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A NOTE ON HOWE^S OSCILLATOR SEMIGROUP

by Joachim HILGERT

0. Introduction.

In [KMS] Kramer, Moshinski and Seligman showed that it is possible
to extend the projective representation of Sp(l, R) on the Bargmann-Fock-
space defined by the uniqueness of the canonical commutator relations to
a subsemigroup with interior in Sp(l,C) and applied this representation
to the nuclear cluster model (see also [K]). The corresponding analytic ex-
tension for the symplectic groups of arbitrary dimension was described in
[BrK]. Later Brunei [Br] proved that the projective representation can be
"integrated" to a contractive representation of a double covering semigroup
of the aforementioned complex semigroup. The Shilov boundary of this cov-
ering semigroup is the metaplectic group and the representation restricts
to the metaplectic representation. Starting from integral operators with
Gaussian kernels on ^(R71) Howe constructed in [How2] a semigroup of
contractions whose closure contained the metaplectic representation and
applied his semigroup to prove certain estimates for pseudo-differential
and Fourier integral operators. In this paper we show that the two semi-
groups are isomorphic via the standard isometry between L2(Rn) and the
Bargmann-Fock space (cf. [Ba2]) and give detailed information on the rela-
tion between both constructions. It should be mentioned here that analytic
continuations of the type described have been treated in a more general and
abstract manner by OPshanskii [OP1]. For further appearances of related
semigroups see [LM], [Ola0] and [S].

Key-words : Metaplectic representation - Analytic extension.
A.M.S. Classification : 22E30.
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1. Contraction semigroups and the operator Cay ley transform.

Let V be a complex vector space and B : V x V —> C a non-
degenerate Hermitian form. We consider the semigroup
(1.1) SB = {g e G\(V) : B(gv,gv) < B{v,v)^v € V}
of B—contractions. Its tangent wedge L(5^) = {x 6 gl(^) : eR x C Sa}
is then given by (cf. [HilHofL])
(1.2) L(Sa) = {x C gl(V) : B(xv^) +B{v,xv) < 0} .
Note that the interior Sg of SB is given by (1.1) with < replaced by <.
Consider the operator Cayley transform defined by

Cop(x) = {X+1)(,X- I)"1

whenever the inverse of re — 1 exists. We note that (x + l)(x — 1)~1 — 1 =
(x + l)(x - I)"1 - (x - l)(x - 1)~1 = 2(x - 1)~1 so that we can apply the
Cayley transform twice.

1.1. Remark. — Set Dc == {x C gl(V) : det(.r - 1) ^ 0}.

(i) c^p : Dc —^ Dc is the identity.

(ii) S°B C D^

Proof. — (i) is an elementary calculation and for (ii) we note that,
because of B(gv,gv) < B(v,v) for all v 6 V, the transformation g cannot
have the eigenvalue 1. D

1.2. PROPOSITION. — Cop : L(6B) H Dc —> SB H Dc is a bijection.

Proof. — Let v = (x — l)w be an arbitrary element of V. Then
B(cop(x)v, Cop{x)v) = B{(x + l){x - l)-1^ (x + l)(;r - 1)-1^)

=B(( . r+l )w,( . r+ l )w)
= B(xw, xw) + -B(w, w) + B(xw, w) + -B(w, a;w)
< -B(w, w) + B(xw, xw) — B(xw, w) — B(w, xw)
= B((x- l)w,(x- l)w)
=B(v,v) .

Conversely, let g € SB HPc then Cop(g) ^ Dc.Vx = Cop{g) is not contained
in L(SB) then there exists a w € V such that B(w,xw) + B(xw,w) > 0.
Therefore the calculation above with 'y = (.r — l)w shows that B(gv^gv) >
B(v^v) because of g = (x + l)(a; — 1)~1. Thus g cannot be in SB- D



ON HOWE'S OSCILLATOR SEMIGROUP 665

2. Gauss functions in L2(Rn) and Fn'

We call a function on R71 a function of Gaussian type if it is of the
form ^ ̂  e~^ A^ where A is a symmetric complex matrix. It is integrable
if the real part of A is positive definite. We call a function of Gaussian
type a Gaussian function if it is integrable or, equivalently, if the real part
of A is positive definite, i.e. if A belongs to the generalized Siegel upper
halfplane Sn-

Similarly we call a function on C71 of Gaussian type if it is of the
form C 1-̂  e"^^ where A is a symmetric complex matrix. Note that such
functions are holomorphic on all of C71. We will call a function of Gaussian
type on C71 a Gaussian function if it belongs to the Bargmann-Fock Hilbert
space Tn of entire functions on C72 with the I^-norm given by the measure
dfi(() = Tr"^ ^ d ( ^ . We will determine those functions of Gaussian type on
C71 which are Gaussian functions using the isometry U : L2(Rn) —> Tn
given by (cf. [Bal,2])

Uf(Q= t ^(C,0/m,
./R71

where
(2.1) (7(C,0 = Tr-Te-i^+^+v^ ^

2.1. LEMMA. — Let B C Sn and f = e-?^ e L2^71) be the as-
sociated Gaussian function. Then Uf((,) = 7rt(det B^-)-^e~^tcopW~l^.

Proof.

Uf{Q= f ?7(C^)e-^^
J^

=7r-^ f e-^c2+^2)+^^-^tB^
JR^

=7r-^ [ e-^2e-^^B^<^+^t^^
J^

=7r-T f e-^^e-^^^^^da
Jnr.

= Tr-te-K^ / e-^^^^^d^ set r = -]-^
YR" TTV^

= -——^——e-K'Ce^^^"1^ bv rHow2l 1 3 4( A f Î tlh1 1 y ^10WZJ5 -L•<J•4
v 27T /

- ——L——p-K^pWc D
(det^).
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Let firn be the Siegel domain consisting of complex symmetric m x
m— matrices X with X*X < 1.

2.2. LEMMA. — a : X ̂  Cop(X)-1 is a bijection from Sm to ^rn
with inverse Y ̂  —Cop(y).

Proof. —^Note first that X and Y = Cop(X)""1 are symmetric so that
Y" = Y == Cop(X)~1 and we can calculate

y*y -1 = (x - i)(x +1)-1^ - i)(x +1)-1 - i
= (x +1)-1^ - i)(x - i)(x +1)-1 -1
= -(X + l)- l(4ReX)(X + I)-1

= -4((X + I)-1)* ReX(X + I)-1

which proves that V*y - 1 is negative definite. Similarly we calculate

2ReX = (Y + 1)(1 - V)-1 + (F4-l)(l - F)-1

= (1 - Y)~\l + Y) + (1 + V)(l - Y)~1

= (1 - F)-1^! + F)(l - Y) + (1 - F)(l + Y))l - Y)-1

^i-Fr^i-Fy^i-y)-1

which now proves the lemma. D

3. Gauss kernel operators on I/2^) and Jn-

Let S^n be the Siegel upper halfplane of complex symmetric 2n x
2n— matrices with positive definite real part and let

^ - ( A B}
x-[^ D )

be an element of 6271. Then we set
(3.1) Kx(^rj) = e-i(^+2^+^) ^ ̂ x. ̂

where vt = (^,^). The corresponding kernel operator

f^{^^ I Kx(^)fWdrf)
JR"

will be denoted by Tx , i.e. we have

(3.2) TxfW = t e-^^^^^^f^dri .
JRn
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We want describe how the Gauss kernel operators behave under the
transformation U : L2^) -> Tn. Thus we consider a fixed Tx and
calculate the operator T = U o Tx o U~1. Note that Tn has a reproducing
kernel, so that T has to be a kernel operator. We are going to determine
this kernel. In fact we claim that this kernel will be a Gauss kernel whose
matrix is the inverse of the Cayley transform of X. The first thing to do is
to describe what we mean by a Gauss kernel operator on Fn'

Let
X - ^ A B}X-[B^ D )

be an element of ^sn. Then we set

(3.3) ^x(C^) = e-^^^^^ = e-^^ ,

where v1 = ((^o^). The corresponding kernel operator

/ ̂  (C ̂  / Kx^)f^)d^))
Jc"

will be denoted by Tx, i.e. we have

(3.4) 7x/(C) = / e-^^^^'^f^d^) .
Jc-

This motivates the following definition: Let Un,n '' I/2^ x R71) -^
^(C" x C^) be given by
(3.5)

Un^nF(^) = Tr-i ( e-^2^2^2^2^^^^ F^^drf .
^RnxRn

As in the case of U one shows that Un,n is a unitary operator.

3.1. LEMMA. — Un.nF = UoFoU~1, where we identify the function
F with the associated integral operator.

Proof. — Recall the functions ^a(0 = U(a^) and Co = U\a which
is given by Ca(C) = ^tc. It suffices to show that U o F(^) = ?7n,nF(eJ.
For the left hand side we calculate :

UoF{xam= I U{C^)F{xa)Wdd
JRn

= I U^) ( F(^r})xaWdr)dfi
./R" Jn^

= I [ TT-ie-^^^^e-^^^^e^^^^^F^,^^.
jRn JRH
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For the right hand term we have

Un,nF{ea)(Q = [ (U^F)(^ U)e^)du;
•yc"

= [ [ 7^-te-^c2+^2+^+^)+^<^+E:7<77)Yc71 ./R^xR"
F^^^d^drjd^

= 1 1 Tr-ie-^^+^^e-^^^^e^^^^F^^)^^
JR^ Jpr. vs / / ' s ?

since it follows from [Ba2], (1.6b) that

( g-^+v^S+a^^ ̂  ̂ -^2+v^a^ ^

^c71

D

Now we define U : B^R^) -^ 6(^) (0 means bounded operator)
by
(3.6) U(T)=UoToU~1 .

3.2. PROPOSITION. — Let X e S^n be of the form
^ - ( A B\
X - [ B ^ D) '

Then we have
H/T \ (^TT)7 ^
U(TX) = deKX+l)^00-^-1 •

Proof. — We can apply Lemma 2.1 with ./^(R2") and Un n instead
of L2 (R") and U to find

rr l y '> (47T)7
[/ll'"(^) = det^+l).^0^-1 •

From Lemma 3.1 we know that the following diagram is commutative

L^(H^) -^ L^R")
^ ^

^^(X)-!

^n ———> J~n '

Here we set ex = (47r)t(det(X + 1))-? . D

Next we recall the multiplication of Gauss kernel operators :
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3.3 PROPOSITION.

(i) ([How2], 3.2.2) Let X, Y € S^n

^ - ( A B} y - t 1 B}x~ ̂  D ) ' Y " ̂  D ) 5

then we have

T^ o TY = ——^27r^ , Tz : L^R71) —^ L^ffT)
det(P-hA)?

where
_ _ / A - B(D -h A)-^ -B(D + A)-^ \
\ -B^D+A)-1^ D-B^D+A)-1^) '

(ii) ([BrK],3.6) LetX,ye6'2n

^ _ f A B\ / A B\
x~ [B1 D ) ' Y ~ ̂  D ) '

then we have

Tx oTy = -———————————Tz : Tn ——> Tn
{det{l-AD))2

where

/A+(B(l-A^)- lAB t)5 -B(\ -ADY^B ^ \
\ -Bi{\-ADY^Bi D+(6^(1-AD)-1 BY ) '

HereC8 = ̂ (C^-C1).

Proof. — This follows from [How2], 3.2.1 (watch out : misprint!) and
[BrK], 3.6, respectively. D

Note that our normalization for Gaussian functions is different from
Howe's. The reason for this is that the intertwining operator Un,n looks
more complicated in Howe's normalization. We fix some notation for further
use.

3.4. DEFINITION. — A function F : R271 —> C is called a real Gauss
kernel if it is of the form F{v) = ce~^vtxv for some X e S-2n and c e Cx .
The set of all real Gauss kernels is denoted by GK^.

A function F : C71 x C71 —> C is called a complex Gauss kernel if
it is of the form F(v) = ce~]2vtxv tor some X e ^n and c C Cx with
v1 = ̂ t^t). The set of all complex Gauss kernels is denoted by GKc'
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3.5. PROPOSITION. — (GKn, o) and (GKc, o) are isomorphic semi-
groups, where o is the composition of integral operators and the isomor-
phism is given by Un,n'

Proof. — This follows immediately from Lemma 3.1. D

4. The Weyl transform.

In this section we recall yet another version of the semigroup GK^ ^
GKc , this time not as a semigroup of integral operators, but of twisted
convolution operators (cf. [How2], §7). The isomorphism will be given by
the Weyl transform.

The Weyl transform maps Schwartz functions on R271 the kernel
operators on L^R^) via

P(F)=TK^

where

(4.1) Kp(p)(^)= f F^-^T^^^dr.
JR"

4.1. PROPOSITION (cf. [How2], 13.2). — Let v* = (^i?*) and
/ A B\

x-[Bt ^J 6 5 2"-
Then

(2^)i
l\.f)(Fy\ = ———————r-tY^'p{ x ) (detD)i x

with
„ ^ / A-^B-i^Dr-^B^iTr) -A^B-i^D-^B^i^

Y-A+^^Tr)^-1^-^) A-^+^D-^^+ZTT) ) e b2n '

Proof. — This follows immediately from [How2], 13.2 if one takes
into account the change of normalization. D

We denote the map X \-> X by p : S^n —> S^n-

4.2. PROPOSITION (cf. [How2], §7 and [Howl]). — Let S(R2n) be
the space of Schwartz functions on R271 then

P:(5(R2n),*tJ-(5(R2n),o)



ON HOWE'S OSCILLATOR SEMIGROUP 671

is an involutive algebra isomorphism, where -^fw denotes twisted convolu-
tion, i.e.

Fi **w F^v) = / Fi(w)F2(^ - w)e-'^iwtJvdw
jR2n

with

-(-0-)
and o the composition of integral operators on L2^71).

D

4.3. COROLLARY. — TAe Weyl transform yields a canonical isomor-
phism p : {GKn, *tw) -^ (GKn, o).

D

5. The Bargmann-Brunet-Kramer realization.

In [Ba2] Bargmann gives a realization of the projective representation
of the symplectic group coming from the Stone-von Neumann Theorem
via kernel operators on J^n- He does not use Sp(?z,R) but the isomorphic
group G = U(n,n) H Sp(n,C). Note that G is the set of all complex
2n x 2n— matrices of the form

( A B\
9= [-s -7] >3 \B A)

where A and B are n x n—blockmatrices, which satisfy

AA*-BB* = 1

or, equivalently

A^B = B^A

A*A - B^ = 1

A*B = B^A.

From this it follows that A is invertible and that the matrices BA~1

and —A~1^ are symmetric. It is shown in [Ba2], §3 that the projective
representation of G on Tn is given by g \-f J^(C,^), where

(5.1) F(^UJ) = e?(^BA~l<+<t(A~l)t^;7+s7tA~l<-':7<A-lB(;7) .
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This means that Fg is a kernel operator of Gaussian type with matrix

f52) X - (BA-1 (A-1)^(5.2) X g - - [ A-1 -A^B) '

In [BrK] Brunei and Kramer formally extend these kernels by simply
replacing B by an arbitrary C and then find conditions in which the
resulting kernels yield decent operators. Since we know already which
kernels of Gaussian type we want (cf. Lemma 3.1), we are lead to the
following lemma.

5.1. LEMMA. — Let B : C71 x C71 —^ C be the Hermitian form given
by the matrix

L - ( ~ 1 °}
[ o J

and SB the semigroup of B—contractions (cf. ( l - l ) ) - Then

( ( A B\\_(-(Bt)-l -(B^D \
\\Bt D ) f YA^*)-1 -B+A{Bt)-lD)^ R<

dennes a map ip : T>a -^ Sg where On = {X 6 ̂ n •• det(B) ^ 0}. The
map (p is invertible with inverse ̂  : S^ —>• T>n given by

v'1 (A B\\ __fCA-1 (A*)-1 \
{C D ) ) ~ \ A-1 -A-^B) •

Proof. — The first thing to note is that for any-e^.
we have det(A) ^ 0. In fact if 0 ^ C € C" with AC = 0 and v* = (C*,0)
then we calculate

B(gv,gv) =v*g*Lgv

-(CO)(^ cf}(~l ^f0}-(C ,UJ^ D*)\O l ) [CU
= cc*c<;
^0

and
BM=(C,o)(-Q1 ; )Q--cc<o

which is a contradiction.
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Next we show that the image of (p is contained in Sp(n, C). We write

^-{JD
and calculate

t^D = (-(B*)-1?)^ - A(Bt)-lD)
=D-DB~lA(Bt)~lD
= (D-DB^A^B^DY
=DtB .

Further we have

A*(? = -B~lA(Bt)~l = -(B-1 A(Bt)-l)t = G'A

and finally

^D - ̂ D = -B-^-B + A^')-1?) + B~lA(Bt)~lD
= 1 - B^A^B^D + ̂ A^')-1!?
= 1 .

Conversely if

-(^)^
an easy calculation shows that CA~1 and —A~lB are symmetric matrices.
Also it is straightforward to check that ^oy? is the identity on 'Pn- Moreover

/ /A B\\ ( (CA-1 (A*)-1 \ \
^[[CDJJ-^-^A-^ -A-^B))

= ( A B }\C (A t)- l-C'A- lA(-A- l^)y
_ ( A B \

\C (A t)- l+(A t)- lC' tBy

= ( A B }(C D )
so that in order to prove the lemma it now suffices to prove that '<f)(Sg) C
"2n.

First we give a characterization of Sg in terms of the blockmatrix
decomposition

( A B^
^ ( C D ) -
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We know that g € Sg if and only if L - g*Lg > 0. This yields

o < f - 1 ^-(^ n f - 1 0 } ( A B }
\0 1 ) \B" D * ) \ 0 1 ) \C D )

= (~1 °\ - /<-A<t ^/^ B}- Y 0 I/ V-B* £)*^<7 D)
/-I 0 \ / C ' * C ' - A * A C'*D-A*B\
V O l ) \-B*A+D*C D*D-B*BJ

^ f-\-C*C+A*A -C*D+A*B \
~\ B*A-D*C 1-D*D+B*B) '

Now let X = ip(g) and note that

f53) X- (CA-' (^\_f(A^-1 0 \ / - G < -1\
(5.3) X--^_, _^-i5^-^ o A^A-l B )

implies that XX* < 1 if and only if

yy-f^ 1 V^ 1 ^^f^ ° ')
^ 1 - B ) \ 1 -B^/ Y 0 AA* ) '

Taking the complex conjugate we find that X € f^n if and only if
y _ f C * C - A * A + l C * - B t \
x ~\ C - B 1 + BBt - AA^ < " •

Next we perform a similarity transformation with the matrix

( 1 _0 \
VB*(A*)-1 (A)-^

and as result
/ 1 - 0 \ ^ ( 1 A-^B\
^B*(A*)-1 (A)-1^^ (A*)-^

we find the negative of the matrix L — g*Lg written above. This proves the
lemma. D

5.2. PROPOSITION. — The set S^ = {(cKx) e GKc : X C Z>^} is
a subsemigroup of GKc and the map <p : PQ —^ 6'̂  induces a semigroup
homomorphism (p : S^ —^ Sg .

Proof. — The fact that S^ is a subsemigroup follows from Proposi-
tion 3.3, (ii) and the second assertion is proved in [BrK], (3.8). D

Finally we are able to describe the Bargmann-Brunet-Kramer real-
ization fo the oscillator or metaplectic semigroup [Br]).
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5.3. PROPOSITION. — The set 5n = {(cKx) € S^ : c2 =

det(-JS)} , where X = ( ^ ) , is a subsemigroup of S^ and the
semigroup homomorphism (p : <SQ —> Sg is a'double covering,

Proof. — Again the semigroup property follows from Proposition
3.3, (ii) while the rest is obvious. D

6. Howes' realization.

Consider the Hermitian form BR on Cn given by the matrix

(6.1) i J = i { ° , ;) •
The subsemigroup of Sp(n, C) consisting of all elements which are contrac-
tions w.r.t. 2?R will be denoted by S B ^ ' Note that it follows from (1.2) that
the edge of L(5'B,J is Sp(n,R). In fact we have

BH(Xv,v)-}-BR(v,Xv)=2Re(BR(v,Xv))=2Re{w"JXv) .

6.1. LEMMA. — The map /3 : Mat(2n,C) -> Mat(2n,C) defined
by f3{X) = —-JX induces a linear isomorphism f3 : S^n —> intL(5Ba)
which maps tSe set Vfw = {X € 5'2n : det(X -h ZTTJ) / 0} onto Dc
(cf. Remark 1.1).

Proof. — Note first that /? maps symmetric matrices into sp(n, C)
since ^X^J + J/3(X) = -^-XW - ^J^X = ^XJ2 + ^X = 0 .

v / TT 7T 7T 7T .

Conversely, if /3(X) € sp(n,C) then from the above we see that ——Xt -4-
n
-X = 0, so that X is symmetric. Moreover, if X is purely imaginary then
/3(X) is real, whence, in order to prove f3[S^n) c H^Bii), it only remains
to show that /3(X) € L(5jE?R) for real X € S^n- We calculate

BnWX)v,v) ̂ B^^(X)v) = 2Re(Bn(v,/3(X)v))
=-2Re(w*J/3(X)v)

=2Re(l;*JJXv)
TT

^^Re^Xi;)
TT

=-2^*^ <o
TT
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since X is positive definite. Since we have /3(X) € zsp(n,IR) if and
only if X is real, the above calculation also shows that X is positive
definite if /3(X) € miL(SB») n^sp(n , IR) . The last assertion follows from
det(-^-JX - 1) = de^-^-J) det(X + ZTTJ) . n

7T 7T

Next we describe Howe's realization of the oscillator or metaplectic
semigroup.

6.2. PROPOSITION ([How2], §12). — The set Sf, = {(cKx) €
GKn : X C Vtw} is a subsemigroup of (GKp, *^) and the map (c, X) ̂
^p(-ljX) induces a semigroup homomorphism Sf^ -^ S^. Moreover
the set .

r A o det(X+Z7rJ)l
S^ = {(CKx) € ̂  : C2 = ^n }

is a subsemigroup of Sf^ and the semigroup homomorphism CopO/3 : Stw —^
SB is a double covering.

Proof. — This follows immediately from [How2], §§8, 11 and 12
taking into account the change of normalization. Q

7. Intertwining operators.

The obvious question at this point is how the two realizations of
Bargmann-Brunet-Kramer and Howe are related. We start by showing
that the domains P^ and Vtw are well behaved under the transformation
OL o p : S^n —^ ^2n (cf. Proposition 4.2 and Lemma 2.1).

7.1. LEMMA. — Let

^ = { X = ( ^ ^ e52n :de t^ /o } .

Then the maps a : S^n -^ ^2n and p : S^n -> S^n induce bijections
a : Do -> Pn and p : Vtw —^ ^o, respectively.

Proof. — Let

x = [ nt T) ) e ̂ nYAw
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and ^

-^O^).
Then there exists a 0 ̂  v € C2" such that

(71) ( A ^-^V^I-O
^ ^-tTT D AJ

where ̂  == (^,^). This can be rewritten as
A$ -h (B -h nr)^ =0

(J^ - ZTT)^ + JDyy = 0 .

But since X e S^n the matrix J9 is invertible we have
r)=-D~l(Bt -i7r)^

which implies that ^ / 0 and
(7.2) A^ = (B + i^D-^B1- - ZTT^ .
But this simply means that B^ = 0 and hence p(X) C 5f2n\Po•

Conversely, if detB = 0 we find a $ i=. 0 with (7.2) and setting
rf = -D~l(Bt - i7r)^ yields (7.1) with ^ = (^,^) which in turn shows
that X C S^nX^tw

In order to show that a has the required properties we suppose that

x=(^ ^)e^\Po
and note that this implies the existence of a 0 ̂  $ G C71 such that B^ = 0.
Then we have

( X + 1 } ( 0 } - ( A + 1 B } ( ° } ( ° }
^^U-l 5< D+lJU'^+J

and hence

-CJ'G^)-
Note that Re D > 0 since X € 5'2n so that D^ + $ 7^ 0 which now shows
that a(X) e n2n\^Q •

Conversely, if _ _

Y=^ J)e^\P»

then there exists a 0 / ^ C C71 such that B^ = 0 so that

^(Hy^KH^).
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This time we know that 5 ^ - ^ / 0 since D < 1 because of Y € ^n.
Therefore

^C-^G^)
proves the claim. Q

We want to show that Un,n ° P maps Sfw bijectively onto S^ . To do
that we introduce "intermediate" semigroups in (GK^^o).

7.2. PROPOSITION. — The sets S^f = {(cKx) € GKn : X c Po}
and

5o-{(c^)e^:c2=det(-^)},'o •'- -ut;t^,-„-J
where

_ ( A B\
~\Bt D ) '

are subsemigroups of (GKn, o) .

A B\

Proof. — This follows from Proposition 3.3, (i). D

7.3. LEMMA. — Let

X - ( A B}
\C D )

with D invertible then

det X == del D det(A - BD-^C) .

Proof. — (d. [BrK], 2.3.4)
(\ BD-^\ (A-BD-^C 0 \ / 1 0 \ / A B\
V O 1 )\ 0 D ) [D^C l ) ~ [ c D ) •

D

7.4. LEMMA. — Let
„ ( A B

and

If now

x-^ ^)^-
/. ^-1- / 'A B}(copx) - [Bt D ) •

(^l)-(il).
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then we have
(i) B=-2B:

(ii) A = ((A + 1) - B(l + D)-1^)-1 ;

(iii) AB = B(D +1) = 0 .

In particular we have

dei(X + 1) = (det A)-1 dei(D + 1) .

Proof.

( A B } - ( A - 1 B \ f A B\
{Bt D ) ~ \ Bt D - l ) [S1 D )

which shows that B = (A - 1)B + BD . Moreover
A 0\ _ / A + l 5 \ ( A B\
\0 1̂  V ^ D + l ) [S1 D )

shows 0 = (A+1)5+BD so that we find B = (A-1)B-(A+1)B = -2B.
Similarly we find

A(A +1) -h BB1- = 1

A5+B(D+1) =0

which implies (iii) and AB(D + I)-1 + B = 0 and hence also (ii). The last
claim now follows from Lemma 7.3 applied to X + 1. D

7.5. PROPOSITION. — (cKx) € So Hand only if Un,n(cKx) C S^ .

Proof. — Recall that cKx C So if and only ifc2 = det (- B-), where

.-{t. ^.s,..
From Proposition 3.2 we know thatV••'(CKX)=^^K'•'^•
Then, using Lemma 7.4, we calculate

( c(47r)i \ 2 ^ det(-^•)(47^)n ^ 2»det(-B)det(A)
^det(X+l)^ det(X+l) det(Z? +1)

2" det(-AB)
= det(D+l) =^^W=^-B)



680 JOACHIM HILGERT

which proves one half of the proposition. The converse direction is proved
by following the above calculation backwards. D

7.6. PROPOSITION. — (cKx) € Stw if and only if p(cK^) € -So.

Proof. — Recall from Proposition 4.1 that

n ( r K } ^LKpm = deKD)!̂ )
where

/ A B\
x-[Bt p;6 5 2"-

Using Lemma 7.3 we calculate
/ c(27r)i \ 2 _ (27^)-2ndet(X-^-^^J)(27^)n

^det(2))^ ~ det(D)

= (27^)-n det(A - (B + nr)D-1 (B^ - ZTT))

_ / ~A + (B 4- nr)P-1 (Jg^ - JTT) \
~ e V 27T J

which proves one half of the proposition in view of Proposition 4.1. The
converse is again obtained by following this computation backwards. D

It will turn out to be useful to consider a certain automorphism of
the semigroup So.

7.7. LEMMA. — The map 9 : So —^ So, given by

0(cKx)=(2^cK^x ,
is an automorphism.

Proof. — In order to prove that 6 is a bijection let

x - ( A B }
(C D)

and calculate

((2^)tc)2 = (27r)"c2 = (27r)"det ( - ̂ ) = det ( - ̂ ) .

The multiplicativity of the map follows immediately from Proposition 3.3,
(i). D

We denote the map induced on Z>o by 0, i.e. the multiplication with
27T, by 1).
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If we now collect the diverse mappings we obtain the following
diagram

(GKR,*tw) 3 Sfu, -^ Vtv, -^ intL(^) ^ Sg^
IP 1" I?

(G^n,o) 3 So —^ -Do
1" ^ [e

(GKft,o) D So ^ Vo
it/n,n J.̂ ^ [a

(GKc^) 3 5n -^ Pn ^ 5^ .

8. Completing the diagram.

We want to complete the above diagram by filling in an isomorphism
between Sg^ and Sg such that the diagram commutes. We start by
calculating ip o a.

8.1. LEMMA. — Let X = ( ( ) e Po then we have

(X.l)-^ B,^ - ( A B}) -[^ D )
where

B = (B* - (D +. 1)5-̂  + I))-1 ,
A = -(B^-^D + 1)5* = -B(D + 1)5-1 ,
P = -B-^A + 1)B = -B\A + l)^*)-1 .

Proof.
/A+ l B \ ( A B\ _ ( 1 0\
[ Bt D + l ) [^ D ) ~\0 l )

implies

so that

B'A + (D + l)Bt = 0

(A+1)B+BD =0

A=-(Bt)-l(D+l)Bt

D=-B~1(A+1)B
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JOACHIM HILGERT

(A-hl )A+Bi^= 1

-(A + l)^)-1^ + 1)̂  + B^ = 1

which proves the claim, n

8.2. LEMMA. — Le^

and

then we have

CopW-1 =

M '̂ ^eT•
( îr-d. i)

(2B 0 yj^+^+l^^l-A)) -1 \
V 0 2Bt}\ -1 j(B+(A+l)(B<)-i(l-D))J

Proof.

^ ^-^f-B(D+l)B-1 B \
' \ B1 -B^A+l^)-1)

^ ( - B 0 \ /(Z?+1)B-1 -l \
Y 0 -B^ { -1 (A+l)^)-1) •

Now, using Lemma 8.1 we calculate

CopW-^l^X+l)-1

= ( 1 ° } ^ ( - ' i B 0 \f(D+l)B-1 -1 \
\0 \) \ o -25'A -1 (A+l^B*)-1 )

= (-2B 0- ^ ((~12B~1 ~1 }-((D+^B~1 -1 ^^ 0 -2Bt;^ -i -^(Bt)-iy I -1 (A+l)(B')-iJI

^^25 0 ^(^-^(D+l)^-1 -1 \
I 0 2B^\ _i 3((B()-l-2(A+l)(Bt)-l)y

^ f2B Ef \ (^-(D+^B-^A-l) -l \
^ 0 2 B t y ^ -l ^(B-(A+l)(B<)-i(£»-l))J-

a
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Now we can calculate y? o a .

8.3. LEMMA. — Let X = ( ^ ] € Po ^en we have

8 o a ( X } = l ( ^-(A+IX^GD+I) ^-(A+l)^)-1^-!) \
v / 2\-B+(A-l)(Bt)-l(D+l) -B+(A-1)(^)-1(D-1)^•

( /? S'\
Proof. — Let (p o a(X) = ) then

a{X) = -0 o (̂  o a{X)
_ ( ( R t ) - l 0 W-T* -1\
-^ ^o ^A-i ^ J •

Therefore we have R~1 = 2Bt (notation as above) which implies

R = J^*)-1 = J(B - (A + IKB*)-1^ + 1))

5=j(B-(A+l)(B t ) - l (£»- l ) )

T=^-B+(A-l)(Bt)-\D+l).
In order to find V we have to verify the equation J^V = 1 + 7*5' .

^(B* - (£» + 1)5-̂  + 1))(-B + (A - l)(Bt)-l(£> - 1))

= ^(-B'fi+B^A-l)^)-1^-!)

+(D+l)5^1(A+l)B-(JD+l)B-l(A2-l)(5t)-l(Z)-l))

=l(-BtB-(I3+l)B~l(A2-l)(Bt)-l(D-l)+(Z?+l)^-l(A-l)B

+Bt(A+l)(Bt)-l(Z?-l))-2(Z?-l)+2(D+l)

-(-B t+(£»+l)B- l(A-l))(B-(A+l)(5 t)- l(£»-l))+l.
D

Next we consider the geometric Cayley transform Cgeo : Sp(ra,C) —>
Sp(n,C) given by Cgeo(ff) = h^ghy1 where

h 1 ( 1 {\
'-Till - i ) •

8.4. LEMMA. — Let g = [ - _ ] e Sp(n,C) tAen
V0 L))

fA+iB-iC+D A-iB-iC -D\
W9)-^A+iB+iC-D A - i B ^ i C + D ) '
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Proof. — This is a straight forward calculation.

8.5. LEMMA. — Let X € ( ^ ^} (E Po ^en

'.—————^"(.(B-^B?..) -^.).

Proof. — This follows easily from Lemmas 8.3 and 8.4. D

The result of Lemma 8.5 allows us to calculate also the image under
the operator Cayley transform.

8.6. LEMMA. — LetXe ( ^ ^ )ePo^en

c or-1 o ^ o ^ ( Y } ( ^(A-B+B^D) 2B \
cop oc^o^oaW= (2iD+2(D^)B(B^D) i(A-B^B-D)S)-

where B =--i(A+B+Bt+D)~l.

Proof. — Let

(c^o^oaW-l)-1^ J).

Then
(-{B^D - 1)B +i(Bt)-lD = 0

and hence
D = -i(D + B^B .

Moreover
i(B - A(Bt)D)B + (-A(B<)-1 - 1)5 = 1

so that

(iB - iA(Bt)-lD + ̂ A(Bt)-lD + iD + iBt + iA)B = 1
which then gives

B = -z(A + B + ̂  + P)-1 .

Further
(-(B*)-1!) - 1)A + i^B^C = 1

which shows
C=-^(Bt+(D+Bt)A).
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Finally we use

I(B - A(Bt)-lD)A+ (-A(Bt)-l -1)C=0

to obtain
O^B^A+i^A^B1).

From this we find
A=-iB(A+Bt)

and
C = -i^ - i(D + B^A + B^)

= -^ - (P + B*)B(A -h B*)

= -zB^ - (D + ̂ ^^(A + B + B* + D) + (D + 5^)5(5 + D)
=iD+(D+Bt)B(D^B).

Now in order to prove the lemma we only have to note that

CapOC^oyoa(X)=1^2^Q ^\

and insert the above formulas. . D

8.7. LEMMA. — Let

Y={t _^)eintL(5B,)

then
_i ^ .-î  i /^-(^-l^A-l) C^-^B-1^!) \
6 o p o 0 (y)=^c+(A<+l)B-l(A-l) -^-(At+l)B-l(A+l)^

Proof. — (3~1(Y) = —Trzjy so the claim follows from Proposi-
tion 4.1. D

8.8. LEMMA. — Let X = ( t ) € VQ then

^n-^ff(X}-( -^(A-B+^-D) 2B \
p o p O^A)-^D^tl(Bt^D)B(B+D) i ( A + B - B t - D ) B } '

where B = -i(A 4- B + ̂  + D)~1.

Proof. — We use the notation of Lemma 8.7. Then
i_ / -^-(A^-l^-^A-l) G+(A t-l)5- l(AJ-l) \
2 V C + (A* + l^-^A - 1) -G - (A* + 1)2?-^ + 1) /
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This shows
<2(A+B)=2(At -1)B~1

z

2 (B < +J ^ ) )=-2(A t +l)5- l

2

and hence -2B~1 = -4B~1, i.e.

B =2B .

Moreover we find 2A^~1 = -(A + £? - B^ - D) which meansz
A^ = -^{A^B-Bt -D)B .

Adding all four entries of X with appropriate signs yields

^(-A + B + ̂  - D) = \C + 4At5-lA .z
Thus we calculate

2C = ^(-A + B + ̂  - D) - ^(A + B - ̂  - D)A
z i

= i(A - B - Bt + D) - i(A + B - Bt - D)iB(A + Bt - B - D)

= 2i(D - B1) - 2(Bt + D)B(A - B + Bt - D)
= MD + 4(^ + D)B(B + D) .

D

Comparing the results of Lemma 8.6 and Lemma 8.8 we find the
following theorem.

8.9. THEOREM. — The following diagram is commutative

{GKn^) 3 S^ — Aw ^ intL(^J ^ S^
IP IP IP

(GK^o) 3 So — Po
I0 I6' I61 1 "̂

(G^R,o) D 5o —— Po
l^,n i^.n i^

(G^c,o) D S^ —— % ^ 5^.

Proof. — Note that Cgeo(^) is a B—contraction (cf. Lemma 5.1) if
and only if g is a h^Bho— contraction, since ho is unitary. But one easily
verifies that h^Lho = iJ so that h^Bho = -BR (cf. (6.1)). The claim then
follows from Lemma 8.6 and Lemma 8.8. D
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Added 221 proof: The Fock realization of the oscillator semigroup has
been studied independently by G.B. Folland (cf. G.B. Folland, Harmonic
analysis in phase space, Ann. Math. Studies, 122, Princeton Univ. Press,
1989).
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