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GALOIS MODULE STRUCTURE OF THE RINGS OF INTEGERS
IN WILDLY RAMIFIED EXTENSIONS

by Stephen M.J. WILSON

1. Introduction.

The purpose of this paper is the generalisation to wildly ramified
extensions of Taylor's result [T] on the Galois module structure of the ring
of integers in a tamely ramified extension of algebraic number fields. Our
main results may be loosely stated as follows.

THEOREM. — Let N and N ' be sums of Galois algebras with group
r over algebraic number fields. Suppose that N and N ' have the same
dimension over Q and that they are identical at their wildly ramified
primes. Then (writing ON tor the maximal order in N )

ON © ON e zr ^zr ON' © ON' © zr.
In many cases ON ^zr ON' -

A precise statement of these results is given in §6 (6.1, 6.2 and 6.3)
where we give the details of the role played by the root numbers of N
and N ' at the symplectic characters of F in determining the relationship
between the ZF-modules ON and ON' '

Our theorem includes as a special case the theorem of Taylor referred
to above. (Take N / K to be any tame Galois extension and N ' to be the
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Galois algebra induced from the trivial extension K / K . In this case the
Zr factors may be cancelled.) This would not be so if the theorem applied
simply to field extensions (instead of to Galois algebras). We make the
extra effort to establish our result for sums of (rather than single) Galois
algebras so that in future work it may be possible to restrict attention to
extensions with only one wildly ramified prime.

We use here many of the results (of Frohlich, Martinet, Taylor et al.)
which Taylor deploys in the proof of his theorem. Frohlich's book [F2] is a
virtually complete reference to the results that we need.

In [Wl] the following adaptation of Martinet's conjecture (see [F2] I
1.18) was proved.

Under the conditions of the above theorem, (and in the case where N
and N ' are nelds) ONM(BM ̂ -M ON'M-^M. where M. is a maximal order
containing ZF. It was also there conjectured that the result is true under
the (at least apparently) weaker assumption that ON and O N ' belong to
the same genus of ZF-modules. This was subsequently proved by Queyrut
[Q2]. We conjecture that our present results are also true under this weaker
assumption. Futher discussion of the context and direction of this work may
be found in the record [W2] of the author's talk to the Bordeaux Seminar.

In §2 (because we must necessarily deal with non-projective modules)
we introduce the class group of a genus (of lattices over an order). We place
this class group in the Heller exact sequence of a functor which is effectively
0zQ- (Here Q stands for an algebraic closure of Q). We investigate the
"relative" group in this sequence and obtain an idelic formula for it and
for the class group. (This idea of employing the relative groups of (x)zQ is
due to Queyrut. In [Ql] he investigates the relative group of this functor
applied to the category of those lattices (over a given order) which are
locally free outside a given set of primes.)

In §3 we introduce a canonical "funny" norm and recall the "Horn"
notation of Frohlich. In §4 we set up our resolvent machinery. This is
effectively the machinery of [F2] with modifications to allow for our more
general context and also our different view of the "funny" norm. In Theorem
4.8 we establish the pivotal connection between our resolvents and elements
of the relative groups of §2.

In §5 we introduce Gauss Sums and root numbers in a manner
appropriate to our requirements. We detail and adapt those properties that
we need.
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Notation and conventions :

(i) 'Module5 means right module unless otherwise stated.

(ii) A mapping may be written on the right (possibly exponentially) or
on the left (when the argument will usually be delimited with parentheses).

(iii) The factors of explicitly composite maps are always written (with or
without a small circle, ( o 5 ) in the natural order (i.e. as if they were written
on the right). Such explicit composites are never written on the left.

(iv) Homomorphisms of the form ^ 0 1 inherited by a tensor product
from one of its factors (for example, after extension of scalars) are written
plainly g. (For a worse example of abuse of notation see before 3.1.)

Most of the work for this paper was done while the author was visiting
the University of Bordeaux. He would like to thank the members of the
U.E.R. de Mathematiques et d'lnformatiques very much for their continued
hospitality, help and encouragement.

2. The class group of a genus and its relative group.
Idelic formulae.

The work of this section will accept considerable generalisation (e.g. A
need not be semisimple and M need not be finitely generated — cf. [BKW]).
We keep, however, to the situation in which we are really interested.

Let A be a finite dimensional semisimple Q-algebra. We write J{A)
for the ideles of A and U(A) for the unit ideles with respect to an order A
in A. Let U be a normal, totally complex, finite extension of Q which is
big enough for A (i.e. A 0Q U is a direct sum of matrix rings over U). If Y
is an abelian group we put Y for Y (g>z U.

Let M be a full Z-lattice in an A-module V. We assume, for conve-
nience, that VA is faithful. Choose an order A of A such that MA C M. We
put E = EndA(^) and 0 = EndA(M) d£f [a G E \ Ma C M} ̂  EndA(M).

Put C = Z(A). So C = Z(E) since V is faithful. We say that a simple
component of Coo is symplectic if it is the centre of a component of Aoo (or,
equivalently, of £00) which is a full matrix ring over H. Put J(C)^ for the
set of those ideles of C whose projection into any symplectic component of
Coc is positive. Put C^ ̂  Cx n J(C)-^. We write NrdA for the reduced
norm with respect to A (see §3). We recall (see e.g. [F2] II §1)
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THEOREM 2.1. — (i) NrdAJ(A) = J(C)^;

(ii) ^(A)^^;

(iii) C^C^ =CXJ(C) . D

We put jC,S(M,A) for the full subcategory of Mod(A) whose objects
are those A-lattices which are locally isomorphic to M^ for some t. We
have (cf. [CR] § 6.3)

THEOREM 2.2. — The functor HomA(M,—) gives an equivalence
from CS(M,A) to the category CS{Q, E01^) of finitely generated, locally
free left Q-modules.

We need to describe local isomorphism in terms of ideles. We state
the following lemma. It is easy to prove directly but the result can also be
imported from the theory of locally free modules ([Fl]) via 2.2.

LEMMA 2.3. — Let W and W be isomorphic A-modules spanned
by T and T ' in \CS[M,A)\. Put X = EndA(W) and 2 = EndA(T). Let
{g .w^^w'}} ^e a ^oca^ A-isomorphism from W to W. We write T/3 for
{/€ W | t ' e Tp^Vp}. Then decale(i)T1 = Tf3 for some f3.

(ii) If W = W then T/3 is a lattice locally isomorphic to T if and only
iff3eJ(X).

(iii) Tf3=T ^^ /3eU{E).

Write /C^(M,A) for the Grothendieck group of CS{M, A) (with
respect to direct sums) and put Fib for the fibre category (see [H]) of the
functor ^zU:CS(M,A) -^ CS(M,A). From [H] 5.2 (working with split
exact sequences) we obtain the Heller exact sequence of this functor:

^i(O) ̂  /Ci(E) ̂  fC^M^A^zU) ̂  fC^M^A) -^ /C^(M,A)
where /C^(M,A,0z^O = tC^^ib) is Heller's relative group and we have
used 2.2 to obtain the form of the /Ci groups. The last group in the sequence
is free of rank 1 and we denote the kernel of the last map - essentially a
rank map - by Cl(M, A). We call this group the class group of the genus of
M. Writing fC[{Q) for the image of /Ci(0) in /Ci(£J), we may rewrite our
sequence
(2.4) 1-^(0) -^/Ci(E)-^/C^(M,A,^z^)-^^(M,A) ^0 .

Now the objects of Fib are triples (Ti,/^) where T, C \CS[M,A)\
and (we reverse Heller's notation) /:ri ^ T^ is an A-isomorphism. The
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relative group /C^(M, A, (g)z U) is generated by isomorphism classes of these
triples subject to the relations obtained from direct sum and composition of
triples. We denote by [T^,f,T^\ the class of (Fi,/^) in /C^(M,A, ̂ zU).

LEMMA 2.5. — With T, W, W, X, 2 and f3 as in 2.3,

(i) Every object of Fib is (T(3, f, T) for some T and f3.

(ii) Every element of/C^(M, A, 0z^) is [T/3, /, T] for some T and some
f3 € J(X).

(iii) If f e X" and /3 E ^(X) and ifNrdx(/) = 1 = Nrdx(/3) then
[r/?j,r]=o.

Proof. — (i) If (ri,/,r2) C J'z'6 then Ti ^ T^. Hence the T, have
the same rank and must therefore be locally isomorphic and we can apply
2.3(i).

(ii) So every element can be written as an algebraic sum of elements
[T/3,/,T]. But we can make all terms positive by the rule —[T/?,/,r] =
[(Ty?)/?"1,/"1,!'/?] and put them all together with the direct sum. More-
over, choosing an isomorphism g'.W —> W^ we have (T/3,/,T) ^
(r^^-V,r) and 0g e J(X) by 2.3(ii).

(iii) Replacing T by T(BM^ if necessary (by adding copies of (M, 1, M)
to (m/,T)) we can have f3 C [J(X),J(X)} C U(^)[XX,XX} (by
Wang's Theorem and strong approximation — see [Fl]). So f3 = ug with
u C_H2) ^ d g e [ X X ^ X X } . Then [m/,T] ̂  [r^/,r] = [ T ^ g f ^ T ] =
9[W,gf] = 0 by 2.1(ii). D

Put 9j = QJ(C} ^or ^ne canonical projection of J(C) onto its quotient
mod Nrd^(O).

THEOREM 2.6 .— (i) The map \:{T/3,f,T) ^ <9^(Nrdx(/V))
induces an isomorphism

>:^M,A,W) ̂  ̂ ^ C ̂ ^.

(ii) There is an isomorphism of exact sequences

1-^ /C^(e) -^ ^Ci(^) -^ /C^(M,A,0z^) -^ C<(M,A) ^0

II [^rd [ l x [lxcl

1^ r^ Nrd ^ - ^^(^ ^ ^^(^ ^o
lv / Nrd^(G)) C^rd^^Q))
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(iii) Let A' be a semisimple subalgebra of A such that U is big enough
for A' also. Tien the diagram

WM.A.W) - ,,̂ Ĵ
ires 1res

Y J { C ' )^(M.A'^Z^) Nrd^(^(e'))
commutes. Here the dash distinguishes the objects defined with reference
to A' as opposed to A and the right hand map is induced by the restriction
maps from /Ci((A)p) = (C)^ to /Ci((A')p) = {C')^ for each prime p ofQ.

Proof. — (i) Firstly, A is constant on isomorphism classes:

Let (^',^):(ri/?i,/i,ri) ^ (T^,f^,T^} be an isomorphism in Fib. Put
2, for EndAW), an order in X, d^ EndAWQ).

Now f^g = g ' f ^ and Ti^ = T2^2 = T/V. So g/3^ = ^i^' for
some u in ^(2i). Hence g^f^g~1 = ^A/i and now ^(Nrd^^^^)) =
^(Nrd^-^^i/i)). (Since Ti is locally isomorphic to M^\ 2i is locally
isomorphic to Matt(e) and so Nrd^(^) lies in Nrd^(^/(Mat^(0))) =
Nrd£;(^(0)) ).

Secondly, it is easily verified that A is multiplicative with respect to di-
rect sum and composition of triples. So A factors through /C^(M, A, 0z^Q-

Thirdly (and using the notation of 2.5), with W = W, f € X^
and /3 e J(X) may be arbitrarily chosen. So by 2.1, the image of A is as
claimed.

Finally, if x C ker(A) then we can take x = [Tf3,f,T] as in 2.3(ii).
So Nrd^(/3/)lies in Nrdjc(^(2)). Thus, pre-multiplying f3 by an element
of ^/(2) (and hence not changing x), we have Nrd^(/?/) = 1- Then
Nrdx(/?)~'1 = Nrdx(/) and so this common value lies in Nrdx(^7(^)) Fl
Nrd(X ) = N^dx(^><) (Hasse-Schilling). So we may choose g € Xx such
that Nrd(^) = Nrd(^-1/) = 1. Hence x = [TfSg.g^f.T} = 0 by 2.5(iii).

(ii) and (iii) now follow easily from the description of A. D

Let els = dsM = clsM,A denote the epimorphism 9j o A~1 o S of
C^ J(C) onto Cl(M,A). We have easily the

COROLLARY 2.7. — (i) For i = 1 and 2, let Mi and M[ be full
lattices in some faithful A-module. Suppose that M[ lies in the genus of Mi
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and that [M,] - [M ]̂ = cIsM^i) in Cl(Mi,A). Then [Mi C Ms] - [M{ C
M^] = ds(u^u^ in Cl(M^ © Ms, A).

(ii) JfM is a iocaJ direct summand of M' then c/SM^Nrd^^O))) =
{0}.

There is a particularly useful description of A on triples containing an
ideal of A.

COROLLARY 2.8. — Let I be a (right) ideal of A and T a A-module.
Suppose that both I and T are locally isomorphic to M. For all rational
places p choose dp in T so that dpip = Tp. Put a = {dp} and let f:T —^ A
be an A-isomorphism. Then A([TJ,J]) = 3^(Nrd£;(/(a))) .

Proof. — View a as a local isomorphism from I to N. D

Let K be a sum of fields embeddable in U and let n be the dimension
of K over Q. Put AK = A 0Q K and so also CK^ ^(Aj<)) = C 0Q K.
Suppose that V (the ambient A-module of the lattice M) is an AK-
module which obtains its A-module structure by restriction. We put QK ^
EndA^(M) and EK d=lf EndAjc^)' Now K is canonically isomorphic to
U^ (see 3.1). So ~AK = A^, ~CK = C^ and the following result is now
immediate from 2.4(iii) (cf. 3.2(ii)).

THEOREM 2.9. — The following diagram commutes

J(CK)K^{M,AK,M) -^
Nrd^(OK)

res^ ^VK/Q
^ ^

WA,^U) -. ^^

where the right hand map is induced by the map from J(C)^ to J{C)
which multiplies together the n components.

3. Reduced norms and the 'Horn5 language.

Let F be a field of characteristic zero and let F be a finite normal
extension of F which is big enough for our purposes. Let L be an extension
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of F lying in F. We put f^ = Gal(F/L). Let F be a commutative F-
algebra containing F and to which the action of ^tp extends.

Let A be a semisimple F-algebra and put A for A 0F F. We denote
by Nrd^ the reduced norm maps (^^-homomorphisms) from Ax and from
/Ci (A) to Z(A) x. (Recall that, if F is big enough, A is a direct sum of matrix
rings over F and NrdA is the direct sum (product) of the determinants on
these matrix rings.)

Let K be a direct sum of finite extensions K\,..., Kr of F. We assume
that F contains a copy of each Kj. Put n = dim^(J^) and let $ be the
set of n non-zero F-embeddings (f):K —> F. Abusing notation, for (j) G <I>,
we also denote by (f> the map from K ^>p A to A by k 0 a \-> k^a. For any
module M, we regard the elements of Map(<I>, M) as sets {m^} indexed by
$. Then $ gives a canonical isomorphism

(3.1) ( ^^^A^Map^.A) by b ̂  {^} .

We identify JC 0^ A with Map($,A) in this way. We have a norm map
.A/K/F =Ar(K/F,A) from (J^F^ to Ax by {a^,} ̂  II^- 0^ ^^Y
obtains

LEMMA 3.2. — (i) If A is commutative then A / ' ( K / F ^ A ) is an ^lp-
h om om orphism.

(ii) The following diagram commutes

/Ci (K (^F A) Nrd-? Z(K (^F A)x

res M{KfF,Z{A))
4^ 4-

K;i(A) Nrd^ ^(A)X .
D

Let r be a finite group (and assume that -F is big enough for r). We
write RY = Rp p for the character ring of r over -F. We recall the following
lemma (cf. [F2]'II §1).

LEMMA 3.3. — There is an isomorphism of rip-modules :

Homz^r,^) ̂  ̂ IT by f ̂  ^ /(x)^ .
X irr.

Here e^ denotes the idempotent of FT corresponding to the irreducible
character \. (We tend to identify these groups. Where necessary we denote
the inverse of this isomorphism by 'homr5.)



WILD GALOIS MODULE STRUCTURE 537

Let \ be a character of r over F and let p^ be a matrix representation
with character \. We extend p^ to FT and obtain a homomorphism det^
from F^x to Fx by a ^ det(p^(a)). We note that det^ restricts to an
abelian character of r.

We denote by detr the n^-homomorphism from F^x to 'H.om(R^,FX)
such that deti^oO:^ i-̂  det^a for all characters \. It follows more or less
immediately from the definitions that Nrd^r = detr on Fl^ given the
identification of 3.3. More precisely,

(3.4) Nrd^r ° homr = detr .

Let A be a subgroup of r. We denote by (res^)* the map —
effectively an induction map — from }iom(R^,FX) to Hom(Jir, F ^ ) which
is composition with res^:jRr —^ RA- We recall one of the most important
properties of the 'Horn5 notation.

LEMMA 3.5. — (i) If a lies in FA" then res^ o det^o;) = detr (a).
(These are both mappings from Rr to F x . To put it a different way,
detA o (res^)* = detr.,)

(ii) The following diagram commutes.

/Ci(FA) NM^ Z(FA)x h0^ Hom^A^^

[ in^ [ (res^r

/Ci(Fr) N-l^^ Z(Fr)x ^ Hom^r^^.

Proof. — (i) The equation asserts that, for a character \ of r,
det^a) is the same whether we regard \ as a character ofr or as restricted
to A. Since the representation p^ that we chose above restricts nicely to a
suitable representation of A, this is entirely obvious.

( ii) Let x C /Ci(FA). Choose a C .F^ to represent x. Then

.rNrd^A°homAo(res^)* = aNrd^A°homA o (res^)* ̂  adetA o (res^)*

== a detr = aNrdpr ° homr == x ind^ o Nrd^r ° homr.
D

4. Resolvents and transfer for sums of Galois algebras.

We take F, F, F, K, $, and r as in §3. For j = 1,... ,r, let A^ be a
r-Galois algebra over Kj and choose a simple factor Lj of Nj. Let N be the
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direct sum of the Nj. We denote by p and pj the implied representations
o f F i n AuiK(N) and Aut^.(A^). Let I^ be the decomposition (stability)
group of Lj in F and let aj be the representation of Fj as Gal(L^).

For each (f) in $ let (J):N^ F be an F-homomorphism extending
<^. Put $ for the set of these (f>. We describe p = (p, TV, $) as a r-Galois
algebra over K fully embedded in F over F.

Our first aim is to describe a "transfer55 map from ^Ip to r^. We
need this to give the action of flp upon the resolvents that we shall define.

LEMMA 4.1. — A homomorphism 6 from N to F which extends
(f) E $ induces a homomorphism 0*: n^ —^ r such that, for uj C 0^, we
have (^rp) o 0 = 0 o ^ .

Proof. — Let L be the (unique) simple factor of N such that L° /
{0}. Then 0 induces an isomorphism from Gal(L0/^) to Gal(L/L H J^T)
and thence to the decomposition group of L in F. Thus 0 induces a
homomorphism as required. Q

Take uj € ^Ip and <^ C $. Then ̂  == ^ for some ^ e ^. Now, since
A^ is normal over K^, (j>^ = ̂  for some ci;' e ^j^. We put ^0# d^ ci;'^'
(so that <^ o a; = (cc^) o ̂  and ^# agrees with ^ on H^^). We define the
transfer map

Ver(^/F, p):^F-^ r^ by a; ̂  J] ̂'ab by uj^ TT^.
0e$

THEOREM 4.2. ̂ - (i) Ver(J^/F, p) is a AomomorpAism and indepen-
dent of the choice of <I>.
Choose uj C n^ and a ̂  E $j for each j. WorJcing m F^ we have

n

(h) o;Ver(^/F,p) = {J^Ver(^-/F,p,).
j=i

(iii) ^Ver(^/F,p,) (^ ^Ver(^/F,(T,) (y o;Ver(^/F) o ̂  where
Ver(^^/F) is tAe transfer mapping from ̂ p to H^ .

Proof. — (i) This is a matter of calculation observing that the
different choices for (f> differ by an element of p(T).

(ii) and (iii)a follow immediately from 4.1 and the definitions. Part
(iii)b pis a matter of calculation (see [F2], proof of Theorem 20A). D
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We define the resolvent mapping (an .Fr-homomorphism)

C p : N ^ F F - . ( N ^ F ) r by &^E^~1-
-yer

For am N 0^ F we define the reduced resolvent (a | p) of a with respect to
p to be det^(Cp(a)) — Ih^s is an element of Z(N 0 FT). Now the canonical
isomorphism of 3.1 extends to a homomorphism

(4.3) ( ^TV^FA-^Map^.A) by & « - ^ { & 0 } .

We then define the norm resolvent (of a with respect to p over F) to
be ^(alp) = ^(alp,^) =^ ^^ /^((a lp)^)? possibly suppressing the ^ if
F = Q. Indeed we find

LEMMA 4.4. — Let (j € Oj? and <^ C <I>. TaJce -0 as before 4.2. Choose
a e N ( ^ F F.

(i) ^(a)^ = ̂  • Cp(a)^ and so (a | p)^ = (a | p)^ ' detr(^).

(ii) If $ = {^ | (f) G $} is another choice of extensions to N of the
embeddings ^ of K then ?H(a \ p, $) = SR(a | p, $) • detr(^) for some 6 C F .

Proof. — (i) .... .
/ x ( ^ ) ^ / \ ^

Cp(a)^= E^"' = E^V1

\7er 7 \^r ,

( \^
E^(7(^)-1)"1 =^.Cp(a)^.

^er I

(ii) follows immediately from the second part of (i). D

We obtain immediately from 4.4(i)

THEOREM 4.5. — Ifuj C 0^ and a e N ^)p F then SR(a | p, $)^ =
SR(a |p,$). detr (^ei(K/F, p)) .

Of course the resolvents obtained from p are simply related to those
obtained from the pi and, indeed, to those obtained from the ^.

THEOREM 4.6. — For j = 1,... ,r, put ̂  d^ {<^ E $ | ̂  7^ {0}
and ^j ^ {(j) | (j) e $^} and choose a set ̂  = {<^ | ^ e <1>^}, where (^ is an



540 STEPHEN M.J. WILSON

embedding of Lj in F which extends (f>\Kj - Choose aj in Nj for each j
and put a = ̂  aj . We have

(i) ?St(a\p^)=Tl^(a,\p,^).

(ii) If dj € Lj then ^(a^pj^j) = res^ [%(oy |(7y,<i^)] • detr(^) for
some 6 € r .

Proof. — (i) This is clear.

( ii) Let II be the projection from Nj to Lj. Then 11̂  is a set of
F-homomorphisms of Nj into F extending those of Kj so, by 4.4(ii),

(*) SR(a, | p,, ̂ •) = sft(a, | p^ n^) • detr(<$).

for some (^ € F. But if 7 C r \ I^ then aj ^ L^ and a7" = 0. So

G,(a^ = ̂ afS-1 = E aJVl = ̂ (a.)0 •
^er 7er3-

Whence, by 3.5, (aj | yOj)11^ = res^ o ((aj | (7j)0) and the result follows from

(*). 3 a
We recall (cf. [F2] I 3.1) the following result which expresses the

fundamental properties of the resolvent mapping.

THEOREM 4.7. — (i) The map (p o |> from N ( ^ p F to Map($, FF)
is an FF-isomorphism.

(ii) The element a generates N 0^ F over K ^p FY if and only if
C/,(a) € (N 0 Fly (equivalently (a\p) € detr(A^ 0 FT)" or, indeed,
^(ah.^e^FT)^.

Proof. — (i) This follows from the linear independence of the F-
embeddings of N in F and the equality of the dimensions.

( ii) From (i) we deduce that a generates N ( ^ p F if and only if C^)^
is a unit in Map(^, FF). Moreover this holds for any choice of of $. D

We establish in the rest of this section the notations and specifications
for the remainder of the paper. We set F = Q and F == U where U is a
subfield of C which is finite and normal over Q and is big enough for our
purposes (we want U to contain a copy of each component of N, the Gauss
sums and root numbers of §5 and the [r^ roots of 1). We write, as usual,
OK for the maximal order in K. By a prime of K we mean a prime (finite
or infinite) of one of the Kj. The symbol p will always stand for such a
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prime. We adopt the reasonable convention that if M is an Oj<-module and
p is a prime of Kj then the completion of M at p is Mp =^ M ̂ OK (^Kj )^
(where (OKj)fp^ the completion of OK^ at p, is understood to be (-Kj)p if
p is Archimedean).

We denote by p some prime of Q and by p some prime of K lying
over p. For each such p we choose a prime p of N lying over p. We put pp
and /?p for the Galois representations of T afforded by Np and N^ and we
put pcheckfp for that of the decomposition group r(p) afforded by Ny.

We choose an ideal M of O^T in the O^T-genus of ON such that
-^p = (OK^)p if N y l K ^ p is tame. We choose a == {a?} in the adele ring
of ON such that a^My = (0^)p for each p. Furthermore, if N ^ / K y , is
tame, we demand — as we may — that Op € A^ and OpO^r(p) == 0^.
The link between the present work and that of the §2 is now given in the
following theorem.

THEOREM 4.8. — In /C^(M,Qr,(g>z?7),

[^,M,C,o$]=A-l(^(SR(a|p,$))).

Proof. — Apply 2.8 with A = OK^ and then 2.9 with A = ZF. D

Let P denote a prime of U lying over p. Put Up for the natural
projection of Up onto Up and put $(p,P) for the Qp-embeddings of
K^ in Up. Now Kp = ©pjp-^p an(! we have corresponding dissections
Mp = Up)p^(p^) ^d ^P = Uplp^P^) where ^(P.^) is a choice
of embeddings of N in ?7p extending the elements of <I>(p,P). We choose
a set ^(p,P) = {^ | ̂  C <l>(p,'P)} of extensions to N^ of the embeddings
^:K^-^Up.

The triple (pp, TVp, ̂ IIp) is a r-Galois algebra over Kp fully embedded
in Up over Qp. So, by 4.6, we have the following relationships between a
globally formed resolvent, the resolvents formed at p and the "decomposed"
resolvents at p.

THEOREM 4.9. — If a? = S^jpflp e Np, then

(i) SR(a? | pp, ̂ nv = SR(ap | pp, Wp) = JJ SR(a^ | ̂ , $(p, P)).
-.;: p|p

(ii) Jfap 6 A^p then, for some 6 € F,

%(ap|^,$(p,P))= [res^oSR(ap|pp,$(p,^))] •detrW. D
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Finally, we assure ourselves of a case where the resolvent is effectively
trivial.

THEOREM 4.10. — Jfp is unramified in N then

(ajp^edetr^r^ .

Proof. — As p is unramified, a? mod p generates a F-Galois algebra,
namely ON^ mod p. Thus, by 4.7, the resolvent is a unit mod p and
therefore a unit, as required. D

5. Galois-Gauss sums and root numbers.

We wish to use the local and global Galois-Gauss sums as discussed in
[M] and [F]. Our machinery is already complex and the essential properties
that we shall need of these objects are all proved elsewhere. For this reason,
we do not consider the sums in their "proper" context (that is defined on
characters of the Galois group of some universal extension of our base field)
but in a manner best suited to our present needs (that is defined, via p, on
characters of our group F and of its decomposition groups).

We adopt the notation developed before Theorem 4.8. So F = Q,
F = U and N is a F-Galois algebra over K. Also, p, p and p are primes
of Q, K and N , repectively, such that p|p|p. Let ^ be a character of
Gal(Ny/Ky). Then W(^) is the local root number associated with ^ and
(if p ^ oo) r(^) is the Galois-Gauss sum.

Recall that pp is the isomorphism, induced by p, from the decompo-
sition group r(p) of p to Gal(7Vp/^). We define W(p^) and ( i fp^ oo)
r(/?p) in Hom(J?r(p)» ̂ x) to be the maps which send \ to W(p^1 o \) and
r{P^l ° X) respectively. These maps depend only on ATp, K^ and pp.

Following [F2], we define the corresponding semi-local objects by
"induction55. Thus W(p^) = res^ o W(py) and r(pp) = res^ o r(pp).

Let S be a finite set of finite primes of Q which contains all those
which are either ramified in N or divisors of |r|. It follows from the
definitions that if p|p ^ S U {00} then r(pp) == W(pp) = 1. So we may
define the corresponding global objects as products of the semilocal ones
in the following manner.

(5.1) T (p )=nr (^ ) , W(p)=1[[W(p^), W^(p) = J] W(p^)
P<oo p p|oo
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We define W8^?) to be the homomorphism which agrees with W(p) on the
symplectic irreducible characters and is 1 on the other irreducibles.

Thus the objects we use are mild generalisations of those studied in
[F] and [M]. They inherit the following properties.

THEOREM 5.2. — (i) The maps W(py) and (for p < oc) r(py) in
Hom^r?^) ^re independent of the choice of p. (So they depend only
upon Ny, Ky and p p . )

(ii) J f p < o o then r(p^) = \ r(p^) \ W(py) and r^p^ = r(pp)detr(7)
for any cj € OQ (where 7 is some element ofT depending on uj and p y ) .

(hi) W8^?) agrees with W(p) on all symplectic characters and takes only
the values ±1.

(iv) II uj € HQ then r{pY = r(p)detr(^Ver(^/F,p))

(v) W(p)\r(p)\ =r(p)W^p).
(The moduli, | r(p) \ and \ r(/?p) |, are defined pointwise using the norm
that U inherits as a subfield otC.)

Proof. — (i) Given our chosen prime p of N lying over p, any other
has the form p7 for some 7 in r. And then 7 gives a J^p-isomorphism
: TVp -^ N^. Also r(p^) = r(p)^ and p(p^) = p(p)^. So, in an obvious
sense, r(p^) = r(pp)7 etc. and the result follows.

(ii) These results with pp replacing py may be found in [M] pp. 38-39
(4.1) and p. 42 (5.1). Our results follow on composition with res^/ ^.

(iii), (iv) & (v) We use the notation of §4. So, in particular, o-j is an
isomorphism from Tj to Gol(Lj/Kj). We have immediately from (i) and
5.1 that

r r

(5.3) r{p) = TT r(pj) = TT res^. o r(oj) and similarly for W{p).
J=l J=l

Part (iii) with p = aj is standard ([M] §7). Since restriction sends
symplectic characters to symplectic characters, the result for p = pj, and
hence (iii) in general, follows on composition^ with res^ .

Let (j) be an embedding of Lj into U then, translating [F2] p.119
Theorem 20B into our terms (and pulling back to Fj) we have
r(a,r = T(^).detr,(o;Ver(^/Q) o^*) = T(^).detr,(a;Ver(^/Q,^.))

where we have applied 4.2(iii)b. On composing with res^. and applying
4.2(iii)a and 3.5, we obtain

rW =T(p,).detr(o;Ver(^/Q),p,)
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and (iv) now follows by 5.3 and 4.2(ii).

Similarly (v) follows from 5.3 and the result for p = aj ([F2] I 5.22
and 5.23). 0

We need to introduce two more elements of Z(U^)X = Hom(fir, U x )
associated with p^ for finite p. Firstly, recall ([F2] p. 149) the definition of
the non-ramified characteristic, i/(pp), in Rom(Rr^,UX). Let nr:fir(p) -^
J?r(p) be the "non-ramified part" map such that if \ is the character
of a representation space V then nr(^) is the character of y^^o where
F(p)o is the inertia group of p. Let sni'.K^ -^ F^)^ be the Artin
map composed with p^1 and let TT be a generator of pp. Then we define
2/(Pp) d=if [X ̂  (-l)deg(nr(x))det^^(art(7^))] and y(p^) d^ res^ o y(p^.

Secondly, recall ([F2] p.151) what might be called the "tame fudge
factor". We choose c to generate px Different (A^/Qp). We define z(py,) dlf

[X ̂  det^(art(c))] and z(p^) d^ res^ o z(p^).

We put ^/*(pp) = y(p^)z(p^)~1 and we put y * ( p ) for the product of
the 2/*(/?p) where p ranges over the primes of K which are tame in N and
divide a prime in 5'. Again, our 2/*(pp) is a slight generalization of the local
2/* discussed in [F] (p.155). It inherits (cf. the proof of 5.2 (ii)) the following
property.

LEMMA 5.4. — 2/*(pp) lies in Hom^ (Rr,UX) (= Z(Q^)><+ =
de^QF^J.

In the last two theorems of this section we record the important facts
about the integrality and positivity relationships between the resolvants
and the Galois-Gauss sums. We put U(p) for the maximal extension of Q
in U which is tamely ramified at p. Recall that the Op were chosen (before
4.8) so that ap(O^F(p) = 0^ if N ^ / K ^ is tame.

THEOREM 5.5. — Let p b e a Unite prime of Q.

(i) Ifp i S then
(a) r(p^) = 1 and
(b) SR(a^ | p^ $(p,P)) € detr((0^)F)^).

(ii) I f N ^ / K ^ is tame then [T^)/^*^)]-1^ | pp, ̂ (p, P)) c detr((C^(p)r)^).

(iii) I f N ^ / K f p is tame and q is an integer prime different from p then

MPp)/2/*(Pp)]lQ, e defrOO^)^).
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Proof. — (i) (a) follows from the definition of r and (b) is an
immediate consequence of 4.10.

(ii) By [F2], Theorem 31, this is true if/^-is replaced by pp and <I>(p,'P)
by ^(pp,?). Our result follows on composing with res^/^ and applying
4.9(ii).

(hi) [F2], Theorem 30 applies in a similar manner. D

Let R^ be the subgroup of Rr generated by the symplectic characters.

THEOREM 5.6. — (i) Suppose that p and P are infinite primes of
K and U. Then _
(a) sR(aJp^,$(p,P))W(^)-1 and(b) SR(a|p,$)pWoo(p)

are real and positive when restricted to R^.

(ii) Jfp is finite then r(pp) | p« is fixed under OQ. Hence its values are
totally real.

(iii) Jfp is finite and tame in N then r(p^) \ R^ takes only rational values.
In particular \ r(p^) \ is totally positive on R^.

(iv) Jfp is tame in N then W(p^) \ R^ is fixed under HQ and takes only
the values ±1.

Proof. — (i) From [F2], I 5.16 and III Proposition 4.1 the sign of
5R(ap |/?p, $(?,?)) agrees with W(pp) on the symplectic characters and
so (a) follows on composing with resL^ and applying 4.9(ii), bearing in
mind that det^(F) = {1} if \ is symplectic. Part (b) follows immediately
applying 5.1 and 4.9(i).

(ii) Since det^(F) = {1} if \ is symplectic, this follows immediately from
the second part of 5.2(ii).

(iii) Rationality of r(/?p) is proved in ([F2], Theorem 21) and our
-R^,

result follows on composition with res^/ .^.

(iv) This follows, in a similar way, from [F2] Theorem 21 (for p finite)
and [F2] I 5.16 (for p infinite).' D

6. The main theorem.

We now suppose that we have a second sum of F-Galois algebras
N ' I K ' fully embedded in U over Q. We suppose defined and chosen
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(subject perhaps to restrictions yet to be specified) all the objects we have
denned and chosen for N / K . We distinguish the objects belonging to N ' / K '
by a ( /5. Thus we have //, $' and so on.

We continue with the notation developed towards the end of §4.
Moreover, if p is a prime of Q we put PWp = PWp(N/K) for the set
of primes p of K dividing p which are wildly ramified in N and put PTp
for those which are not. We put also PW and PT for the unions of the
PWp and the PTp respectively.

We take A of §3 to be QF and M of §3 to be the ideal M of O^T
which was chosen for 4.8. So C = Z(QF) = Hom^fir, U x ) , C = Z(UF)__ ̂
and so on. We recall the map els from C J(C) to C/(M,A) which was
defined for 2.7 and we write ioo for the inclusion of C^ into J(C) via the
component at infinity.

THEOREM 6.1. — Suppose that K and K ' have the same dimension
over Q and that for each prime p of Q there is a bijection a = a? from
PWp to PWp and for each p in PWp there is an isomorphism a? of
Qp-algebras from N^ to A^(p) which respects the action ofF. Then

(i) ON and O N ' lie in the same genus of Zr-modules.
(ii) W^/W^p') lies in C^ (i.e. it is fixed under ^Q).

(iii) In C;(M,Qr), [ON\ - [ON'} = cfo(zoo(^(p)/^V)) modulo
ck(detr(^(Zr))) .

Proof. — (i) Since (ON)^ is ZpF-free if p C PTp, this is clear.

(ii) Restricted to the symplectic characters,

w s ( p ) / w s ( p ' ) w } w ( p ) / w ( p ' ) ^ n w^! n ^w
p€PT p'ePT'

where for the second equality we have been able to cancel the factors
belonging to the wild primes using the correspondence a and the context
independence result 5.2(i). Now, since W8^?) is 1 outside the symplectic
characters, our result follows immediately from the invariance property
(5.6(iv)) oftheTF(pp). D

The proof of part (iii) of this theorem will occupy most of the rest
of this section. We first deduce the two corollaries which are our principal
results.

COROLLARY 6.2. — Without any further assumption
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(i) In Cl(M © Zr, QF) and with els = cfeM®zr,
[ON © zr] - [ON' © zr] = ̂ (^(^(^/^V))).

(n) O N ^ O N ^ zr ^zr o^/ © o^ © zr.
(iii) If r Aas 220 irreducible symplectic characters then ON © ZF 9^r

o^/ © zr.
Proof. — This follows using 2.7(i), 5.2(iii) (that W^p)2 = 1) and

that the Eichler condition is satisfied where required. D

COROLLARY 6.3. — If, in addition, PTp is non-empty for all primes
p of Q, then

(i) Jn Cl(M,Qr), [ON] - [ON'] = cIs^W^p)^8^))).
(ii) ON © ON ^zr ON' © O N ' .

(iii) JfF has no irreducible symplectic characters then ON ^zr ON' .

Proof. — Under the added condition, M has ZF as a local direct
summand. (Indeed, it follows that M has ZF as a (global) direct summand
unless K = Q.) Hence, by 2.7(ii), detr(^(ZF)) (= NrdQr(^(Zr)) ) is
annihilated by dsM' The result follows.

From now on we assume the hypotheses of 6.1 to be satisfied. Before
4.8 we chose the ideal M of 0^ to be locally isomorphic to ON and equal
to OK^ at the tame places. We choose the ideal M' of O^F in the same
way except that we specify also that M^ = M^ at the wild places .p in
PW. (Here we have regarded the local field homomorphism Op as extended
to a homomorphism from (0^)^ to (OK'T)^).)

THEOREM6.4. — Jn C<(M,Qr), [M] - [M'} e cfe(detr(^(Zr))) .

Proof. — Let I and I ' be modules over 0^ and O K ' F , respectively.
For each p,

I p = T p ( I ) ( B W p ( I ) where Wp(I) = ^ ^ and Tp(I) = ^ ^
^PWp pePTp

and similarly for I ' . Put

Wp= W a. : W.(Kr) -^ W'tK'lQ) ^ :w,(Kr)^w,(K'r).
LpePWp J

By the definition ofM', Wp(M)w^ = W^M') and, clearly, W^O^)^ =
Wp(o^r).
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Since Wp(KT) and Wp^K'Y) have the same dimension/so do their
complements Tp(KT) and Tp(KT). Hence the free ZpF-modules Tp(M) ==
Tp(OK^) and T^M') = Tp(0^/r) are isomorphic and we choose a QpF-
isomorphism ^p from Tp(J^r) to T^K'Y) which performs this isomorphism.
Finally, we put /3p = tp © Wp. We have then a local Qr-isomorphism
(3 = {f3p} between CT and K'T such that M/3 = M' and O^r/3 = Oj<T.

Now Oj</r and Oj<T are isomorphic (free) Zr-modules. So choose
a Qr-isomorphism / from KT to KT which performs this isomorphism.
Then O^fSf = OK^ and so /3f lies in ^(Endzr(Oxr)) with reduced
norm u in detr(^(Zr)). On the other hand, since M'f ^ M', we find that
[M] - [M'] = [M] - [M'f} = [M] - [M{3f} = cls(u). D

Recall that we chose the adele a = {ftp} before 4.8 so that aM = ON.
We choose a' for N ' in the same way except that we can, and do, demand
that, for p in PW, a / ^ = a^.

We choose the set S of primes introduced at the beginning of §5 to
be big enough for both p and p ' . So S contains all the finite primes of Q
which either divide |r| or are ramified in N or N ' ' .

Put now u(a | p) == ^(a | p^^p^y*^?).

THEOREM 6.5. — (i) u(a | p) lies in J{C) (i.e. it is fixed under OQ^.

(ii) Let qbea finite prime of Q then ( u a p) ) ^ detr^Z^).

("•'(^^(^O^"- '
Proof. — (i) follows from 5.2(iv), 5.4 and 4.5.

(ii) If q € S and Q is a prime of U lying over q then

/ u{a\p) \ Y. iR(a^|^,$(p,Q)) ^ ,
[u(aw) Q - }^ r(p,)/yW }}^ (TW/y w)

pes\w

^ TT ^(aplpp.^p.Q)) T-r r(/?p)

pA^ ^^(p) I ̂ (^^'(^(P)- Q)) peVw ^^(^^

rr ^ ^ / * ^ ^ TT (^\^^W^^\~1
x 11 M^)/^(^)) 11 r^^p1.) '

p'ePTp p'ePT;, V ' ^ ^ f l y ^ ( p ' f )
peS\{q}
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By 5.5(ii)&(iii), the first, second, fifth and sixth products all lie in
detr((0[/(^r)Q). By 4.4(ii), each factor in the third product lies in detr(r).
The fourth product is identically 1 by 5.2(i).

Thus, for eachQdividing g,Ma|p)/n(aV))Q lies in detr((0^(g)r)Q>
Hence {u{a\p)lu{a'\p'))q lies in deir((0u(q)^) and, moreover, is fixed
under HQ. Therefore Taylor's result ([F2] Theorem 10A) tells us that
(u(a | p)lu{a! \ p ' ) ) q lies in deti^Z^), as required. Ifq^ S then we achieve
the same result with rather less effort by applying 5.5(i) in place of 5.5(ii).

(iii) For / and g lying in Hom(J?r, U^) we write / ~ g if (f(x)/g(x))Q
is real and positive for all symplectic characters \ of r and all infinite
primes Q of U. It is easily seen (cf. [F2] I 2.2) that, under the identi-
fication of 2.1, detr^Zr))^5 J(C)^) = Hom^(fir,(7oc) (M {f C
Hom^(.Rr, £%) | / ~ 1}. So by part (i) and 6.1(ii) we need only prove that
u(a | p^ooW^p) ~ u{a! \ p^ooW^p'). But, applying successively 5.2(iii) and
5.4, 5.2(v), 5.6(i)b, 5.6(iii) and the correspondence a, and then reversing
the process, we obtain

u(a | p^W^p) ~ SR(a | p^r^Wip) = SR(a | p)^W^(p)\r(p)\ - \r(p)\

- n Kpp)!- n ^paw)\= n wi
PCPW pePW p'ePW'

-^a'lp')^^5^).

Proof of 6.1(in). — Since r(p) lies in G", ^(Qj^p))) = 9(r(p)).
Thus cls(r(p)) = 6(9{r(p))) = 0. Consequently cls(u(a\p)) = cls(^(a\p))
4=8 [ON] - [M]. Thus, modulo c^(detr(^(Zr))),

cisd (^^^w^t^p)}{^[w^))) = ^[^W))
== [ON] - [ON'] - [M] + [M'] ^ [ON] - [ON'}.

D

It has been remarked (cf. [F2] III, first and last paragraphs of §4) that
a natural viewpoint is to consider the root numbers at infinity as "Gauss
sums" at infinity and that the natural global object is therefore T(p) (M

r(p)Woo(p) (the right hand side in 5.2(v)). Indeed, if we put Ts(p) for the
map in 'H.om(R^,UX) which agrees with T(p) on the symplectic irreducible
characters and is 1 on the other irreducibles, we find that, by 5.6(ii)&(iv),
T^p) is fixed under OQ. Thus T^p) lies in Hom^^r,^), that is, C x .
In particular i^T^p), unlike iooW^p), clearly lies in the domain of dszr
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and so provides a class group invariant, t(p) = cte^ooC^Qo))), of N / K in
C?(0^,Qr). Moreover, the methods of this section are easily adapted to
prove the following alternative to 6.1(iii).

THEOREM 6.6. — Under the assumptions of 6.1 we have, in
CI(ON.(V),

[ON] - [ON'} = t(p) - t(p1) modulo cfc(detr(E/(Zr))) .
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