f_x(u)$ et $f_u(x)$ à certaînes classes de fonctions analytiques de variables réelles entraine l'analyticité de f par rapport à l'ensemble des p+q variables x, u. Il s'agit là de propriétés locales et on les étudiera dans un domaine $D = D_x \times D_u$, produit de deux domaines D_x , D_u pris respectivement dans R_x^p et R_u^q et homéomorphes à des boules.

Tirons d'abord les conséquences du fait que $f_u(x)$ et $f_x(u)$ sont supposés analytiques. Pour u fixé, $u \in D_u$, et pour $x^0 \in D_x$, il existe un polycercle maximal, de rayons égaux, soit

$$|X_k - x_k^0| < \rho_u(x^0)$$

dans lequel la série de Taylor de $f_u(x)$ est convergente; elle s'écrit

$$(3, 1) \sum_{(\alpha)} A^{(\alpha)}(u_1, \ldots, u_q) (X_1 - x_1^0)^{\alpha_i}, \ldots, (X_p - x_p^0)^{\alpha_p}.$$

Le nombre $\rho_u(x^0)$ est l'écart (5) de $x^0 \in D_x$ à la frontière du domaine d'holomorphie de $f_u(x)$. Si K_x est un compact dans D_x , on posera

(3, 2)
$$\inf_{x \in \mathbf{K}_x} \rho_u(x) = \rho_u(\mathbf{K}_x).$$

Le nombre $\rho_u(K_x)$ ainsi défini est positif et non nul; c'est l'écart de $K_x \subset D_x$ à la frontière du domaine d'holomorphie de $f_u(X)$. Pour K_x fixé dans D_x , faisons varier u sur un compact K_u dans D_u . Lorsque f(x, u) est analytique dans $D_x \times D_u$ de l'ensemble des variables, x, u, le nombre $\rho_u(K_x)$ a, pour $u \in K_u$ une borne inférieure non nulle; en effet le compact $K_x \times K_u$ dans $D_x \times D_u$ est à une distance positive de la frontière du domaine d'holomorphie de f dans l'espace C^{p+q} ; plus précisément si l'on considère le développement de Taylor de f selon les puissances de $(X_i - x_i^0)$, $(U_j - u_j^0)$, pour $x^0 \in K_x$, $u^0 \in K_u$, et si $r(x^0, u^0)$ est le rayon du polycercle maximum

$$|X_i - x_i^0| < r, \qquad |u_i - u_i^0| < r$$

dans lequel f est holomorphe, r(x, u) a pour $(x, u) \in K_x \times K_u$, un minimum non nul $r(K_x \times K_u)$ et l'on a

(3, 3)
$$\inf_{u \in K_n} \rho_u(K_x) \geqslant r(K_x \times K_u) > 0,$$

ce qui établit l'assertion.

De même une fonction $f_x(U)$ est holomorphe dans un polycercle maximal $|U_j - u_j^0| < \rho_x(u^0)$ et pour $u^0 \in K_u$, $\rho_x(u^0)$

⁽⁵⁾ Par écart de $X = (X_k)$ à un ensemble η , ou à un point, dans C^p on entend ici le sup. des $r \geqslant 0$ tels que le polycercle $|X'_k - X_k| < r$ ne rencontre pas η . On ne suppose pas les domaines d'holomorphie des fonctions $f_u(x)$ ou $f_x(u)$ univalents.

a un minimum non nul, $\rho_x(K_u)$; on a encore si f est analytique de l'ensemble (x, u):

(3, 4)
$$\inf_{x \in \mathbf{K}_x} \rho_x(\mathbf{K}_u) \geqslant r(\mathbf{K}_x \times \mathbf{K}_u) > 0.$$

Ainsi:

Proposition 3, 1. — Une condition nécessaire pour que f(x, u), supposée analytique des variables x et u séparément, soit analytique de l'ensemble des variables x, u dans $D_x \times D_u$ est que les rayons d'holomorphie $\rho_u(x)$ et $\rho_x(u)$ aient une borne inférieure non nulle quand x et u parcourent deux compacts quelconques K_x , K_u , pris respectivement dans D_x et D_u .

Il est bien connu qu'une fonction f, analytique de x et de u séparément, même si |f| est borné, n'est pas nécessairement analytique de l'ensemble des variables, x, u. Ainsi la fonction définie par :

par:
$$f(x, u) = \left(\frac{x^2 - u^2}{x^2 + u^2}\right)^2 \quad \text{pour} \quad x^2 + u^2 \neq 0,$$

$$f(0, 0) = 1,$$

vérifie $|f| \le 1$ et est analytique de x, u séparément pour -1 < x < +1, -1 < u < 1. Toutefois si K_x et K_u sont des segments contenant l'origine, (3, 3) n'est pas satisfait car $f_u(x)$ est une fraction de pôles $x = \pm ui$, et $\rho_u(K_x) \to 0$ quand $u \to 0$; f(x, u), défini ainsi, n'est donc pas analytique de l'ensemble (x, u) dans un domaine de R^2 contenant x = 0, u = 0. L'exemple s'étend à un nombre quelconque de variables en remplaçant x^2 par $\sum_{i=1}^{p} x_i^2$, u^2 par $\sum_{i=1}^{q} u_j^2$.

On mettra en évidence des classes \mathcal{L} de fonctions analytiques de variables réelles, telles que les conditions $f_x(u) \in \mathcal{L}$, $f_u(x) \in \mathcal{L}$, entraînent que f(x, u) soit analytique de l'ensemble des variables x, u, où $x = (x_1, \ldots, x_p)$ et $u = (u_1, \ldots, u_q)$.

8. Les classes I, sont caractérisées par trois conditions, dont la première découle de la condition nécessaire énoncée plus haut.

DÉFINITION 3, 2. — Un ensemble & de fonctions analytiques $\varphi(x) = \varphi(x_1, \ldots, x_p)$ définies dans un domaine D de \mathbb{R}^p est dit une classe \mathfrak{L} dans D ou une classe (\mathfrak{L}, D) si:

- i) Au domaine D de R^p est associée une famille Φ de polycercles ouverts $|X_k x_k^0| < \rho(x^0)$, centrés sur D; tout point $x^0 \in D$ est centre d'un tel polycercle de rayons non nuls; la famille Φ ne dépend que de $\mathfrak L$ et de D et toute fonction $\varphi \in \mathfrak L$ est holomorphe dans les polycercles de Φ . On désignera par $\Omega(D)$ la réunion des polycercles de Φ ; $\Omega(D)$ est un domaine dans C^p et toute $\varphi \in \mathfrak L$ s'y prolonge en une fonction holomorphe.
- ii) Si φ_1 et φ_2 et appartiennent à \mathcal{I} , $a(\varphi_2 \varphi_1)$ appartient à \mathcal{I} pour toute constante a complexe.
- iii) A tout compact Γ dans $\Omega(D)$ correspond un compact $G \subset D$ et un coefficient numérique C_{Γ} tel qu'on ait, pour toute $\varphi \in \mathfrak{T}$, et tout $X \in \Gamma$:

$$|\varphi(X)| \leqslant C_{\Gamma} \sup_{x' \in G} |\varphi(x')|.$$

Le coefficient C_{Γ} ne dépend, pour \mathfrak{A} , D, donnés que de la configuration de Γ dans $\Omega(D)$. D'autre part la correspondance $\Gamma \to G$ ou $G = \psi(\Gamma)$ entre le compact Γ de $\Omega(D)$ dans C^p et le compact $G \subset D$ de l'espace réel a la propriété suivante. Pour tout compact $K \subset D$, on a $\psi(K) = K$ et la correspondance ψ est continue au voisinage du couple $K \to K$: à tout voisinage V (de la topologie R^p) du compact $K \subset D$, correspond un voisinage Λ de K (dans la topologie C^p) tel qu'on ait $\psi(\Gamma) \subset V$ pour $\Gamma \subset \Lambda$.

Les applications $D \to \Omega(D)$, $\Gamma \to G(\Gamma)$, et les constantes C_{Γ} seront appelés les éléments de la classe (\mathfrak{I}, D) .

Remarques. — 1º On pourra se contenter de considérer les polycercles maximaux de la famille Φ.

2º Soit $f_0 \in \mathcal{I}$: ii) exprime que, quand f décrit \mathcal{I} , f- f_0 décrit un espace vectoriel sur le corps des complexes.

3º Les fonctions harmoniques dans D forment une classe (\mathcal{L}, D) . La famille Φ est alors constituée par les polycercles centrés sur D, de rayons égaux, intérieurs à la cellule d'harmonicité de D (cf. [6, h]) et la condition (3, 5) est vérifiée, plus généralement, sur tout compact Γ intérieur à la cellule d'harmonicité de D; la majoration (3, 5) s'obtient par la représentation intégrale de f(X) en fonction des valeurs f(x) sur la frontière de G, supposée régulière.

Il en est de même pour les fonctions polyharmoniques

d'ordre m quelconque; elles sont holomorphes dans la cellule d'harmonicité de D; une majoration du type (3, 5), existe encore (cf. [6, f,]).

Il existe des classes (£, D) composées de solutions d'équations aux dérivées partielles linéaires : les éléments de la classe, au sens précisé plus haut, sont donnés à partir de l'équation pour les G, Γ , compacts, à frontière suffisamment régulière.

9. Propriétés des classes I. — Donnons brièvement quelques conséquences de la définition précédente.

Proposition 3, 2. — Si l'on complète une classe (\mathfrak{L}, D) par adjonction des limites des suites $\varphi_n \in (\mathfrak{L}, D)$, uniformément convergentes sur tout compact de D, l'ensemble obtenu forme une classe $(\overline{\mathfrak{L}}, D)$ qui a les mêmes éléments que la classe (\mathfrak{L}, D) .

En effet, soit Γ un compact de $\Omega(D)$; il lui correspond un compact G dans D, par la correspondance $\Gamma \to G$, de (\mathfrak{L}, D) , et l'on a

$$(3, 6) \quad |\varphi_{n+s}(X) - \varphi_n(X)| \leqslant C_{\Gamma} \sup_{x' \in G} |\varphi_{n+s}(x') - \varphi_n(x')|.$$

La suite φ_n est donc une suite de Cauchy sur tout compact de $\Omega(D)$ et converge vers une fonction $\varphi(X)$ holomorphe dans $\Omega(D)$. D'autre part si $\overline{\varphi}$ et $\overline{\varphi}'$ sont deux fonctions de $(\overline{\mathfrak{T}}, D)$, on a

$$\overline{\phi} = \lim \phi_n; \quad \overline{\phi}' = \lim \phi'_n,$$

avec $\varphi_n \in (\mathfrak{L}, D)$, $\varphi'_n \in (\mathfrak{L}, D)$ et pour toute constante a, $a(\varphi - \varphi') = \lim_{n \to \infty} a(\varphi_n - \varphi'_n)$ appartient à $(\overline{\mathfrak{L}}, D)$. Enfin la condition iii) et (3, 5) se conservent par passage à la limite uniforme sur les compacts, ce qui achève la démonstration. On pourra donc ne considérer que des classes (\mathfrak{L}, D) complétées au sens de la proposition (3, 2).

Proposition 3, 3. — Si un ensemble & de fonctions est défini dans la réunion $D_1 + D_2$ de deux domaines D_1 , D_2 de R^p , d'intersection non vide, et si les restrictions des fonctions de & à D_1 et D_2 constituent des classes (\mathcal{I}_1, D_1) et (\mathcal{I}_2, D_2) au sens de la définition 3, 2, alors & est une classe (\mathcal{I}, D) dans la réunion $D = D_1 \cup D_2$.

En effet on satisfera à la condition i) de la définition 3, 2

en prenant $\Omega(D) = \Omega(D_1) \cup \Omega(D_2)$ par réunion des deux familles Φ_1 et Φ_2 de polycercles. D'autre part si Γ est un compact dans $\Omega(D)$ ainsi défini, il est la réunion d'un nombre fini de compacts Γ_s situés dans $\Omega(D_1)$ ou $\Omega(D_2)$, et à Γ_s correspond alors, selon le cas dans D_1 ou dans D_2 , un compact G_s , de toute manière contenu dans $D = D_1 \cup D_2$, avec un coefficient $C_{\Gamma_s} = C_s$, de manière qu'on ait:

$$(3, 7) \qquad |\varphi(X)| \leqslant C_s \sup_{x' \in G_s} |\varphi(x')|; \qquad X \in \Gamma_s,$$

pour toute fonction $\varphi \in \mathcal{E}$. On associera alors à Γ le compact $G = \cup G_s$ dans $D = D_1 + D_2$ et le coefficient $C_{\Gamma} = \max_s$. C_s . On a ainsi prouvé l'existence de la propriété iii); on peut d'ailleurs préciser complètement la correspondance $\Gamma \to G$ de (\mathcal{L}, D) , en procédant à partir d'une décomposition simpliciale donnée (S) de C^p , assez fine, pour qu'un simplexe de (S) soit contenu dans $\Omega(D_1)$ ou dans $\Omega(D_2)$, et prenant pour compacts Γ_s des éléments de (S): la correspondance $\Gamma_s \to G_s$ et les C_s sont alors déterminés par (\mathcal{L}, D_1) ou (\mathcal{L}, D_2) et le procédé détermine l'application $\Gamma \to G$, et les coefficients C_{Γ} de (\mathcal{L}, D) .

Proposition 3, 4. — Si un ensemble & de fonctions définies dans D constitue une classe (&, D) les restrictions des $f \in \&$ à un sous-domaine $D' \subset D$ constituent une classe (&', D').

La classe (\mathfrak{L}, D) détermine une famille Φ de polycercles dans lesquels les $f \in (\mathfrak{L}, D)$ sont holomorphes; soit Ω' le domaine de \mathbb{C}^p recouvert par ceux qui sont centrés sur \mathbb{D}' . En général, à un compact $\Gamma \subset \Omega'$, (\mathfrak{L}, D) associera un compact \mathbb{C} de \mathbb{C} qui ne sera plus un compact dans \mathbb{C}' . On considérera alors une suite \mathbb{C}'_n , d'ouverts relativement compacts dans \mathbb{C}' tendant en croissant vers \mathbb{C}' : cette suite peut être déterminée à partir d'une suite (\mathbb{C}_n) de divisions simpliciales successives de \mathbb{C}^p , en prenant pour \mathbb{C}'_n la réunion des simplexes de (\mathbb{C}_n) d'adhérence compacte dans \mathbb{C}' . A \mathbb{C}_n correspond un nombre $\mathbb{C}_n > 0$, tel qu'au compact $\mathbb{C}_n : [x \in \overline{\mathbb{D}}_n, |y| \leq \alpha_n]$ soit associé, d'après la propriété iii), et par la correspondance $\Gamma \to \mathbb{C}$ de la classe $(\mathbb{C}, \mathbb{C}, \mathbb{C})$, un compact $\mathbb{C}_n \subset \mathbb{C}'$. La réunion des \mathbb{C}_n est d'intérieur non vide dans \mathbb{C}^p et contient \mathbb{C}' . On définit alors $\mathbb{C}(\mathbb{C}')$, relatif à la classe $(\mathbb{C}', \mathbb{C}')$ comme la réunion

des polycercles $|X_k - x_k^0| < r$, pour $x^0 \in D'$, qui sont contenus dans $\sum_n \Gamma_n$. Un compact Γ dans $\Omega(D')$ est recouvert alors par un nombre fini de Γ_s ; si $C_s = C_{\Gamma_s}$ est le coefficient attribué dans (\mathfrak{A}, D) , on a la majoration $(\mathfrak{A}, \mathfrak{A})$ pour la restriction à Γ_s de $\varphi \in (\mathfrak{A}, D)$. Finalement pour définir les éléments de (\mathfrak{A}', D') , on associera à un compact $\Gamma \subset \Omega(D')$ décomposé sous la forme $\Sigma \Gamma_s$, le compact ΣG_s dans D' et le coefficient $C_{\Gamma} = \max_s C_s$; on obtiendra un procédé régulier déterminant complètement les éléments de (\mathfrak{A}', D') en considérant successivement les Γ_n , et retenant, dans l'ordre, ceux qui ont en commun avec Γ un point intérieur non encore recouvert par les Γ_n précédents.

Des propositions 3, 3 et 3, 4, il résulte que, pour un ensemble de fonctions définies dans un domaine de R^p, « former une classe 1 » est une propriété locale. Toutefois on a vu que les éléments de la classe sont modifiés par le passage à la restriction à un sous-domaine.

On énoncera encore.

PROPOSITION 3, 5. — Pour qu'un ensemble & de fonctions définies dans un domaine D de R^p forme une classe (\mathfrak{A}, D) , il faut et il suffit qu'il existe un recouvrement de D par des domaines localement compacts d_s , les restrictions des fonctions de & aux d_s formant des classes (\mathfrak{A}, d_s) .

La condition est nécessaire d'après la proposition 3, 4. Elle est suffisante; en effet soit $\Omega(D)$ la réunion des polycercles ouverts formant les $\Omega(d_s)$: toute fonction $\varphi \in \mathcal{E}$ est holomorphe dans $\Omega(D)$. De plus un compact Γ dans $\Omega(D)$ est la réunion d'un nombre fini de Γ_s , où Γ_s est compact dans $\Omega(d_s)$. A Γ_s correspond G_s dans la classe (\mathcal{L}_s, d_s) , et un coefficient $C_s = C_{\Gamma_s}$. On associera alors comme plus haut à Γ la réunion des G_s , compacte dans D, et le coefficient $C_{\Gamma} = \max_s C_s$, ce qui établit que \mathcal{E} est une classe (\mathcal{L}, D) .

Remarque. — L'exemple des fonctions harmoniques montre que $\Omega(D)$ peut être un domaine de C^p strictement plus grand que la réunion des $\Omega(d_s)$ et l'application $\Gamma \to G$, G compact dans D, peut s'étendre à des compacts Γ de $\Omega(D)$ qui ne sont pas contenus dans la réunion des $\Omega(d_s)$.

Proposition 3, 6. — Pour toute fonction f appartenant à une classe (\mathfrak{L}, D) d'éléments $\Omega(D)$, $G(\Gamma)$, C_{Γ} , et sur tout compact Γ dans $\Omega(D)$, il existe une majoration des dérivées partielles

$$D^{(\alpha)}f = \frac{\delta^{\alpha_l + \cdots + \alpha_p} f}{\delta X_1^{\alpha_l} \cdots \delta X_n^{\alpha_p}}; \qquad (\alpha) = (\alpha_1, \ldots, \alpha_p).$$

Elle est de la forme:

$$(3, 8) ||D^{(\alpha)}f(X)| \leqslant C_{\Gamma'}[\sup_{x' \in G'} |f(x')|] \delta^{-|\alpha|}\alpha_1!, \ldots, \alpha_p!.$$

On pose: $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_p$; Γ' est un compact de $\Omega(D)$, dont l'intérieur Γ' contient Γ ainsi que tout polycercle de rayons δ centré sur Γ ; Γ est le compact de Γ associé à Γ' par la correspondance Γ de Γ de Γ .

En effet la formule de Cauchy appliquée à l'arête d'un polycercle $|X'_k - X_k| \leq \delta$, de centre $X = (X_k) \in \Gamma$ donne:

$$|D^{(\alpha)}f(X)| \leqslant \delta^{-|\alpha|} \sup_{X \in \Gamma'} |f(X)| \alpha_1!, \ldots, \alpha_p!$$

et, en tenant compte de (3, 5), on obtient (3, 8).

Proposition 3, 7. — Si l'on considère un ensemble f_i de fonctions d'une classe (\mathfrak{A}, D) , pour lequel $|f_i(x)|$ est borné sur tout compact G de D par un nombre M_G ne dépendant que de G, alors si l'on pose

$$A_t^{(\alpha)}(X) = \frac{D^{(\alpha)}f_t(X)}{\alpha_i!, \ldots, \alpha_p!}$$

les fonctions $\frac{1}{\alpha}\log|A_t^{(\alpha)}(X)|$ sont des fonctions plurisousharmoniques dans $\Omega(D)$, bornées supérieurement dans leur ensemble sur tout compact de $\Omega(D)$ — donc une famille F_{Δ} de fonctions plurisousharmoniques dans $\Omega(D) = \Delta$.

En effet de (3, 8), on déduit pour $X \in \Gamma$, Γ compact dans $\Omega(D)$:

$$(3, 9) \qquad \frac{1}{|\alpha|} \log |A^{(\alpha)}(X)| \leqslant -\log \delta + \epsilon(|\alpha|)$$

où $\varepsilon(|\alpha|) = |\alpha|^{-1} [\log C_{\Gamma} + \log M_{G}]$ ne dépend pas de f_{ι} et est borné par un nombre indépendant de (α) et de f_{ι} .

4. Nous démontrerons alors le théorème suivant :

Théorème 11. — Soit $f(x, u) = f(x_1, ..., x_p, u_1, ..., u_p)$ une fonction des p + q variables réelles, x, u, définie dans le domaine produit $D_x \times D_y$.

Si à u constant les fonctions $f_u(x)$ forment une classe (\mathfrak{L}, D_x) et si, à x constant les fonctions $f_x(u)$ forment une classe (\mathfrak{L}', D_u) , f(x, u) est analytique de l'ensemble des p + q variables x, u.

On supposera, puisqu'il s'agit d'établir une propriété locale, que D_x et D_u sont, respectivement dans R_x^p et R_u^q , homéomorphes à des boules. On établira plusieurs lemmes.

LEMME 3, 1. — Sous les hypothèses du théorème 11, à tout domaine D'_x , d'adhérence \overline{D}'_x compacte dans D_x , et à tout ouvert $O_u \subset D_u$, on peut faire correspondre un domaine $G_u \subset O_u \subset D_u$, et un entier N tels qu'on ait

$$(3, 10) |f(x, u)| \leqslant N$$

pour $x \in \overline{\mathrm{D}}'_x$, $u \in \overline{\mathrm{G}}_u$.

En effet posons:

$$\psi(u) = \sup_{x \in \overline{\mathbf{D}}_x'} |f(x, u)|.$$

Alors $\psi(u)$ est fonction semi-continue inférieurement de $u \in D_u$, les $f_x(u)$ étant des fonctions continues de u dans D_u . Les ensembles $e_n: [\psi(u) \leqslant n]$ sont fermés dans O_u et dans O_u . On a d'autre part $O_u = \sum_n e_n$; il existe donc, d'après la propriété de Baire un n = N pour lequel e_N est dense sur un ouvert de O_u; puisque e_N est fermé, il contient la fermeture G_u d'un domaine de O_n; le lemme est ainsi établi.

LEMME 3, 2. — Les hypothèses du théorème 2 et les conclusions du Lemme (3, 1) étant admises, pour $x \in D'_x$ et u appartenant à un compact K, du domaine G, chaque dérivée partielle $D_n^{(\alpha)}f$, par rapport aux u, est majorée uniformément par:

$$(3, 11) \qquad |D_n^{(\alpha)} f(x, u^0)| \leqslant C_{\kappa} N \delta_{\kappa}^{-|\alpha|} \alpha_1! \ldots \alpha_n!$$

où δ_K > 0 et C_K ne dépendent que du compact K_u pris dans le domaine G_u .

En effet la classe (L', Du) induit (d'après la proposition 3, 4) une classe (\mathcal{L}' , G_u) sur le domaine $G_u \subset D_u$; soit alors $\delta_K > 0$, pris assez petit pour que la réunion des polycercles centrés sur K_u , de rayons égaux à $\delta_{\mathbf{K}}$, soit un compact Γ dans $\Omega(G_u)$; à Γ est associé par la classe (\mathcal{L}', G_u) un compact $K' \subset G_u$ tel qu'on ait, d'après (3, 8) et la proposition (3, 6):

$$(3, 12) \quad |\mathcal{D}_{u}^{(\alpha)}f(x, u^{0})| \leqslant C_{\Gamma} \sup_{\mathbf{x} \in \mathbf{R}'} |f(x, u)| \ \delta_{k}^{-|\alpha|}\alpha_{1}! \ldots \alpha_{q}!$$

quels que soient $x \in D_x$, et $u^0 \in K_u$. Si on prend $x \in \overline{D}'_x$, $u^0 \in K_u$ et tient compte de (3, 10), on obtient (3, 11), les coefficients étant déterminés par la configuration du compact K_u dans G_n .

Lemme 3, 3. — Les hypothèses du théorème 11, et (3, 10) étant vérifiés pour $x \in \overline{D}'_x$, $u \in \overline{G}_u$, alors pour u parcourant un compact $K_u \subset G_u$ et x parcourant le domaine D'_x , les dérivées partielles $D_u^{(a)}f(x, u)$ par rapport aux u_j et les fonctions $f_u(x)$ appartiennent à une même classe. (\mathfrak{L}, D'_x) .

On le démontrera par récurrence sur $|\alpha| = \alpha_1 + \cdots + \alpha_p$. Soit $(\beta) = (\alpha_1, \ldots, \alpha_k + 1, \ldots, \alpha_p)$. Montrons que si la propriété est vraie pour toutes les dérivées en u d'ordre total $|\alpha|$, elle est vraie de $D_u^{(\beta)}f$; on posera $D_u^{(\gamma)} = \frac{\delta}{\delta u_k} D^{(\beta)} = \frac{\delta^2}{\delta u_k^2} D^{(\alpha)}$. Donnons à u une valeur fixe $u^0 = (u_1^0, \ldots, u_q^0) \in K_u$; on posera $u^0 + t_k = (u_1^0, \ldots, u_k^0 + t_k, \ldots, u_q^0)$, t_k étant pris assez petit pour que $u^0 + t_k$ appartienne à un compact K_u^m dans G_n . On aura alors:

L'hypothèse ii) de la définition 3, 2 entraîne alors que $g(x, t_k)$ appartienne à (\mathcal{L}, D_x) . D'autre part, en utilisant la dérivabilité de $D_x^{(\alpha)}f$ par rapport à u_k , on a :

$$(3, 14) |g(x, t_k) - D_u^{(\beta)} f(x, u^0)| \leq \frac{|t_k|}{2} \sup_{j} |D_u^{(\gamma)} f(x, u^0 + \theta t_k)|$$

le sup. étant pris pour $0 \le \theta \le 1$. On applique alors le lemme (3, 2) et la majoration (3, 11) à la dérivée $D_u^{(\gamma)}$ qui figure au second membre de (3, 14). Pour $x \in \overline{D}_x'$, $u^0 \in K_u$, on a :

$$(3, 15) \quad |g(x, t_k) - D_u^{(\beta)} f(x, u^0)| \leqslant \frac{|t_k|}{2} C_{K'} N \delta_{K'}^{-\beta - 1},$$

où K" est un compact dans G_u , et contient K_u . Ainsi les $g(x, t_k) \in (\mathcal{I}, D_x')$ convergent uniformément sur $\overline{D_x'}$ vers $D_u^{\beta} f(x, u^0)$ pour $u^0 \in K_u$; d'après la proposition (3, 2), $D_u^{(\beta)} f(x, u^0)$ appartient encore à la fermeture de la classe $(\mathcal{I}_{|\alpha|}, D_x')$ constituée à partir des $f_u(x)$ et des $D_u^{\lambda} f(x, u^0)$ pour $0 \leq |\lambda| \leq |\alpha|$.

D'autre part pour $|\alpha| = 0$ l'énoncé est vérifié pour la classe $(\mathfrak{T}, D'_x) = (\mathfrak{T}_0, D'_x)$ par hypothèse.

Finalement on a établi que la fermeture $(\bar{\mathfrak{T}}, D'_x)$ contient toutes les dérivées partielles $D_u^{(\alpha)}f(x, u^0)$, pour $u^0 \in K_u$ et (α) quelconque.

Au lieu de considérer les dérivées $D_u^{(\alpha)}f(x, u^0)$ on considérera encore les coefficients du développement de Taylor, de centre u^0 , pour $x \in D_x'$, x fixé:

$$(3, 16) \quad f(x, u) = \sum_{(a)} A^{(a)}(x) (u_1 - u_1^0)^{\alpha_1}, \ldots, (u_q - u_q^0)^{\alpha_q}.$$

Les $A^{(\alpha)}(x)$ s'obtiennent à partir des $D_u^{(\alpha)}f(x, u^0)$ par division par $\alpha_1 !, \ldots, \alpha_q !$; en divisant les deux membres de (3, 13) par $\alpha_k + 1$, on voit que les $A^{(\alpha)}(x)$ appartiennent eux aussi à $(\overline{\mathcal{I}}, D_x')$ quels que soient (α) et le point u^0 pris sur le compact K_u .

Il en résulte que les $A^{(\alpha)}(X)$, pour X appartenant à un compact $\Gamma \subset \Omega(D'_x)$ vérifient tous une majoration

$$(3, 17) |A^{(\alpha)}(X)| \leqslant C_{\Gamma} \sup_{x' \in \overline{D}_{\alpha}'} |A^{(\alpha)}(x')|$$

et cela quel que soit uº pris sur K_u.

On obtient alors:

Lemme 3, 4. — Sous les hypothèses du théorème 11, à tout domaine D_x' d'adhérence compacte dans D_x , et à tout ouvert $O_u \subset D_u$, correspond un compact $K_u \subset O_u$, tel que pour $u^o \in K_u$ et $X \in \Omega(D_x')$ le développement

(3, 18)
$$f(X, u) = \sum_{(\alpha)} A^{(\alpha)}(X) (u_1 - u_1^0)^{\alpha_1}, \ldots, (u_q - u_q^0)^{\alpha_q},$$

— dont la restriction pour $x \in D'_x$, réel, est (3, 16) — possède la propriété suivante : les fonctions $\frac{1}{|\alpha|}\log|A^{(\alpha)}(X)|$ appartiennent dans $\Omega(D'_x)$ à une famille localement bornée supérieurement de fonctions plurisousharmoniques.

En effet les $A^{(\alpha)}(X)$, étant les prolongements à $\Omega(D'_x)$ des

 $A^{(\alpha)}(x)$ qui figurent dans (3, 16), vérifient (3, 17). D'autre part pour $x \in \overline{D}'_x$ et $u^0 \in K_u$, on a, d'après le Lemme (3, 2) et (3, 11):

$$|\mathbf{A}^{(\alpha)}(x)| \leqslant \mathbf{C}_{\mathbf{K}} \mathbf{N} \delta_{\mathbf{K}}^{-|\alpha|}.$$

Finalement on aura, pour X pris sur un compact Γ de $\Omega(D'_x)$ et $u_0 \in K_n$:

$$(3, 19) |A^{(\alpha)}(X)| \leqslant C_{\Gamma} \cdot C_{\kappa} N \cdot \delta_{\kappa}^{-|\alpha|}.$$

où C_{Γ} ne dépend que de la position du compact Γ dans $\Omega(D'_x)$; (3, 19) vaut quel que soit u_0 appartenant à un compact K_u du domaine $G_u(cf. lemme 3, 2)$; pour tout ouvert O_u dans D_u , on peut déterminer un domaine $G_u \subset O_u$, ainsi que N, de manière que l'on ait $|f(x, u)| \leq N$ pour $x \in \overline{D}'_x$, $u \in \overline{G}_u$. Finalement pour D'_x donné, avec $\overline{D}'_x \subset D_x$, il existe dans tout ouvert $O_u \subset D_u$, un domaine d'adhérence K_u compacte dans O_u , tel que (3, 19) soit vérifié pour $u^0 \in K_u$, avec des constantes C_K , N, δ_K qui ne dépendent ni de (α) ni de $u^0 \in K_u$, ni du compact Γ sur lequel varie X. Sur un compact Γ de $\Omega(D'_x)$ on a alors

$$(3, 20) \qquad \frac{1}{|\alpha|} \log |A^{(\alpha)}(X)| \leqslant -\log \delta_{\kappa} + \epsilon(|\alpha|)$$

οù $\epsilon(|\alpha|)$ tend vers zéro avec $|\alpha|^{-1}$. Le lemme est ainsi établi.

DÉMONSTRATION DU THÉORÈME 11. — Étant donné un point u^0 intérieur à D_u , on désignera par $e(u^0)$ l'écart de u^0 à la frontière de $\Omega(D_u)$, c'est-à-dire le rayon du polycercle maximal (de rayons égaux), de centre u^0 , contenu dans $\Omega(D_u)$. Considérons pour $X \in \Omega(D'_x)$ la série :

(3, 21)
$$\sum_{(\alpha)} A^{(\alpha)}(X) (U_i - u_i^0)^{\alpha_i} \dots (U_q - u_q^0)^{\alpha_q},$$

qui n'est autre que (3, 18) où les u_k peuvent prendre des valeurs complexes U_k . Pour X = x réel, $x \in D'_x$, $\overline{D}'_x \subset D_x$, et u^0 quelconque dans D_u , (3, 21) représente $f_x(u)$ et est convergente dans le polycercle:

$$|\mathbf{U}_j - u_j^{\scriptscriptstyle 0}| < e(u^{\scriptscriptstyle 0}), \qquad 1 \leqslant j \leqslant q.$$

On a donc quel que soit $u^0 \in D_u$:

$$(3, 22) \qquad \limsup \frac{1}{|\alpha|} \log |A^{(\alpha)}(x)| \leqslant -\log e(u^{\circ}).$$

D'après les lemmes 3,3 et 3,4 il existe un ensemble E_u partout dense dans D_u , et tel que, pour $u^0 \in E_u$, les coefficients $A^{(\alpha)}(x)$ de la série Taylor de centre u^0 représentant $f_x(u)$, possèdent les propriétés:

a) les $A^{(a)}(x)$ forment une classe (\mathcal{L}, D'_x) ,

b) leurs prolongements analytiques $A^{(\alpha)}(X)$ dans $\Omega(D'_x)$, sont tels que les fonctions plurisousharmoniques

$$\frac{1}{|\alpha|}\log |A^{(\alpha)}(X)|$$

forment dans $\Omega(D'_x)$ une famille de fonctions plurisousharmoniques localement bornée supérieurement.

Fixons u^0 appartenant à E_u et appliquons le théorème 10 à la suite (3, 23) où (α) parcourt les indices multiples $(\alpha_1, \ldots, \alpha_q)$ rangés de manière que $|\alpha|$ soit fonction décroissante du rang.

A tout domaine D'_x d'adhérence \overline{D}'_x compacte dans D'_x et à $\varepsilon > 0$ correspondent un domaine Δ_0 dans C^p , $D''_x \subset \overline{\Delta}_0 \subset \Omega(D'_x)$, et un entier N de manière que l'on ait, d'après (3, 22):

$$(3, 24) \qquad \frac{1}{|\alpha|} \log |A^{(\alpha)}(X)| \leqslant -\log e(u^0) + \epsilon,$$

pour $X \in \overline{\Delta}_0$, $|\alpha| \geqslant N$.

Il en résulte que (3, 21) converge dans le polycercle

$$|\mathbf{U}_j - u_j^0| \leqslant e^{-\varepsilon} \cdot e(u_0),$$

et que la convergence est uniforme, dans

$$(3, 25) \quad \mathbf{X} \in \overline{\Delta}_{\mathbf{0}} \qquad |\mathbf{U}_{j} - \mathbf{u}_{j}^{\mathbf{0}}| \leqslant e^{-\epsilon} e(\mathbf{u}_{\mathbf{0}}).$$

Puisque ϵ est quelconque positif et que les coefficients $A^{(\alpha)}(X)$ sont holomorphes dans $\Omega(D'_x) \supset \overline{\Delta}_0$, (3, 21) représente dans le domaine de $\mathbb{C}^p \times \mathbb{C}^q = \mathbb{C}^{p+q}$ défini par:

$$(3, 26) X \in \Delta_0, |U_j - u_j^0| < e(u_0),$$

une fonction holomorphe f(X, U), dont la restriction à x réel, u réel, est f(x, u). Soit D'_u un domaine d'adhérence \overline{D}'_u compacte dans D_u et soit $\inf e(u) = a > 0$ pour $u \in \overline{D}'_u$. On pourra recouvrir \overline{D}'_u avec un nombre fini de polyèdres construits dans C^q ,

$$|\mathbf{U}_j - u_j^{(s)}| < a, \quad s = 1, \ldots, s.$$

où $u^{(s)}$ est pris appartenant à l'ensemble E_u ; à chaque $u^{(s)}$ correspond un domaine de C^{p+q} .

$$X \in \Delta_s$$
; $P_s: |U_j - u_j^{(s)}| < a$,

avec $\overline{D}''_x \subset \Delta_s \subset \Omega(D'_x)$. Soit

$$\Delta = \bigcap_{s} \Delta_{s}$$

et soit Δ' la réunion des polycercles P_s : les séries de Taylor

(3, 27)
$$\sum_{(\alpha)} A^{(\alpha)}(X) (U_1 - u_j^{(s)})^{\alpha_i} \dots (U_q - u_q^{(s)})^{\alpha_q}$$

définissent dans chaque domaine $(\Delta \times P_s)$ de C^{p+q} une fonction $f_s(X, U)$ holomorphe de l'ensemble des variables (X, U) dont la restriction à $\{D_x'' \times [|u - u_j'^{s}| < a]\}$ est la fonction f(x, u); la réunion des P_s dans C^q est un domaine connexe Δ' dont les P_s constituent un recouvrement par des ouverts. Les $f_s(X, U)$ sont ainsi des éléments d'une même fonction f(X, U) holomorphe dans $\Delta \times \Delta'$, domaine de C^{p+q} qui contient le compact $\overline{D_x''} \times \overline{D_u'}$. Comme D_x'' et D_x'' sont quelconques dans D_x — respectivement D_u — sous la condition d'être relativement compacts, on a établi que f(x, u) est dans $D_x \times D_u$ la restriction d'une fonction f(X, U) holomorphe des variables complexes (X, U) ce qui achève la démonstration du théorème 11.

COROLLAIRE. — Le domaine d'holomorphie de f comprend le produit $\Omega(D_x) \times \Omega'(D_u)$, $\Omega(D_x)$ et $\Omega'(D_u)$ étant relatifs aux classes (\mathcal{I}, D_x) , $(\overline{\mathcal{I}}, D_u)$.

Il est facile de voir en effet que (3, 21) converge uniformément sur tout compact de $\Omega(D_x) \times \Omega'(D_u)$. Si $\mathcal{E}[|u_j - u_j^0| < r] = II$ est un polycercle maximal, de centre $u^0 \in D_u$, pour la classe (\mathcal{L}', D_u) , on a $r = e(u^0)$; si Γ est un compact dans $\Omega(D_x)$, il existe un compact $G \subset D_x$, et, dans (3, 21), on a pour $X \in \Gamma$:

$$|\mathbf{A}^{(\alpha)}(\mathbf{X})| \leqslant \mathbf{C}_{\Gamma} \sup_{x' \in \mathbf{G}} |\mathbf{A}^{(\alpha)}(x')|.$$

Alors d'après (3, 24) et le théorème 11, il existe un indice N, tel qu'on ait

$$\frac{1}{|\alpha|}\log|\mathcal{A}^{(\alpha)}(x')|\leqslant -\log e(u^0)+\varepsilon$$

pour $|\alpha| > N$, $x' \in G$; on a alors pour $|\alpha| > N$, $X \in \Gamma$

$$|\mathbf{A}^{\mathbf{a}}(\mathbf{X})| \leqslant e^{\mathbf{a} \mathbf{\epsilon}} [e(u^{\mathbf{0}})]^{-|\mathbf{a}|}$$

et (3,21) converge uniformément pour $[X \in \Gamma, |u_f - u_f^0] \leq e(u^0)e^{-\epsilon}]$, donc sur tout compact de $\Omega(D_x) \times II$. Or un compact quelconque de $\Omega(D_x) \times \Omega(D_u)$ est réunion d'un nombre fini de Δ_i compacts dans des domaines du type $\Omega(D_x) \times II$, II étant un polycercle maximal de la famille Φ_u relative à (\mathcal{I}', D_u) . Finalement (3, 21) converge uniformément dans $\Omega(D_x) \times \Omega(D_u)$ et f(X, U) y est le prolongement holomorphe de f(x, u).

Exemples: Donnons pour terminer quelques exemples de classes (\mathcal{L}, D) .

Proposition 3, 8. — Si un ensemble $\{f\}$ constitue une classe (\mathfrak{L}, D) , l'ensemble obtenu en adjoignant aux fonctions f leurs dérivées partielles $D^{(a)}f$ pour $|a| \leq m$ est une classe (\mathfrak{L}_m, D) .

En effet, avec les notations de la proposition 3, 6, si $\Omega(D)$, $G(\Gamma)$, C_{Γ} sont les éléments de (\mathcal{L}, D) , toute dérivée $D^{(\alpha)}f$ est holomorphe dans $\Omega(D)$; de plus si $\Gamma' \supset \Gamma$ appartient encore à $\Omega(D)$ et contient les polycercles de rayons $\delta > 0$ centrés sur Γ , (3, 8) sera encore vérifié à condition d'associer à Γ le compact $G' \subset D$ associé à Γ' par (\mathcal{L}, D) et de prendre $C'_{\Gamma} = C_{\Gamma'}\delta^{-|\alpha|}\alpha_1! \ldots \alpha_p!$. Les coefficients C'_{Γ} dépendent ainsi de $|\alpha|$ tandis que les éléments $\Omega(D)$, $\Gamma \to G'$ sont indépendants de α , $|\alpha| \geqslant 1$. Mais pour $|\alpha| \leqslant m$, C'_{Γ} est majoré par un nombre fini ne dépendant que de la configuration de Γ dans $\Omega(D)$, ce qui établit l'énoncé.

Les représentations intégrales fournissent des classes (£, D):

Proposition 3, 9. — Les fonctions f(x) qui admettent une représentation intégrale

(3, 28)
$$f(x) = \sum_{j} T_{j}(x, x') [f(x')], \quad j = 1, ..., v$$

constituent une classe (I, D) dans les conditions suivantes:

1º Les T_j sont des fonctions analytiques de x, à valeur dans l'espace des courants sur l'espace $R^p(x')$, pour $x \in D \in R^p(x)$. Elles sont holomorphes de X complexe hors des cônes $\Sigma(X_k - x_k')^2 = 0$,

 $x' = (x'_k)$ parcourant le support S_j de T_j qu'on supposera indépendant de x.

2º En x', les T_j sont des chaînes (courants ayant la continuité d'ordre zéro) dont le support S_j compact dans D peut être pris arbitrairement voisin de la frontière de D. Enfin pour tout compact Γ sur lequel T_j est holomorphe de X, on a

$$||T_i|| \leqslant L_i(\Gamma)$$
 quel que soit $X \in \Gamma$.

Les f(x) qui satisfont à (3,28) forment bien une classe $(\mathfrak{T}, \mathbf{D})$ dans ces conditions: les \mathbf{T}_j sont en effet des fonctions holomorphes de X dans la cellule d'harmonicité (cf. [6, h]) $\mathcal{H}(\mathbf{D})$ définie dans \mathbf{C}^p comme le complémentaire de la réunion des cônes $\Sigma(\mathbf{X}_k - x_k')^2 = 0$, $x = (x_k')$ parcourant la frontière de \mathbf{D} (cf. [6, h]). Sur un compact Γ de $\mathcal{H}(\mathbf{D})$, les \mathbf{T}_j sont holomorphes et l'on a pour $\mathbf{X} \in \Gamma$:

$$\begin{split} f(\mathbf{X}) &= \sum_{j} \mathbf{T}_{j}(\mathbf{X}, \ \mathbf{x}') \ [f(\mathbf{x}')], \\ |f(\mathbf{X})| \leqslant \sum_{j} \sup_{\mathbf{x}' \in \mathbf{S}_{j}} |f(\mathbf{x}')| \times \mathbf{L}_{j}(\Gamma) \leqslant [\sup_{j} \mathbf{L}_{j}(\Gamma)] \cdot \sup_{\mathbf{x}' \in \mathbf{G}} |f(\mathbf{x}')|, \end{split}$$

en appelant G le compact de D qui est la réunion des S_j . On obtient une majoration du type (3, 5), et une classe (\mathfrak{A}, D) qui est un espace vectoriel.

La représentation intégrale des fonctions harmoniques et des fonctions polyharmoniques d'ordre fini est du type précédent si l'on prend comme noyau la fonction de Green (respectivement les fonctions de Green itérées successives dans le cas polyharmonique) dans un domaine $D' \subset D$, D' ayant une frontière régulière et étant arbitrairement voisin de D; la frontière de D' est alors le support de T, ou des T_j . Ce cas particulier donne une généralisation directe du théorème de Hartogs cité dans l'Introduction: si $f_x(u)$ et $f_u(x)$ sont des fonctions harmoniques (ou polyharmoniques d'ordre fini borné) f(x, u) est analytique de (x, u). Exemple: f(x, u), harmonique séparément $\binom{6}{2}$, dans $D_x \times D_u$, de $x = (x_1, \ldots, x_p)$ et de $u = (u_1, \ldots, u_q)$, sans autre hypothèse, est analytique de (x, u), donc harmonique de l'ensemble des p + q variables et holomorphe dans $\mathcal{H}(D_x) \times \mathcal{H}(D_u)$.

⁽⁶⁾ Les singularités et notamment les singularités impropres au sens de [6, d] des fonctions doublement harmoniques ont été étudiées par M. V. Avanissian dans [1].

BIBLIOGRAPHIE

- [1] V. Avanissian. Fonctions plurisousharmoniques et fonctions doublement sousharmoniques. Thèse, *Annales E.N.S.*, 1961.
- [2] M. Brelot a) Sur le potentiel et les suites de fonctions sousharmoniques, C. R. Ac. Sci., t. 207, 1938, p. 836.
 - b) Nouvelle démonstration du théorème fondamental sur la convergence des potentiels, Annales de l'Inst. Fourier, t. 5, 1957, pp. 361-368.
 - c) Points irréguliers et transformations continues en théorie du potentiel, Journal de Math., t. 19, 1940, pp. 319-337.
- [3] M. Brelot et G. Choquet. Le théorème de convergence en théorie du potentiel, Journal Madras Univ., t. 27, nº 1, 1957, pp. 277-286.
- [4] H. Cartan. Théorie du potentiel newtonien, énergie, capacité, suite de potentiels, Bull. Soc. Math., t. 73, 1945, pp. 74-106.
- [5] J. Deny et P. Lelong. Étude des fonctions sousharmoniques dans un cylindre ou dans un cône, Bull. Soc. Math. de France, t. 75, 1947, pp. 89-112.
- [6] P. Lelong a) Sur quelques problèmes de la théorie des fonctions de deux variables complexes, Ann. École Norm. Sup., t. 58, 1941, pp. 85-177.
 - b) Définition des fonctions plurisousharmoniques C.R. Ac. Sci. Paris, t. 215, 1942, p. 398.
 - c) Les fonctions plurisousharmoniques, Ann. École Norm. Sup., 1945, t. 62, pp. 301-338.
 - d) Ensembles singuliers impropres des fonctions plurisousharmoniques, Journal de Math., t. 36, 1957, pp. 263-303.
 - e) Sur une classe de singularités impropres, Archiv. der Math., t. 9, 1958, pp. 161-166.
 - f) Sur l'approximation 'des fonctions de plusieurs variables au moyen des fonctions polyharmoniques, C. R. Ac. Sci., t. 227, 1948, p. 26.
 - g) Sur les singularités complexes d'une fonction harmonique C. R. Ac. Sci., t. 232, 1951, p. 1895.
 - h) Prolongement analytique et singularités complexes des fonctions harmoniques, Bull. Soc. Math. de Belgique, 1954, pp. 20-23