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CHAPTER 0

INTRODUCTION

0.1. The main theorems and some other known results.

Let G = (F.L.A) be an oriented graph where V is the set of
vertices, L the set of edges and A = (a. P): L -> V x V is the orientation.
Let M = (My)ye^ be a collection of C°° manifolds. A diagram of smooth
(proper) mappings on (G,M) is a family / = (/)<feL of (proper) mappings
/^: M^) -)- MP(^) . We denote the set of those diagrams by

C^G.M) = nc00 (M^), Mp^), C^(G,M) = n <^r(^), MP(,)).
^ e L £ eL

Two diagrams/, ^e C°°(G,M) are C^ equivalent (topologically equivalent,
if r=0) if there are C^ diffeomorphisms (|)u of M^ such that
^p^)0/^ = .^^aoo f01" ^L. The C^^ equivalence class of / is denoted
^'(F) and / is C' stafrfc if ^(f) is a neighbourhood of / in the
Whitney topology.

Our first question is :
Is (7 stability a generic property?
It is easy to see that the answer to this question depends deeply

on the combinatorial type of the underlying graph G and manifolds
My, ve V. For example if G is of the types either 0 (cycle) or ^
(divergent) it is known that topological stability does not hold in general
by the study of discrete dynamics and Web geometry [Ca, Du 2-3]. We
will touch on these counter examples later in this section and also in
Appendix 2.

The graphs which we study in this paper are the (finite) convergent
graphs:

^ ^

^
y

defined below. We will establish a foundation for differential calculus
of convergent diagrams of smooth mappings for such graphs.
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The relation a(/) < POO, ^ e L generates the partial order < of
vertices for an oriented tree. A finite oriented tree G is convergent if
there is only one . maximal vertex i;o: the root (sink) of G. If G is
convergent, then for each vertex v ^ VQ, there is a unique edge <fy with
source a(/y) == v . We define P(^) by P(/y) for v ^ VQ. The height of a
vertex ye F is defined indued velyh(vo) = 0 ; otherwise h (v) == 1 + h(^(v)).
Each vertex v of G' defines a branch Gy, which is the subgraph consisting
of all vertices v ' ^ v and edges ^ with P(^) ^ y .

In this paper we call also a union of tress a tree.

Our goal in this paper is to prove

THEOREM. — Let G = (F,L,A) be a finite convergent tree and let
M = (My)ygv be a collection of smooth manifolds and P = (dimMy)yev.
7^ P satisfies the condition G defined in Section 2.1, then topologically
stable mappings are dense in C^{G,M) with the Whitney topology.

As a consequence of the above theorem and Theorem 2 in the
paper [N2], we have

COROLLARY. — Let G, M, P be as above.

If pv satisfies one of the following conditions^ for any v e V '.

(1) Pv^P^for 0 ^ n ^ h ( v )

(2) Pp(y) ^ P^ for 1 ̂  n ^ h(v)

(3) P v , PP(.) ^ P^ ^ P^n^ for 2 ̂ n ^ h(v)

and the pair (pv-P^, PWP^^) is semi-nice, i.e.

^(P.-Pp2(,),Pp(.)-Pp2^) ^ Pv - P^y

Then topologically stable diagrams are dense in C^(G, W). Here 2o(n,p)
is the function defined by Mother [M2] (see also [W2-3]).

The main theorem above generalizes well known topological stability
theorem for single mappings due to Mather [M4] and also gives a par-
tially affirmative answer to a conjecture by Baas and Mather [B 1-3,
L-T]: topologically stable diagrams are dense in C^{G,M) if G is a
finite convergent tree.

We now recall some known results on the C^ stability problem
respectively for various types of diagrams.
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Case 1 : is an arrow ->. In this case our problem turns into the
ordinary singularity theory of smooth mappings between two manifolds.
We recall the main global results :

(1) C00 stable mappings are dense in C^(A^, ^p) if the dimension
pair (n,jp) is nice, i.e. ^(n,?) > n [Ml].

(2) C° stable mappings are dense in C^(N,P) for any smooth
manifolds N . P [M4,Gi].

(3) The C° stability and the C°° stability are equivalent in C W ( N , P )
if (n, p) is a nice pair and N is compact (see e.g. [Da]).

(4) The complement of the union of equivalence classes ^°°(/) with
finite codimension in C^^N, P) has infinite codimension for compact
N , if and only if (n, p) is a semi-nice pair [P,W2].

(5) C1 stable mappings are dense in C^QV, P) if and only if (n, p)
is a nice pair [Wl].

A survey of these nice and semi-nice properties is available in the
paper [W2] and the complete determination of those ranges is given by
Mather [M3] and Wall [W3], respectively.

Case 2 : G is the composition —>—>. In this case C1 stability does
not hold generically even for some triples (M, N, P) of manifolds of
small dimensions. In fact du Plessis showed that

(6) C1 stable compositions are not dense in the space of proper
composite mappings C^(M3->N4->P2).

We will give a proof for this in Appendix 2. On the other hand,
the triples (3.4.2) satisfy the condition (3) of the above corollary. Since
the pair(l, 2) is nice and in particular semi-nice, C° stable mappings
are dense in this space of compositions.

A technical reason for the restriction to the case of convergent
diagrams is that the Malgrange-Mather division theorem does not hold
for the other cases. In fact the nature of the space of diagrams
C°° (G, M) presents a remarkable difference between the convergent
and the other types. Some of these aspects will be found in the
following two typical non convergent cases.

Case 3 : G is a cycle 0. In this case our problem corresponds to
the theory of endomorphisms of manifolds, which have been long
studied by many mathematicians. It is known that C° stability is not
a generic property. This phenomenon is caused by the topological
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structure of orbits of endomorphisms /: M-Q. The structure of
compositions of their singularities along orbits is the same as that of
their developments/: • • • ==>===> • • • ==> /: (covering /), for which it seems
that the argument in this paper remains effective. So the topological
structure of endomorphisms may be described by a certain combination
of singularities and the orbit structure of/.

Case 4 : G is the divergent graph <^ . In this case our problem is
related to envelope theory in the papers [A, Ca, Du 2-3, Th]. The recent
results by Carneiro [Ca] and Dufour [Du 2-3] present a new aspect of
the topological classification problem for diagrams of this type by using
a topological method in web geometry. Namely, Dufour proved that

(7) In the divergent mapping space CCO(M1^-N2->P2), C° stable
diagrams are not dense [Du2-3].

In the final section we will show that if P2 is orientable and N2 is
not then all topological equivalence classes have infinite codimension.
Surprisingly it was proved quite recently by Dufour [Du 4] that even in
the space of pairs of functions C(:0(M1^-N2->P1), C° stability does not
hold in general.

0.2. Sketch of the proof of the theorem.

First we begin by recalling the idea due to Thorn and Mather for
topological study of singularities of mappings, known as the theory of
canonical stratification.

A stratification of a smooth mapping /: N -> P is a pair (^N, ̂ p )
of stratifications of manifolds N , P such that / restricts on each stratum
Xe^N t° a submersion /: X -> Y to some stratum Y e ^ p . Thorn's
second isotopy lemma (Theorem 3.2.4) says that if a family of proper
mappings (/<xid,Pr) N x 1R -> P x R -> R is simultaneously stratified
by a triple ( S P ^ . S P p , R) of stratifications of TV x R, P x R and R, and
y^ satisfies Thorn's condition A^ then the family ft is locally
topologically trivial. This suggests that topological stability of mappings
may be deduced from a certain stability of their Af regular stratifications
under small perturbations. A canonical stratification was explicitly
constructed by Mather [M4] by using his highly systemized method in
papers in a series, where the finite determinacy theorem and the
unfolding theory played a crucial role.
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Using the same basic idea as above, a fundamental part of the
proof of the topological stability theorem for convergent diagrams will
be a construction of their stratifications in a canonical way. For the
simplest case of two-compositions (/,<?): M -> N -> P , this may be done
by refining a canonical stratification «9^(/) of N for / to a stratification
y'N^f) such that for some stratification^? of P the pair (^;v(A^p)
is Ag regular. Thus this problem is called the problem of the second
stratification by Thorn. In the following we will explain how the second
stratifications of convergent diagrams are constructed in a canonical
way.

Let f u ' u : M(/ -> My denote the composition of j\ along the oriented
path from v ' to v . The main technical problem in this paper is to give
an intrinsic notion for the singularities of convergent diagrams / involving
these compositions.

Given a diagram /eC°°(G',M) and another convergent graph F, a
diagram of f of type F consists of

i) a morphism / : (Vy, Ly) -> (Vo, L^) with (XG o / = / o a?,
PG o / == / o pr,

ii) points x^eM^ for (e Vy such that /^(x^)) = x^ for { eLr.

We shall seek to understand the singularities of / in terms of its
multigerms along such diagrams.

A diagram of / is determined by the set X = { X ^ ) \ ^ E L ^ } , so we
denote it simply by fx: the Collection of multi germs f^ , ^ e LQ ,
where X = J X, cz [ j M^. Note that Vr ^ [ j (X,uf,(X,)).

if e L ^e L { e L

We first explain the role of trees for the cslse of a single mapping.
Here a diagram fx, X c N of /: N -> P is an oriented graph of height
1 consisting of # f(X) disjoint trees : forest. The germs of canonical
stratifications^^, ^p of / at f~^(y), y are characterized by the
multigerm f^ at Xy = !(/) n f-\y) [M4].

For a general convergent tree G, our first problem is to describe
the singularity type of convergent diagrams of smooth mapping, in
other words to seek the smallest subset X c: (J M^) with y e f(X) for

< f e L

which the germ fy characterizes the property of the germ of / along
the fibres fv'Ky), v ' < v on yeM^

In Section 0.3, we define the critical point sets Co^)(/) c= M^) and
the critical values sets D^(f) = [J f^{C^)(f)) for convergent diagrams

POO-y
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/eC°°(G,M), using the notion of trees. The restriction
/z = (ff '• ^a(^ )(/)-* ̂ (aCO) is considered as a skeleton of/. In fact
/s contains complete information about the singularities of/ . The
author would suggest these sets as good candidates for the notion of
singularity for diagrams, in proving the C°° stability theorem (Thm. 2.3.1)
and in constructing a canonical stratification for diagrams in a certain
class feT^ c= A^ (Theorems 2.1.2, 3.1.2).

The fundamental question for these critical sets is: whether the
restrictions /^: G^)(/) -> D^)(J), ^ e L are proper and finite-to-one.
We say a convergent diagram feC'°(G,M) is a good representative of
a tree fx if the restrictions /: Co^)(/) -> D^)(/) are all proper and
finite-to-one and also satisfy a certain additional condition on maximal
trees (see Section 0.3 for the definition).

In the paper [N2] we proved that a (finite) tree fx of a convergent
diagram admits a good representative if the /o codimension of fx is
finite (Proposition 1.4.1 [N2]). Under the conditions / e A^
n C^(G,M) that f( are proper and all trees have finite /o codimension,
it is proved that the critical sets G^)(/), D^)(f) are closed and the
restrictions f^: G^)(/) -^ D^)(f) are all proper and finite-to-one
(Theorem 2.2.1).

Now we are ready to explain the construction of stratification
of diagrams feC^(G,M). By Theorem 0.3.2, a tree fx with
finite /o codimension admits an (infinitesimally) stable unfolding
Fx = (F,, : M^ x r, x x 0-^Mp^ x r, /(x) x 0),, ̂  of the form
F^(x,M) = (/^cu(^)^)» f^xo = /• By the finite determinacy of stable
diagrams (Theorem 0.3.1), we may suppose Fy is a diagram of polynomial
mappings. Then by a standard technique in the theory of semi-algebraic
sets, we can construct a critical value stratification (CVS) ^(Fx) =
(^x(Fx))xeFw^ which yields immediately a Thorn Ap^ regular stratification
y^Fx) = (^x(^x))xexu/(x) of F^ A tree fx is topologically transversal
if all inclusions ^: M^x c—> ^vx x ^r are transversal to ^\(Fx) • Then
the pullbacks i^x^Fx) gi^ ^e stratification of fx denoted by ^(fx)'
A diagram / e A^ is topologically transversal if so are all trees in it (it
is sufficient to consider topological transversality of maximal trees). The
set of those diagrams is denoted by Too. By the naturality of ^(/x),
^(fx) with respect to coordinate transformations (Proposition 1.2.1)
and the coherence of maximal trees and branches (Theorem 2.2.1), the
CVS ^x(fx)-> xe X u f(X) glue up to give a stratification of My denoted
^(/) = C^uC/))? fr0111 which we obtain immediately a canonical
stratification ^(/) of/.
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By the argument outlined above, the genericity of topological stability
is deduced from the openness and density of the sets A^ and T^. These
properties are proved in Theorem 3.2.2 and Theorem 2.1.2 under
Condition G defined below by arguments using transversality of jet
sections. We explain these briefly.

A multi jet ze^(G,M) = f] ^(M^.Afp^) is a collection of
< f e L

jets Jfa^a) ̂  J(M^),MP(^)), < f e L , f = 1, . . . , m . We regard again z
as a combinatorial tree F^ (possibly a union of many connected
components) consisting of the vertices x^., f^.(x^.) and edges
Jf^(x^):x^-> f^(x^).

We say the dimension function P = (dim My) satisfies Condition G
if, for any m, ze^J(G,M) off a subset of infinite codimension with
any combinatorial type, Y^ is finitely /o determined. Some range of such
dimensions P is presented in the paper [N2].

The canonical stratification 5' of ^J{G,M) is roughly the partition
by topological types of the stratification of stable unfoldings of those
trees Y z '

Proposition 1.3.3 and the argument in Section 3.2 say that topological
transversality of / e A^ is equivalent to the transversality of the multi
jet section ^Jf to the S for sufficiently large m. Therefore 7^ is a
countable intersection of open dense subsets by the transversality theorem
(Theorem 0.3.5), hence it is a dense subset by the Baire property of
C^(G,M). The openness of Too is shown in Theorem 3.2.2 in the same
way as that of Ay, in Theorem 2.1.2.

0.3. Terminology and Preliminaries.

For a tuple of positive integers P = (py), let

^(G,P) = C m(p^)KOW),Pm)
< f e L

denote the set of diagrams of map germs ff: IR^oo^ o -^ (R^P^), 0. Here
- <^(n) is the local ring of smooth function germs on R" at 0 with

p
maximal ideal m(n) and <^(n,p) = © €(n). Let 9(P) = ® 9(pJ,

ue V

0(/) = ® Q(/<f) and define the morphism T(f): 9(P) -> 9(/) by
<fe L

r(/)(© X.) = © ©/.(Xp(o) - t//(X.<o).
\ i ;6V / (eL
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(For these notions, see [Ml-4]). We say / is infinitesimally stable or
simply stable if T(/) is surjective, and / is trivial if

n/)f© e(^).)=eco.
\u^uo /

The /o codimension C^(f) of / is defined by

C^(/) = dim^9(/)/Im TV) + © f^m(p^Q(f,),
tf e L

where /yy denotes the composition of j\ along the oriented path from v
to the root VQ .

A diagram Fe <^(6',P+r), P + r = (py+r) is called an r para-
meter unfolding of fe<^(G,P) if there are smooth imbeddings / y :
[R^y c_). [R^^ such that F^ o i^^ = ̂ ) o f^ and ^) is transversal to
/^. Two unfoldings F, G of / are equivalent as unfoldings if there are
germs of diffeomorphisms ())y of IR^ such that F^ o (|)^^) = (()p^) o G^ and
<hi;° ^'uG = ^uF? where ^, /^ are ^e transversal inclusions of / to
G,F.

The equivalence relation /o introduced in the paper [Nl] is defined
for diagrams / with C^(/) < oo . We say that /, g are /o equivalent if
and only if they have unfoldings F, G which are equivalent as diagrams
(see Theorem 4.2.1 [Nl]). If F , G are unfoldings of the same dimension
of /, g respectively then / and g are /o equivalent if and only if F
and G are /o equivalent. The /o equivalence classes ^^(f) project to
locally C°° trivial semialgebraic manifolds in the jet space
J\G,P) = n J\P^Pw) denoted (9^\f) (Proposition 2.4.2-2 [Nl]).

/' 6 L

Let Fe^(6',P+r) be an unfolding of / of the normal form:
F/(x,u) == (/^(x),i<), xetR^) , U E W . Then the jet section
J^F:™^) x W -^ Jk(G,RP) == fl ^(^^W00) is defined by

^e L

J'F^x^u) == (J'f^x^)). Let A^c: p] ^^^^^O denote the
^e L

diagonal set {(x^^)^|^=^ o oc00=(3(r)}.

THEOREM 0.3.1 (Theorem 3.1.1 [Nl]). - C00 s^fc/e diagrams f e E(G,P)
are finitely determined : there is a function e(G,P) such that any diagram g
mth the same e(G,P) + 1 jet as f is equivalent to f.
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THEOREM 0.3.2 (Theorem 5.1.1 [Nl]). - The following conditions are
equivalent :

(1) F is infinitesimally stable,
(2) J ^ ' ^ ^ F is transversal to ^ x ^o^.^)(^
(3) (8fJ8Ui(u=0)\,^ i = 1, • . . , r span coker TV),
(4) (8f^/Su^u=0))^L, f = 1, . . . , r span

eco/im TV) + e /S^o^o)9^)'
£ e L

THEOREM 0.3.3 (Theorem 5.2.1 [Nl]). - Two stable r-parameter
unfoldings F, G off are equivalent as unfoldings.

THEOREM 0.3.4 (Proposition 2.1.1 [N2]). - The condition r < C^(/)
is an algebraic condition on the e(r) (=^(G,P+r)+1) jet of f, which
defines an algebraic set ^e(r) c= J^^G.P = ]~[ J^^^Pm) such that

£ e L

n^s)^) c Z^for any s < r . IfC^f) ^ r, / is e(r) - I, determiner
i.e., any g with the same e(r) jet as f is Io equivalent to f. (This is a
consequence of Theorem 0.3.1 and 0.3.3.)

We say finite 7o determinacy holds in general in <^(G,P) if
codim ^e(r) -> oo as r -> oo.

Here we state our transversality theorem.

THEOREM 0.3.5. - Let G = (r,L,A) be a finite oriented graph,
M == (Afy) a collection of smooth manifolds and S c: Jk(G,M) a submanifold.
Then the set ^s of diagrams /eC^G^M) for which the k jet
sections J^f == (Jfcf^ : fj M^) -> 7^(6', M) are transversal to S is a

ifeL

countable intersection of open dense subsets.
From now on we apply all concepts for convergent graphs and

convergent diagrams of map germs to trees of diagrams feCCO(G,M).
Let fx. Xf^M^ be a (finite) tree of a diagram feCCO(G,M).

The prolongation of fx is the tree fx- defined by the set
X- - Xuf(X)- M,,.

The critical point set C^)(f) c: M^), v 1=- VQ of / is the set of roots
x of (finite connected) trees fx, for which the prolongation
fx- == fx u (/„ : x->/,(x)) (X~ = X u /(A-) = X u x) is not trivial. The
critical value set D^)(J) c: M^) is the set of roots f^(x) of those
prolongations: D^(f) = J /^(G(^)(/)).

W')-W>
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A tree fx is indecomposable if Y{ c: C^)(f) for all £ e L , and
maximal if furthermore any tree /j^, with A c JST is not indecomposable.
We see easily that any point x e Cu(f) u ^cCD is contained in unique
maximal tree (possibly infinite) called the maximal tree of x and denoted
fx^, and its branch on x e Xx u /We) is called the maximal branch on
x and denoted /^r. Note that X^ = (J C^(f) n /^(x). Conventionally

V' <U

we define X^ = x if x ^ Cy(/) u £),(/).
We call a diagram feC^(G,M) a ^00^ representative of a tree fx

if the following conditions are satisfied:
(1) fx is maximal if fx is indecomposable,
(2) The function C^(/^) is upper semi continMous with x e M y ,

,i;e V.
(3) Cu(/), ^u(/) c: ^u are closed and the restrictions

f/: ^a(<f)(/) •̂  D^)(f) are proper and locally uniformy finite-to-one.
(4) F-or any subgraph G", the restriction f^ is a good representative

of the subtree f x ' , A" == (J X{.
<feL'

PROPOSITION 0.3.6 (Proposition 1.6.1 [N2]). — Any finitely Ie determined
convergent diagram of smooth map germs admits a good representative.

CHAPTER 1

CRITICAL VALUE STRATIFICATION (CVS)

1.1. A canonical construction of CVS.

Let G ^ (P,£,A) be a convergent diagram of height 1 with root
Vo'. V == {VQ,V^ . . , , i? jJ , L ^ {^ i , ^.,^}, t i ' ' V i - ^ V o ' Let
M == (Mo,. . . ,M^) be a collection of smooth manifolds and

/ - (/̂ i,....., /^^(M^M^).

We suppose Whitney (B) regular stratifications 5', of Mi are given.
Let ^(ft\A), A e Si denote the set of points x e A where fi\A is not
a C" submersion. Let E^CO - \J W\A), ^,CO == f^s^)) and

, ^^•
A?(/) = U ^s,^), where S stands for the fe-tuple (^)^i,,.^. By the

!'=!

1̂ regularity condition for Si, ^s(fi) ls closed in My..
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A critical value stratification (CVS) S ' of Ds(f) is a Whitney regular
stratification of Ds(f) which possesses the following properties : for any
i and strata A, B e 5\, U, V e S1 (where we allow A=B and £7= F),

(1) E(/;.|^) r\ fi\U) is a smooth submanifold of A,
(2) /,: Z(y;|^) n f-,\U) -^ U is locally diffeomorphic,
(3) 2:C/, B)r^f-,\V) is Whitney regular over 2:(^-|^) n f7\U),
(4) Br^f,\U) - ^(fi\B),Br^f,\M^-Ds(f))siTe Whitney regular

over SC^On/,-1^).

If Ds(/) is a closed subset, the mapping / admits the Thorn regular
stratification ( S ' ^ S ' ) called the stratification of f associated with the
critical value stratification S ' , defined by

^ = {s(y;•l^)n/^l(^),(^-s(y;•|^))n/^l(^),
A^\M^-Ds(f))\A e S ^ U e S 1 }

for f = 1, . . . , k; (Thorn's .̂ regularity and Whitney B regularity of
5'; follow immediately from the properties (2) and (3), (4) respectively.
For the definitions of Whitney B regularity and Thorn's Af condition,
see [Gi]).

In general let G = (F,L,A) be a convergent graph with root VQ,
M = (My) a collection of smooth manifolds, and /eC^G'.M). Let
v+ denote the set of vertices v ' e V with (3(i/) = v (f\i :v'->v) and let
/y+ = (/^W)=y Now suppose that we have stratifications ^y(/) of M,,
for which the union of strata with positive codimension gives CVS of
the critical value set D^(f) of f + :

W)-^^), ^=(^)^,

for any v e V (Dy(/) = 0 for the source v of G).

Then / admits the stratification ^(f) = (^(/))^v associated with
^(/) defined by ^(/) = <^(/) and

^(^{^l^n/,-1^),
(A-^(fAA) n f^(U) A e^)(/), £/6^p^(/)}.

Now we construct a CVS for the following mappings. Let p o , . . . , pk
be positive integers and Ui a semialgebraic open neighbourhood of
0 e R^ for i = 0, . . . , k . Let 5',, i = 1, . . . , k be Whitney regular
semialgebraic stratifications of Ui and f, : U,, 0 -> Uo, 0 polynomial
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mappings. If the fi\^s-(fi) are finite to one, then by shrinking Ui if
necessary, we may assume /^(O) n 2^(/;) = 0 and fi^s^fi) are proper
hence Ds(f), S = (Si) is closed in UQ. In this situation the germ of
Z>s(/) at 0 is well defined by the germs of fi at 0, and we have :

PROPOSITION I.I.I. - Ds(f) admits the CVS ^s(f) so-called canonical
critical value stratification, which possesses the following properties : The
germ of ^s(f) at 0 is well defined by the germs of the fi. Let
§i •' Vi -> VQ be polynomial mappings and S\ stratifications of Vi satisfying
the above conditions. If there are germs of dijfeomorphisms (j); of IR^1 such
that ^of,= g,o^ and ^,(S,) = S\, then (MW)) = ̂ ^).

Proof. - We construct a filtration Y^ =) Y^-i => • • • => Yo of the
critical value set Ya = Ds(f) {d = dim Ds(f)) by semialgebraic subsets
Yi of dimension ^ i inductively, so that Mi = Yi — y^-i and MQ = Yo
are Whitney regular submanifolds, dim M, = i and possess the properties
(1) - (4) of CVS.

As induction hypothesis we assume that we have constructed a
filtration Y^ => • • • =^ Y, with the conditions (1) - (4) for A, B e S j ,
j = 1, . . . , k and U = M^, V = Mn, ( + l ^ m , n ^ d . Then we
define l^-i in the following way: Let

(i) Y] = r, - £(y,)
(ii) F? = Y ] - U ^(^LM,)

/=(+ !,...,((

(iii) ̂  = A n //'(V?) n E(/;|^) for each ^ e 5',

(iv) X\ = X\ - £(^)

(v) x\=x\- U 5(^,^1,)

U B{Xi,f^W^B-^f,\B))
Be Sj

U B(X\,-L(fi\B)^fJ\M,))
Be Sj,if=i+ 1 , . . .,d

U ^(^.^'(M^n^-Ea.l^))
Be S,,^=i+ 1 , . . ,,d

U fi^L/y^yo-^.a^n^)
Be S,

(vi) ̂ =^- Sing 0;.^).
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Here S(y,) denotes the set of points xe Yi where F( is not a smooth
manifold of dimension f , B(X, Y) denotes the set of points x e X where
Y is not Whitney regular over X and sing (h: X -> Y) is the set of
points x 6 X where h: X -> Y is not of maximal rank. Then Y}, Y ] ,
X\, X\, X\ and X\ are all semialgebraic, X\ is open in X\ and
dim(X\—X^) < i (for the properties of semialgebraic sets, see [Gi]), so
we see that 6imf,(X\-X\) < i and fj;: X\ -^ f,(X\) c Y] is locally
isomorphic by the assumption that f^s^fi) ls finite-to-one and the
refining process (vi). Let

(vn) n = n - u WA-^\
A e S j , j = l , . . . , k

Then rf is smooth of dimension i. Now we define r,-i== 7 ;—Ff . We
claim that y,-i possesses the required property. The properties (1) — (4)
of CVS for Mi = Yi — r,_i involving the other strata M^,
<f = i + 1, . . . , d and A, B e Sj follow respectively from the refining
process (iv), (vi) and (vii), the 4-th term in RHS of (v), and the 5-th
and 6-th terms in RHS of (v). If 0 9^ n = dim r,-i < i - 1, then we
define F^-a = ^1-2 = • • • = ^n ^d go on to the next step of refining
Yn to define F^-i so that Mn = Yn ~ Yn-\ ls smooth of dimension n
and satisfies the required properties. If n = 0, we complete the induction.

By construction the filtration Y^ =» • • • => Yo is determined by the
germs of fj at ^s-(fj) cz ^r Since fj\^s •C//) are proper and
fj'\0) n EsO}) = 0. the germ of V, at O e C / o is determined by the
germs of fj. The naturality of the germ of ^s(f) at 0 with respect to
coordinate transformations is clear.

1.2. Some properties of CVS.

PROPOSITION 1.2.1. — Any stable convergent diagram of smooth map
germs fe <^(G,M) admits a representative f = (^), f^: U^ -> U^^ defined
on open neighbourhoods U^ of Oe R^, mth a CVS ^(/) = (^y(/)) SMC^I
t/iar the restrictions f^: E^ <^)(/^) -^ (7p^) arg proper anrf finite-to-one.
The germs of ^v(f) at 0 are \vell defined by f, and called the canonical
CVS and denoted ^(f) = C^uCO). If f is a diagram of polynomial map
germs, l/y, ^v(.f) an^ ^v(f) are semialgebraic. Let g e ^(G,P) and
assume there are germs of dijfeomorphisms ())y of (RPV,0) with
<tW1) ° ̂  ° ̂ m = f^for ^ e L . Then (M^CO) = ̂ M for v e V.
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Proof. - By the determinacy theorem (Theorem 0.3.1), stable
diagrams are equivalent to diagrams of polynomial map germs. So it
suffices to prove the statement for polynomials f,g. We construct
^uC/) by descending induction on the height of vertices v e V.

Let f^+ denote the restriction of / to the edges ^ : v1 -> v. We
assume that there are semialgebraic open neighbourhoods U^ of 0 e R^,
/^(^(o) c: ^poo such that the restrictions o f / t o the branches G^ , on
i/, P(i/) = v , admit the canonical CVS ̂  on £7^, y" ^ v ' . We will
construct a stratification ^y(/) of (7y so that the union of strata with
positive codimension gives the CVS of the critical value set Dcg ^ (/)(/+)
of/^ with respect to ^(/) = C^G/))^)^.

By Proposition 0.3.6, we may assume that (f^\U^) is a good
representative of /. By the definition of the critical sets in Section 0.3,
a tree fx with its root in £/y and vertices of height 1 off the critical
sets ^v'(f), PO/) = v is trivial. Therefore we see ̂  ^(f^) a ^aoo(/)
for f with POQ = v . By the properties of good representatives, the
restrictions /1 S^^) ( / ) are also proper and finite-to-one, for ̂  ^(f^)
is closed in L^).

By Proposition I.I.I, there are semialgebraic open neighbourhoods
U'v' of O e U ^ ' for v ' , P(i/) = v such that the restriction (/| C/a(<o)poo=i;
admits the canonical CVS ^uCO of the critical value set

U ^(^(/)n^ CO). We put ^ = ^n/^W), PO/) = i; for
P00=u

^ < u . Then the restrictions ^(/) n £7^., i/7 ^ u gives the CVS of
(fA ̂ aoo)aoo<u- This completes the construction of the canonical CVS
of / by induction. The final property of CVS in the proposition follows
from the naturality of the canonical CVS in Proposition I.I.I.

Now we state some properties of the above CVS.

PROPOSITION 1.2.2. - Let G = (F,L,A), G' = ( y ' , L ' , \ ' ) be conver-
gent diagrams with a common root VQ, and let P == (pu)uey , P ' ==
(P'v)vev be tuples of positive integers with py = p 'y . Let f V // denote
the union off e ^(G, P) and f e €(G\ P ' ) . Iff V // is stable, so are
f and f , and ^u^f), ̂ v^f) meet in a general position at 0 e [R^o and
^o^^^oW^oO')-

Proof. — This follows from the construction of the canonical CVS
and its naturality with respect to coordinate transformations.
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For a stable convergent diagram fe^(G,P) we define
codim (/) = (coding (/))yey by (codim JQygv, where X^ is the stratum
of the canonical CVS containing the origin Oe W" (we put codim A^==0
for the sources v of G). The uniqueness of stable unfolding (Theorem 0.3.3)
enables us to define codim (/) for finitely /o determined fe ^(G,P) to
be the codimension codim (F) of its stable unfolding F . By definition
of the equivalence relation /o m Ais paper (section 0.3), codim (/) is
determined by the Jo equivalence class of /.

From now on, we say that a finitely /o determined diagram / is
topologically trivial if codim ^(/) = 0 (it seems that / is topologically
trivial if and only if C°° is trivial. For the definition, see Section 0.3),
and we call / is topologically indecomposable if all prolongations /^ of
branches fc^ on v e V are topologically non-trivial, in other words, for
some stable unfoldings, F, S^ (^)(F) = 0 for all f e L.

We call a sub tree fx of the maximal tree fx of x of / e 0^(0, M)
with C^(fx^) < oo, the topologically maximal tree of x if fx contains x
as a vertex,/^ is topologically indecomposable and its complement/^ -x
is topologically trivial. We denote this tree by /op^ ^d lts branch on
^ b y / b r , i.e.

•^v

'""AT = U (/^K011^), x e M,.
v'<v

The topologically characterizing tree /toov011 °f x ls ^e union of thex

above /top^ , the sequence f:x-> f(x) -> ^(x) ' • ' -> ^(x) e M^ and
the tree

f^x^, '• t0^ = top^ u {x,/(x), . . . ./^(x)} u ̂ X^.

The next proposition follows directly from the construction of the
canonical CVS.

PROPOSITION 1.2.3. - Let f e^(G',P) be a stable diagram and let
f = (f{: U^)—>U'^^)) be a good representative as in Proposition 1.2.1.
Then the canonical CVS ^u(f) a^ the associated stratification ^v^f)
coincide mth the partitions of U^ by codim/opbr, codim /topv^ •> respectively.
And the germs ^(/L, ^(/L at x coincide with ^(/opjx),xx

^(/top^O respectively, where x ' s are regarded as vertices of the underlying

oriented trees /op^r, /top^-
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1.3. Construction of the stratification of the jet space
of convergent diagrams.

Let e(r)(= e(G,P+r)+l) be the increasing function in Theorem 0.3.4
and E^ c J^^G.P) be the well-defined set of e(r) jets of diagrams
fe<S(G,P) such that C^(f) > r (in other words, / does not admit a
stable r-parameter unfolding). By Theorem 0.3.1, 0.3.3 and 0.3.4, a
stable unfolding of / with C^(/) ^ r is uniquely determined up to the
equivalence of diagrams by the e(r) jet of /. So we can define the set
Sf\G,P) c= J^^G.P) - F^ by

Sf\G,P) == {zeJe(r)(6',P)-Se<r)|codim/=/,7le(r)(/) = z},

for a tuple I = (Cy)uev of non-negative integers (Cy=0 for the sources
v of G). Then S^^G,?) defines a partition of the complement of S^,
denoted S^^G,?). Again by the finite determinacy of stable diagrams,
^(G.P), r = 0, 1, . . . defines a partition of ^(G.P) - S by pro-sets,
where £ is the set of non finitely /o determined diagrams.

PROPOSITION 1.3.1. — Let fe^(G,P) be a stable diagram and f,
^(/) and y(f) as in Proposition 1.2.1. Let Ay, X'y (Ay==(7y/or sources
v e X'^^CfA^^f7\X'w))) be the strata of^,(f), J^(/) containing
the origin in L y , respectively. Let I = codim / = (codim A y ) y e v ^d
assume that codim Y < codim X^for all other strata Y e ̂ (f) and v e V.
Then J^K^),^) e S^^P) x A^ if and only if x^eX,^,
x^eX'^ andf^x^)) = x^ for all ^ e L , (^here e(0) = e(G,P) + 1.
See Section 0.3).

Proof. — It suffices to prove the statement for indecomposable stable
diagrams. First we prove the « i f » part. Let X = (X^))^L be as above
and let fx denote the maximal tree of the good representative / including
the tree/x. By the properties (1), (2) of CVS, £(/,| Y) n f7\X^) is
a smooth submanifold on which ^ restricts to a locally isomorphic
covering map onto X'^) for any Y c z ^ ^ ) ( f ) . Since
SW^)n^-l(o)==09 we see

£^)(/)C/^) n // l(^(n) = ^(/^i^a(^)) n ff l(^(n) == ^a(n

and the restriction f^: X'^)) -> X'^) is isomorphic. So we see by
Proposition 1.2.2, the CVS of fx-x ls trivial at its roots x^) in those
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strata A^), in other words, fx-x is topologically trivial, thus
^x^(fx) == ^x^(fx) and the germ of ^^(f) at the vertices x^
coincide with these germs. In particular we have

codim fx== (codimensions of the strata of ^v(fx) containing Xy)
= (codim X^\^y= codim/.

Conversely we assume a connected tree /^, X = (x^)) has a vertex
/^OW)) off the stratum A^) for some < f e L . Let /^- be the maximal
tree with X c T, and x' e L^/ one of the highest vertices of fx where
fx is branching off/j^. Let /^ denote the branch of fx on x' and
/^ the sub -graph of }x branching off fx at x ' : X^ = A^ - X^ (a
connected component of fx~fx)' By Proposition 1.2.2, we have
^Af}x' = ^(/j?) ̂  ^x'tfx ) • By the condition of the proposition, the
stratum of ^u'^f)^ containing x ' has codimension smaller than
codimAy == codimy/(/). So we have codim (fx) + codim (/) = /. This
completes the proof,

PROPOSITION 1.3.2. — Let I ^ (^u)uev be a tuple of positive integers
(a^O/or sources v).. Then the set Sf\G,P) c: /^(G.P) is a semial-
gebraic submanifold of codimension ^ py + a^ - ^ f c u . P u , ^here fcy

y^Vo ve v

denotes the number of edges ifeL mth (P(^) == v .

Proof. - Let zGSf\G,P) c ^(G^P) and let

^^ (F,),eL€£(G,P+s), /^(R^o^.O) ^ (R^^^.O),

F^{x,u) == (/^(x),M), xeIR^^), M e I R 5 be a stable sequence of poly-
nomial map germs unfolding the polynomial map germ /, such that the
r-jet section J ^ F ; f] R^x R'-^J^^G, Rp) (= ["[ ./^([R^), R^o)) is

y ^ UQ e e L
locally diffeomorphic at the origin, and by Theorem 0.3.2, F is stable.
Let ^(F) = (^yC/Uev be the canonical stratification of F and let y^
be the strata of ^y(F) containing the origin in R^8. By Proposition 1.2.1,
each y^ is semialgebraic and FA^^) '• ̂ ^ -> ^p<o is isomorphic. Let

X ^ (^(o).eLe ]"[ t^^)€ ]"[ ^a(o+s, ^u(^(o) = xp(^
e e L < f e L
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and let X = ((x^,,u)e Yl K^ x W with (x^,u)ey^ and
^6 L

^(>W).«) = (x^), M) . Then both A" and A" are semialgebraic submanifolds
By Proposition 1.3.1, we have

X== ./^"'(^(G.P+^xAo), Ac c= f] R^of)+^ x ffW)^
feL

and by the definitions of SW,P) and W,P+r), we have

X= JrF-l(SW,P)x^), ^ c Y[ R^W) x R^
/6L

Since F is a sequence of polynomial map germs, 7^ is also a polynomial
map germ, and since r p is a diffeo-germ, the image ^(C^P) x A^ of
JT is a semialgebraic submanifold. Now we have the following equality,

dim S^P) x A^ = dim X = dim ̂ ,
from which we have

codim SW,P) x A^ = ^ ^ + r - dim ̂
09'llQ

= £ Pv - P^o + ^dim 5 in ^"0D^O(,

codim SW,P) = E P. - P.o + codim S^ - codim Ac
"''"o

= Z P. + a,;, - ^ &„.?„.
Ui't'O 1,6 V

This completes the proof.

PROPOSITION 1,3.3. - Let f=(f^^e<f(G,P) be a finitely I,
determined diagram: C^(f)^r. Let FeS(G,P+s), F,: (IR^-^O) -+

(RW-,0), F,(x,u) = (f^(x),u), //„ = // be a stable unfolding 'of f
and let <•„: (R^,0) -. (8 ,̂0), i, e F fce t^ wc/usions. Let
'̂(̂ ) - ^«(.F})^y be the canonical CVS of F (̂ (P) ;s trivial for

sources v). Then <•„ is transversal to ^ /or all veV, if and only if
J'^f is transversal to Sf^G,?) x Ac at (())„. ̂ e n ^"•

'"'"o

Proo/. - By Theorem 0.3.3, the transversality of <•„ to y is
independent of the choice of the stable unfolding F. So we assume Aat
the e(r) jet section J ^ F : \\ K"" x r ̂  J^(G,R1') defined by
_ '""'0

J ' ^ F((x,\^,u) = J^f^x,)^^) is the germ of a diffeomorphism,
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where /, = (f^\^ e ^(G,P). Since J^f = J^Fo / : n ^ ̂
u^uo

Y[ HPv x r ̂  J^^G,^) we see J^f^S^^G.P) x A^ if and only
U^UQ

if e^J^F-^Sf^G.P^x^c), where ^ is the natural inclusion. As we
have seen in the proof of Proposition 1.3.2, J^F'^Sf^G.P) x A^) is
the set of points ((Xy),M)e ]~[ IR^ x [R5 such that codim Fx == /,

U^UQ

X = (Ocy,M))^i;Q, in other words, by Proposition 1.3.1,

(x^),u)e£(F,|Z^)(^)) nF,-1^,)^)) = -W^), ^ e ^ .
Let Pr: f] R^ x R5 -, n5 by the natural projection. The image of the

V^UQ

inclusion / is the fibre of Pr on 0 e R8, so the above transversality
holds if and only if the restriction Pr: J^f'^S^G^P) x A^) -> IR5 is
a submersion. Since the F e : ̂ )(F) -> A]^)(F) are isomorphisms, this
holds if and only if the second projections Pg '• ^v^F) -> R5 are
submersions, if and only if the inclusions / y : Rpv -> R^^5 are transversal
to c^yCF) for ve V, and if and only if /p^ is transversal to Cp^(F)
for ^ e L .

From now we say a finitely /o determined diagram fe^(G,P) is
topologically transversal if the condition in the above proposition is
satisfied.

COROLLARY 1.3.4. — Let /, F be as above. Then there is a good
representative F , F ^ : U^) -> U^) of F defined on open neighbourhoods
U, of CeRP^8 ^hich admits the canonical CVS ̂ (F) = ^,(F)\^y and
the natural inclusions < y : W)v -> [R^5 are transversal to ^y(F) (for the
definition of good representatives, see Section 0.3). In this situation, the
restriction f{F/\ L^)X (R^ooxO) 15 a good representative off, which
admits the canonical CVS ̂ (/) = (^(DIIR^x 0) and all connected trees
off are topologically transversal. The germs of ^u(f) ^ 0 are indepen-
dent of the choice of F and denoted ^y(/). Let ^(f) denote the
stratification of f associated \vhith ^(/). Then ^(/), e9%(/) coincide
respectively with the partition of L^IIR^ x 0 by the numbers
coding /top^br == codim;, f^r, codim /top^ch = codim /^ch associated with

those points x G (7y n Upu x 0, where x is regarded as vertices of those
trees off. Consequently the germs ^(/)^, ^y(/);c at x coincide with
the germs ^.(/top^) = ^(/^), ^x(/top^) = ^(/^), respectively.
(For the definition of the above trees, see Section 1.2.)
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CHAPTER 2

SOME PROPERTIES OF CRITICAL SETS, MAXIMAL TREES
AND BRANCHES OF GENERIC CONVERGENT DIAGRAMS

2.1. Some generic properties.

Let G = (F,L,A) be a convergent graph, Q = (q^) a tuple of integers
0 ^ ^ ^ oo. We call G a Q graph if each fibre ^~\v) of ' k \ L - > V
consists of at most q^ edges (finite if q^= oo). Let < : F -> G, i = (/'v,^'z,) ''
(VY,LY) -> (Yo^Lo) be a morphism of oriented graphs. We call / a 0
morphism if F is a ^<0 - graph.

Let P = (pv)vev be a tuple of integers 0 < py < oo. We say P
satisfies Condition GQ(G) if finite /o determinacy holds in general in
<^(r,/*P) for any g-morphism (finite morphism) c ' : F -> G.

We call a diagram (tree) fx of / of embedding type / : F -> G
(defined by the inclusions of germs) a g-diagram (g-tree), if i is a
g-morphism.

Let 0 < r ^ oo be an integer and U c: My^ a subset. We denote
by AQU the set of smooth diagrams /eC^G^M) such that for any Q
tree fx of the restriction fu = (fAf^)(U)), the /o codimension Cjp(/^)
is at most r (finite if r==oo) , and we denote A^u^Aou, A^y =ArQ.

PROPOSITION 2.1.1. - Let 0<r<oo, P+r+1 =(dim My
+ r + l ) u e v an^ ^ ^ cz ^vo be a subset. Then

A^,u = Ap+r+i,u, °0 = (°0)yeV-

Proof. — From the definition it follows immediately that
A^,u cz Ap+r+i,u' Conversely let feAp+r+i,u and for simplicity of
notations assume U == My . Then we prove that any connected and
indecomposable tree of / with root in My is a P + r tree, by the
descending introduction on the height h{v) of the vertices ve V. It then
follows that all finite trees of / admit stable unfoldings of dim < r
hence f e A ^ ^ u '

We may assume inductively all indecomposable trees of / with roots
in My, h(v) ^ h are (P+r)-trees of /. Let fx be an arbitrary finite
indecomposable tree of / with root x e M y of height h(v) = h. Suppose
that fx is a union of the prolongations f^. of the branches fx of
fx on x.eXn M^.), (3(^) = y , /^.(x,) == x and that q ^ ̂  4- r + 1.
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By the induction hypothesis these prolongations are all (P+r)-trees.
Let fy be a py + r + 1 union of these prolongations. Then, by
Corollary 1.1.4, at least one of these p, + r + 1 branches must be
trivial. This contradicts the assumption that fx is indecomposable.
Therefore fx is a union of at most py + r prolongations, and in
particular is a (P+r)-tree. This completes the proof.

Our purpose in this chapter is to prove

THEOREM 2.1.2. - Let G = (F,L,A) be a convergent diagram mth
root Vo and M == (My)ygy a collection of smooth manifolds. Then the set
A^r\C^(G,M) is open in C^(G,M) mth the Whitney topology for
any closed subset K c= M^, and if K is compact the set is open in the
weak C°° topology. If P = (dimMy)yey satisfies the condition GQ then
AQnC^(G,M) is dense in C^(G,M) for any sufficiently large r and
the complement of A ̂  has infinite codimension : any smooth family fu,
u e t R 5 ^arbitrary dimension s can be approximated by a smooth family
f^in A^.

Remark. - It seems that if finite /o determinacy holds in general
in <^(G',P) then P satisfies Condition GQ for any Q. So although we
state everything for general Q in this and the next chapters, we will
prove them only for the case Q = oo = (oo)ygy, and restrict ourselves
to reminding here that the topological stability theorem in Section 0.1
can be proved under the Condition Gp+1. For the case of Q = P + 1,
there is only one point of the proof that does not go the same in
those proofs, that is, the maximal trees may not be finite. However, if
we define topologieally maximal trees by substituting C° triviality for
C°° triviality in the i definition, then those trees are finite, and the rest
of the proof remains valid.

2.2. Some properties of critical sets
and maximal trees and branches.

To generalize the notions of Cy(/) and D^(f) of diagrams
feC^^G^M), let Q = (q^)^v be a tuple of positive integers. The set
Qo(/) ls defined to be the set of roots of Q trees of / in My, whose
prolongation is not trivial and D,^{f) = [j MC^^(f)). Clearly,

POQ=u
Cyoo(/), Dyoo(/), oo = (oo)ygy coincide with the sets previously defined

^(in Section 0.3).
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THEOREM 2.2.1. - Let G = (V,L,A) be a convergent diagram
with root VQ and M = (M^)^y be a collection of smooth manifolds.
Let K c= M^. be a subset, 0 < r ^ oo an integer and
f = (/,)e^n C^(G,M) (resp. ^n C^(G,M)), Q=(q,\,y,
0<(^<oo integers). Then there is an open neighbourhood U of K in My
such that the following properties are satisfied for any integers k = 0°
1, . . . , h(G):

Wk C,(f)r^f^(U) (resp. C^(f)nf^(U)) is closed in f^(U) for
any VG V, h(v) = k.

Wk D,(f)^f^(U) (resp. D^(f)^f^\(U)) is closed in f^(U) for
any v e V , h(v) = k and the restriction f,: C^(/) n f~^(U) ̂
^(f) n f^(U) (resp. f,: C^(f) n f^(U) -^ D^(f) n
f^)vQ(U)) is proper and locally uniformly finite-to-one for any ^ e L ,
h(ft(p))=k.

(3)k For any v e V , h(v) = fe, the number of vertices of the maximal
branch f^r on x is locally bounded at any point xef;^(U) and if
xi(=fvv\(U) is convergent to a point x e fvv\(U) as i -> oo then

00

X^ -> X^ i.e., X^ is the cluster point set of (J X^. (The coherence of
maximal branches.) i=l

(4)k For any connected tree (resp. Q tree) fx of f mth root in
fvv\(U), h(v) = k , the /o codimension C^(f^) < r + 1.

(5) /e^n C^(G,M) (resp. A^C^(G,M)).

Proof. - We consider only the case/e.4^. TKe other case can
be proved similarly.

We prove the statements by descending induction on the height k
of vertices. The outline is as in the diagram :

W^i (2) î (3),̂

j \
(l),^ (2), ^(3), (4),, (4),, 0 < i ^ ( 5 ) .
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( l ) /c+i , Wi>k, (3)fc+i => (2)^. First we assume (l^+i:
Cv(f)r^ f^\{U) is closed for any ve V, h(v) = fe + 1. Since /^ are
proper, the restrictions /,: C^(/) n Q^(U) -. f^^U), h^)) == k
are also proper and the union of the images

W) n f^U) = U ^((^)(/)n/a(^o(^))
W=y

is closed in f~^(U) for any v e V , h ( v ) = k .

Next we assume (2), for f e < i and (3)^+i. Then for any point
^ ^ f^)vo(K) /i(a(/)) = fc , the prolongation of the maximal branch
fx^~ is finite and C^(/j^r-)< r 4- 1, and by Proposition 0.3.6 there
are disjoint open neighbourhoods Uy of the vertices y e M ^ , v e V of
/^r- such that the restrictions f^ = (f^: Uy-^U^), y e X ^ ~ nM^,
^ e L is a good representative of the tree /^r-. By (2),, k < i, we may
assume that the maximal branch f^ on x ' e Ux
is a tree of the restriction /„ for all xef^^K). Then by the
properties of good representatives we see that
Qo(/) ̂  U^ = C^(/^) and /^: G^)(/^) n ̂  ̂  L^(^) are uniformly
finite-to-one for any x e f^^^K), where x is regarded as a vertex of
the underlying oriented graph of /„. Since f^ are proper, we may
assume that, by shrinking the neighbourhood U ^> K,

f^U) c= [J U^
xef^)UQ(K)

from which the statement (1\ follows.

(2),^ ==> (3)fc. We assume the statements (2), for k ^ f :

/.: C^) n /^)^(t/) -^ ̂ ) (/) n /^)^((7)

is proper and locally uniformly finite-to-one for any < f e L , ^(POO) > k.
Let ye F be a vertex of height k . Then X^ = C^(f) n /^(x) is a
finite set of which the number of elements is locally bounded at any
point xef^(U) and v ' < v by the assumption above, and the union
^T = U ^v' ^es the maximal branch of / on x. The coherence of

V'<V

the maximal branches follows from the properness of
fAC^r^f-^U), W^v.
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(3)^ ==> (l)^. We assume (3)^. Let ve V be a vertex of height fe and
let x,e Cy(/) n fvv\W) be a sequence convergent to a point
x € /m1^) • By Proposition 0.3.6, there are open neighbourhoods Uy
of vertices y of the prolongation f^r- of the tree fxy on x such that
the restriction

/,==(/,:C/^^)), ^e^'nM^, <feL

is a good representative of /^r-. By the coherence of maximal branches,
the prolongation /j^r- is a tree of fj, hence x, e C^(fx) for any sufficiently
large f . By the property of good representatives, the critical point set
Cx(fx) cz U^ is closed so it follows that x e C^(f^) c= Cy(/). Therefore
C.(f)^f-^(U) is closed in f^(U).

(3)^ => (4)^. Let v e V be a vertex of height fc . By the same argument
as the implication of (2)^, any maximal branch /^ on x' e fvv^U) is
a tree of a good representative of some branch f^r on xe/yy1^).
By the assumption, we have Cjp(/^r) < r and by the property of good
representatives, we have C^(/j^) ^ r-

(4),, 0 ^ f = > ( 5 ) . Trivial.

This completes the proof of Theorem 2.2.1.

2.3. C00 stability and infinitesimal stability.

In this section, we prove a theorem on C°° stability of diagrams as
an application of our theory of maximal trees and branches
(Theorem 2.3.1). This theorem was proved already by Baas and
Dufour [Bl, Du], however the part of implication (3) ==> (2) is not clear
in their papers. The reader may appreciate our theory in proving this
part.

Let feCCO(G,M) be a convergent diagram of smooth mappings.
Let Q = (^u )uev be a tuple of integers 0 ^ q^ < oo. We say / is multi
(resp. Q-) infinitesimally stable if any finite (resp. Q-) tree fx of / is
infinitesimally stable.



484 ISAO NAKAI

Our theorem is

THEOREM 2.3.1. - Let G = (V.L.A) be a finite convergent tree with
root VQ and let M = (Afy)ygv be a collection of smooth manifolds and
f = C/^eL^ C^(G,M). Then the following conditions are equivalent :

(1) / is C00 stable,

(2) / i5 infinitesimally stable,

(3) / is multi infinitesimally stable,

(4) / is (P-^-l)-infinitesimally stable, where P + 1 = (dimMy+l)y^.

The part (2) o (1) is a generalization of Mather's theory of adequate
homomorphisms [Ml], and can be found in the papers [Bal, Bu, Dul].
The implication (2) => (3) is obvious.

By Proposition 2.1.1, the conditions (3), (4) are equivalent.

Proof of the implication (3) => (2). — We fix an element
v- = © ^G9(/) = © 9 (/<?)• In the remainder of this section, we

/6 L ('6 L

construct a u = © <^e9(M) = © 6 (My), such that T(/)(^) = ^ by
ue V ve V

induction on the height of vertices VG V.

Let C^f) c= My denote the set of points x e My whose maximal
trees fx^ have their roots in My/, h(v') ^ /i, for any ve V and integer
h ̂  h(v). It is easy to see €?(/) = Q /^(Cy/(/)).

/i(u)^/i(i/)>/i

By Theorem 2.2.1, the critical point sets €?(/), h(v) > h are closed
and the restrictions f^: C^)(f) -^ C^)(f), fc(P(^)) ^ h are proper and
locally uniformly finite-to-one.

Let 0 ^ h < h(G) be an integer. We assume that for each v e V,
there is a vector field ^y~1 defined on an open neighbourhood C/y~1

of C^C/) in M^U^-^M, for veV,h(v)^h-l) such that
fAU^) c ^(7)1, ^e^ / and the restriction /l^/71"1 of / to the open
neighbourhoods £/iT1, u e ^ satisfies

F(f\Utl-l)( © ^-1) = © ^IW
\ U6 V / ( f6L
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We then extend ^iT1 to vector fields ^h, defined on open
neighbourhoods U^ respectively for v e V so that the restriction f\ Uh

satisfies the equality above. The final step h = h(G) of the extension
of vector fields completes the construction of a vector field
u = ® ^y = ® ^(G) with the required property T(f) (u) = v-.*v

ue V ve V

Let VE V be a vertex of height h and xeMy - C^~\f). Then the
prolongation fx^~ of the maximal tree /^r on x is trivial:

n/^-)=(e(M^-))=e(/^-),

where 6(Mybr ) = @ 9(My/)^. So there is a vector field
x^e^-nMy

(/ 6 V

^ x = ® ̂ / e O(M^br-) such that
X ' x

T(fx^~)(^x@^l'{v})f^x)) = ^XS1-- = © ^^/>

^eX^ nM,.
v'e V

Let ^^ be representatives of ^' defined on disjoint open neighbourhoods
U^ of vertices x1 eX^~ n M,., v ' e V in M^ - C^\f) such that

(i) f^.) ̂  U^.,, for x' e AT n M^,, <f e L,

(ii) C^CO n /^), (^) c H ^ for <f 6 L,
x'eX^nM•a^)

and

(iii)7V|^)f © ^@^i\=^U\
\x^x^ )

where fW, ^\UX denote respectively the sets of restrictions f^\U^',
^\U^, x ' e X^ r\M^), ^ e L (the existence of such representatives
is proved by Theorem 2.2.1). Let x.e M, - C?"^/), i = 1, . . . be a
countable family of points such that €?(/) - U^1 c \J U^. Then by
the property (ii), we have

c^f-u^c. u u^,

for all v ' ^ v .
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By shrinking the open neighbourhoods U^.!, x ' G X^. ~ , i = 1, 2, . . . ,
we may assume that {U^ is locally finite. Then we can take a partition
of unity/i,: U^ -> R, ^:^-1(/)-^(R subordinate to the covering
{U^ f = l , 2 , . . . , U^-\f)} of M,. Now let

U^ = ̂ u U ux^ vl ^v

x ' e X^,
1=1,2,..'.

and define the vector field ^ on U^ by ^ = ^-1 for u e F ,
h(v) ^ /i - 1, and

^=/*^.^-l+ Z /*-A.^i,
^ e X$f
l = l , 2 , . . .

for v ' ^ v . Then [7^ and ^? have the required properties.

This completes the construction of the vector field u hence the
proof of the implication (3) => (2).

2.4. Proof of Theorem 2.1.2.

We prove the openness of A ^ K ' The openness of the other sets
follows the same way.

First we prove that A^s ^ C^(G,M) is a neighbourhood of
A^K^C^.{G,M) in the weak C°° topology if K is compact. Since
the weak C°° topology has countable open basis it suffices to
prove that for any sequence fiEC^(G,M) convergent to an
feA^K^ C7r(G',M), fi(=A^K for any sufficiently large f . Then /, can
be imbedded in a smooth one parameter famility /^e C^(G,M) so that
ft,; == fi with a sequence t ^ e R convergent to 0 (see the book [Gi],
p. 146). Let F e C°°(G,M x R) , F^ : M^) x R -^ M?(^ x R ,
7^(x,0 = (/^(x),Q. In general for an unfolding He^(G,P-{-s) of
he^(G,P), we see C^(h) - s ^ C^(H) ^ C^(h) by definition of the
/o codimension. So we see Fe A^K ^ C^{G,M x R), K a My x 0 and
then Theorem 2.2.1 applies to F and shows that there is an open
neighbourhood U of K x 0 in M^ x [R, such that
FeA^u^ C^(6',Mx[R). Since K is compact, K x t,, c: U holds for
any sufficiently large f , and for such i we see that F e A ^ ^ x i - , from
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which we have f^eA^K c A ^ K ' (By a more detailed argument, we
can prove that f ^ e A ^ K ' ) This argument shows that
A^K^ C^,(G,M) is open.

Secondly, we prove the openness of A^^ ^ C^(G,M) in the
Whitney topology. Let K,;, i = 1, 2, . . . be a locally finite covering of
M^ by compact subsets and f e A^ n C^(G,M), r < oo . Naturally we
then expect that the countable intersection Q A^ ^ C^(G,M) =

i
A^1^ C7,(G,M) of the open neighbourhood A^nC^.(G,M) of /
is again an open neighbourhood in the Whitney topology. This argument
has already appeared in the book [Gi] to prove the topological stability
theorem for single-mappings feC^.(N,P). Unfortunately we cannot
find a satisfactory reference for this argument in the generality needed
here. So we present a sketch of a proof to cover this point.

Since A^K. ^> C^(G,M) is open in the weak C°° topology there
exist a positive integer r, and an open neighbourhood
U, c: J^(G,M) of ^/(M), M = ]~[ M^ with the property : if

{ e L

J^M) a U, then geA^ ^ C^(G,M) (for the definition of the weak
C°° and Whitney topologies, see[M2]). We claim that r, can be chosen
independently of i. Then the openness of the intersection
H A^ n C^(G,M) is easily seen.
i

By Proposition 2.1.1, A^ = Ap\\^^ for P = (dim M^)^y. By
Theorem 0.3.1, there is a positive integer e = ^(G,P+r+2) + 1 < oo
with the following property: let fx be a connected (P+r+2)-tree of a
diagram /GC°°(G,M) of Jo codimension C^(fx) ̂  r + 1. If
^eC°°((7,M), and g has the same ^-jet as / at Z = u A^ then
C^gx) ̂  r + 1.

Now we use the following lemma which is proved in Appendix 1.

LEMMA 2.4.1. — Let f : N-> P be a smooth mapping of manifolds
N , P and U an open neighbourhood of Jkf(N) in Jk(N,P) and let 0 < 5,
q < oo be integers. Then there is an open neighbourhood
U' c: J^^^P)- of J^^fW mth the following property : for any
^eC°°(JV,P) mth JQ{s+l)g(N) c= U ' and any q distinct points
Xi, . . . , Xq e N , there is a g ' such that ^ g ^ N ) c: U and J'g^Xi) = J ' g ^ X i ) ,
i = 1, . . . , q.
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We apply the lemma to our problem in the setting : U = U,;, k = r,;,
5 = e = e(6',P+r+2) + 1 and q = ]~[ dim M^ + r + 2. Then we get

£ e L

an open neighbourhood U\ c= J^^^G.M) of /^^/(M) with the
following property: for any ^eC°°(G,M) with J^^g^M) c= t/;. and
any (P+r+2)-tree gx of g , there is a ^6C°°(G,M) such that

(i) JY(M) c= ^
(ii) ^ has the same ^-jet as ^ at X{ = JTn M^), for all < f e L .

From (i) and the property of ^, it follows g ' e A^ n C^(G,M) and
in particular C\(^) < r + 2, and from (ii) and the property of the
numbers, it follows that gEA^+^K- = ^^K • '

This completes the proof of our claim.

Now to complete the proof of Theorem 2.1.2, we prove that if
P = (dimMy)yey satisfies Condition GQ , then

(1) AQ is dense in C^G^M) with the Whitney topology for any
sufficiently large r ,

(2) the complement of AQ has infinite codimension.

Let G' = ( V ' , L ' , \ ' ) be a finite union of convergent trees and
(/y,^): G' —> G(cy: V ' — > V . € L '• L—>L) be a morphism and assume G' is
a union of i^Q trees: these are strictly less than q^v') + 1 edges
^ eZ/ with P^r) = i;7 at each vertex v ' e V . The set V is naturally
indexed by the set V as i/ e F' -^ ^'y^) ^ V ' We denote by FQ the set
of these triplets (G' , i y ^ i ^ ) as above.

Let q = ft ^m. ^(<W = A^M)9 and
^eL

T T : ,^(G,M) -^ rK^oXMp^O9

<fe L

the natural projection. Let A c= ]~[ (M^xMp^)9 denote the set of
< feL

(^a^^p^)^eL, i = 1, • . . ,q such that x^, = x^ for an ^ e L , f ^7 . A
point ( ,̂ V): X = (x^i), Y = (jp^) is naturally regarded as an oriented
graph GXY = ( VXY , ̂ xy); ^xy = {^cx^, Y^i}, L^y = {^-: ̂ -^y^i}. The set
VXY is naturally indexed by V '. to x^, j^p^ e Fyy it assigns the vertices
oc(/), POO e F, respectively. For each triple (G'^'v^e FQ, we denote
by Ac/ the set of points (X,Y) <=. f[ (M^^xMp^))9 - A for which the

< feL
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-associated graph Gxv is equivalent to G' as oriented graphs indexed by
the set V. It is easy to see that the A^, G' 6 FQ are smooth submanifolds
and Wtutoey2? regular over each other.

Let ^f: fl M^)^^(G,M) be the multi k jet section of
^6L

f =(/,)€ C^M). Then we see TT o ̂ /(A-) e A/ , if and only if the
tre^ fx (regarded as an oriented graph with index v e V for each
vertex .xe(Xuf(X)) n My) is equivalent to G", where

X= U ̂ ,^eM^,/00 = U /^)-
^eL ^eL

We regard the fibre gJ\G,P) of the projection n on (A^eA^ as the
jet space W^yP).

By theorem 0.3.4, the set £ c ^(6" ,^P) of / with finite codimension
is a pro algebraic set defined by algebraic subsets

^e(r) ̂  je(r)^'^P)

(TC^V^E^^C^/)^), and by the Condition GQ, codim ^e(r) -.
oo as r -^ oo . Choose an r so that codim ^e(r) > q- ^ T^) for all

<feLc^erQ.
Let So' be a stratification of ^e(r) invariant under diffeomorphisms

Je{r\GI ,€^P) induces from coordinate transformations of the germs
^v("'\ o associated with vertices v' e V, and let S'o' c= TC'^A^) be
the stratified set with fibre So' over each (X, V) e A^ and finally let S
be the union of So' for G' eY^. Then the set S possesses the following
property : if yJ^f is transversal to S at Xe Y[ M^) then qJ^f^X) t S

t for codim 5' > dim [] M^) ) hence C^(fx) ^ r . Conversely any
\ £^L )

connected 0-tree of f^ of / is realised as a connected component of
diagrams/^ defined above for X^\\M^. From this property of 5'

^ez-
and the transversality theorem (Theorem 0.3.5), the density of AQ in
C°°(G,M) follows.

The infiniteness of codimension of A^ follows from the same
argument using transversality and unboundedness of the codimension
of ^(r) as r -> oo.
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CHAPTER 3

PROOF OF THE TOPOLOGICAL STABILITY THEOREM

3.1. Topological multi transversality,
topologically maximal trees and branches.

Let /eC°°(G',M) be a convergent diagram of smooth mappings,
Q = (^v)vev a tuple of integers 0 ^ ^ < oo, S a Whitney regular
stratification of My^ and K c= My^ a subset. We say / is topologically
Q-transversal relative to S on K i f : (i) any connected g-tree fx of / is
topologically transversal and (ii) if fx has root XoeMy^ then the
canonical CVS C^(fx) of fx at XQ is transversal to S .

For the case q^ = oo, v e F, we say simply / is topologically
transversal relative to S (for the definition of topological transversality
of trees fx, see Proposition 1.3.3).

Let F = ( F ^ ) e C^G.MX f f r ) , M x R7" = (My x nr)^ ^ ,
^(x,0 = (/^(x),r), xeM^), r e IT, /^o = /^ be an unfolding of /
such that the trees Fy, X cz (J M^^) x 0 are infinitesimally stable

< feL

unfoldings of fx and let ^(Fx) = (^(^x))xexuF(x) be the canonical
critical value stratification of Fx constructed in Chapter 1.1. By Propo-
sition 1.3.3, the tree fx is topologically transversal if and only if the
inclusions / y : My c_> My x [R7", ve V are transversal to ^x(Fx) at the
vertices x e X u F(X).

Let x^(^x) denote the stratum of ^(^x) containing the vertex
x e X u F(X). Let X i , . . . . , Xq e X be the vertices of fx such that
f(Xi) = x, and let /^ , 7^ be the branches of fx, Fx on x,, and
/^., ^. their prolongations (with root x). By proposition 1.2.2,
the canonical CVS's ^(F^) meet in general position at x and
^xWc) = H ^x(^.), and in particular /,(^) = f^ X.(^,).

i = l , . . . , q l i = l , . . . , q l

Therefore if i^: My c—^ My x ^ is transversal to ^(Fy) at x e My, the
number of indices f for which ^(^x- ) is topologically non-trivial is at•̂
most dim My.

From the above fact and the same argument as in the proof of
Proposition 2.1.1, we have
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PROPOSITION 3.1.1. - A convergent diagram f e A^ is topologically
transversal if and only if f is topologically (P+ ̂ -transversal.
P + 1 = (dim My + l ) y e y . Any topologically maximal tree off is a P
tree.

Using the same idea as Theorem 2.2.1, we prove

THEOREM 3.1.2. - Let feC^(G,M) be a convergent diagram,
P + 1 = (dimMy+l)y^, K c: M^ a closed subset and S a Whitney
regular stratification of M^. If /e T^s ^ A^. then there is an open
neighbourhood U of K such that f e T^s ^ A^ and the restriction
fu= {f{ •• f^)vo(U) -> f^)vQ(U))^L admits a critical value stratification
with the following properties : f, : S^^(^) -> f^(U) are proper

U f/ ̂  n ^ocoo^C^) consists of at most dim M^-points for each
P (f) = v

xefvv\(U), and ^^(fu), S meet in general position in U. The
topologically maximal branch f,^^ on xef^(U) is given by the set

topxbxr = u n ^(^(/^c^7)n f^'^x)
a(iC)<v a(<f)^a(^ /)<u

and is topologically transversal (relative to S if v=Vo) and the germ of
^v(fu) at x , ^v(fu)x coincides with the canonical CVS ^(/top br) of the
branch /^p^r given in Corollary 1.3.4. xxr

Proof. - By Theorem 2.1.2, we may assume feA^u- We construct
the CVS with the properties in the theorem by descending induction
on the height of vertices ve V. So we assume that fu admits a CVS
^v' (fu) for v ' < v with the desired properties for the restriction of fu
to the branches G^ on v ' , (3(V) = u , and then we construct ^v(fu)'

By definition the topologically maximal branch /^p „ on
x(=fvvlo(U) is a union of prolongations of topologically maximal
branches on some points x ' e f . ^ x ) , PQf) == v . Let F^^_ be an
infinitesimally stable unfolding of the prolongation /top^r- of dim r .
sm^ /top^r is topologically transversal by the induction hypothesis, the
inclusion i^,: M^) -> M^) x ffT is transversal to the canonical CVS
^Wop^r) (Corollary 1.3.4). Hence

^(/tOp^r)^) = ̂ (^/(^Op^)^))
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and /top^r is topologically trivial if and only if £^'(F ^(.Fx') = 0
if and only if 2:^</ ^(f,) =0. So we have

v X-,

^X^= U (-1 £ ,̂̂ (/,,)n./̂ ,,,0c).
oc(<Q<u v.(^)^v.(^f)<v

Since the /, are proper and 2^^(/,) c= f^(U) are closed,
^: ̂ (n(fu^f^ ~^ fwvo(U) are also proper and in particular the
topologically maximal branches /top^r, xef^(U) are coherent in the
sense of (3)^ in Theorem 2.2.1.

Let x e f^\ (K). Then the branch f^^r is topologically transversal.
Let Fx = (F?),eL, F?:M^, x ^r-^ M^\ x ^, F?(y,u) = (/?,(^),u)
for yeM^, u e R ' , /?o = /^ be a smooth unfolding of / of dimr
such that the tree Ffop^br on x is infinitesimally stable and its restriction
F?op^r = (F? : ^c/ -> U^)), ^ e ̂ A^ to some open neighbourhoods
U^ of the vertices x'e ^A'^" n M^ in M^ x IT, i;' ^ u is a good
representative of F?op^ with the properties in Corollary 1.3.4.

Using the same notation as in Corollary 1.3.4, the transversal
intersections ^(Ffop^r) n M, x 0, x ' e ^ X ^ ' n M,/, v' ^ v give the
caTOnicalCVS denoted ^(/x) of the restriction of / to open
aaghbaurhoods U^ •n M,. x 0 of x ' e M ^ . Since f^r, xef^(U)
are icoherent, we May assume, by shrinking U^ that /top^ is a tree of
^ if x 'e^nM, x 0. Then by Corollary 1.3.4, the germ of ^(/x)
at x" coincide with the canonical CVS ^(/top^,) of the maximal
tree / on x " . Therefore the ^(/x) xef^(K) glue up to give a
stratification of ij £4 n My x Q.

^6/^W

Fmally, by shrinking £7 so that /^(£/) c (J U^nM, x 0, we
complete the induction step. xef^

In the same way as the implication of Theorem 2.2.1 to Theorem 2.1.2,
the above theorem (Theorem 3.1.2) for topological transversality implies
the following.
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THEOREM 3.1.3. - The set T^s n C^(G,M) c= A^ n C^((7,M) o/
convergent diagrams f topologically multi transversal on K relative to a
Whitney regular stratification S of My^ is an open subset in the Whitney
topology if K cz My is closed.

3.2. Proof of the theorem.

First we prove the following theorem.

THEOREM. 3.2.1. — Let f e A^ n C^(G,M) be a convergent diagram
of proper smooth mappings and let S be a Whitney regular stratification
of My by relatively compact submanifolds. If f is topologically P + 1
(hence, multi)-transversal on My^ relative to S, then f is topologically
stable.

Proof. - By Theorem 3.1.3, there is an open neighbourhood U
of / in C^(G,M) such that any geU is topologically multi-trans-
versal relative to S and joined to / by a smooth path f i ^ U ,
t e R with /o == /, fi == g ' Define the unfolding F = (7y,
F^-.M^) x R-> Mp^) x n by F^(x,t) == (/^(x),Q, xf=M^^teR. Let
/top^br, ^top^br be the topologically maximal branch of f,F on
x e My c= My x 1R, and let Ftopj^r be an infinitesimally stable unfolding
of ^top^br. Then the canonical CVS of /top^br, ^top^br are given by the
transversal intersections of the canonical CVS ^(Ftopj^r), x ' e to1s^
with My, My x ER respectively as described in Corollary 1.3.4. Therefore
^toDv-br is also topologically transversal relative to S x IR and the

t-Xjc

inclusion e\: My -^ My x IR are transversal to the canonical CVS
^(^top^r) at each vertex x ' e ̂ X^' n M y , y e F a n d ^(/top^r) =
^(F^br). By Theorem 3.1.2, F admits CVS ^y(F) of My x (R such

^x

that ^OF) is transversal to 5' x [R, and the germ ^(T)^) coincides
with ^,o(^top^br ) for any (x.OeMy x R, ye F. The transvefsality of
the inclusions /^,o: My -> My x ^ c: My x U to the CVS's shows that
the second projections My x U -)• ER are stratified submersions, i.e.,
submersive restricted to each stratum of ^y(T). Let ^y(F) ==
|̂ | Fyy^vCF)) n F^(51), y e F b e the canonical stratification associated

V< V'

to the CVS's ^y(F), ve V. Clearly the second projection My x R -> R
are still stratified submersions.
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Since ft: M^)->M^), t e R , ^ e L are all proper and the strata
of 5' are relatively compact, the strata of S^F), ve V are also relatively
compact. Now we apply Thorn's second isotopy lemma to the prolongation
(F,Pr) with the second projection Pr: M^ x [R-^ [R. Then (F,Pr) is
topologically locally trivial and in particular the sectional mappings
/ = /o, ^ = /i are topologically equivalent. This completes the proof of
Theorem 3.2.1.

Now we prove the main theorem.

THEOREM 3.2.2. - The set T^s n C^(G,M) is open dense in
^oo ^ C^{G,M) mth the Witney topology.

Proof. - The openness is given by Theorem 3.1.3, and by Proposi-
tion 3.1.1, T^s = Tp+is for P + 1 = (dim My + 1)̂  y . It remains to show
Tp+isn C^(G,M) is dense. We use the same relation as in the proof
of the density of Ap+,n C^(G,M) in Theorem 2.1.2.

Let q == f] q^ and let 71: ,J\G,M) -> f] (^a(o x M^Y be the
^ e L f ^ L

natural projection. Let ( G ' ^ ' v ^ ' ^ e r ^ be a morphism of an oriented
graph G' to G and let A^ e \\ (M,(,) x M^Y - A be the set of points

< feL

(^i^y^i), x^i,i = 1, . . . , q all distinct, for which the associated graph
GXY is equivalent to G' as an oriented graph indexed by the set V.

We regard the fibre of n over A^ as the k jet space of diagrams
in ^ ( G ' ^ P ) . Let ^e(r) c= J^^G'^P) be the set in Theorem 0.3.4,
which defines the pro-algebraic set £ c: €(G\i^P) of non finitely Io
determined diagrams, and let S^^G'^P) be the stratification of the
complement of ^e(r) defined in Section 1.3. Since these sets are invariant
under coordinate transformations of spaces, these sets and stratifications
define a locally trivial partition of the fibre bundle n~\^) -> A^,
denoted by Sg^.5^^, respectively. The image of the projection to the
roots n ' : Ac/ -> M^ is the complement of the diagonal set of Ml ,
where q' is the number of connected components of G ' . Let S^s
denote the refinement S^ n (n' o Ti)-1^^). By the transversality theorem
(Theorem 0.3.5), the set ^gP of diagrams feCCO{G,M) for which the
e(r)-]et section J^f : ]~[ M,^ -^ J^^M) is transversal to £^,
S^s is a countable intersection of open dense subsets. So the countable
intersection ^ of those ^^ for r = 0, 1 ,2 , . . . and all morphisms
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G ' = (G\€y^L)eYG is still dense. By the definition of topological
transversality, we see that if f e ^ ' e ( G ' ' t v p + r ) then all trees fx of /
equivalent to G' with C^(fx) ^ r are topologically transversal relative
to S (for the definition of the number e(G',^p+r) + Isee Section 0.3).

Therefore the intersection ^ n A^ coincides with the set Toos c ^oo
and Toos n Cp°r(G',M) is open dense in the open subset
^oo n C^(G,M). This completes the proof of Theorem 3.2.2.

COROLLARY 3.2.3. — If P == (dim My)ye v satisfies the condition
G = Goo, oo = (oo)ygv in Section 2.1, then the set of topologically stable
convergent diagrams of proper mappings feC^(G^M) is open dense in
Cp°r(G,M) mth Whitney topology.

Proof. — The statement follows immediately from Theorem 2.1.2
and Theorem 3.2.1-2.

THEOREM 3.2.4 (Thorn's second isotopy lemma). — Let
/eCp°r(G,M) be a convergent diagram of proper smooth
mappings f^: M^)-> M^) Assume that there are Whitney regular
stratifications 5y(/) of My, veV and S^)(f) are Thorn A^ regular
^ e L , and 5'y^ is trivial : 5^ = {Myj. Then f is locally topologically
trivial over My^ : for any point p e M y ^ , there is an open neighbourhood
UaM^ and homeomorphisms (|)y: fvv\(U) -> fvv\(p) XU, v e V
such that the following diagram commutes

f.^f^(U) ^ f^(U)

<fW) i i tfrp^)

Lp x 1 : f.^P) x U ^ f^(p) x U

for ^ e L . In particular the restriction fpi = (/^/)^eL is topologically
equivalent to fp for any p ' G U.

Proof. — This is a natural generalization of Thorn's second isotopy
lernrna. For the proof, see e.g. [Gi, M4].
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APPENDIX 1,

PROOF OF LEMMA 2.4.1.

Let (|),: 0, ̂  W1, v|/,: 0\^W, ij == 1, 2, . . . be coordinate
systems of smooth manifolds N , P such that f(Pi) c O'j with some
j(i) for any i. For a smooth mapping h: 0,; -^ R" we define f + h:
Oi -> P with the addition of coordinates on O'j. Let
0 < rio < Sio < r^ < 5,1 < . . . < riq < Siq be numbers such that
{(^i'\D(rij))\i=l,2,...} is a locally finite covering of M for
7 = 0 , 1 , . . . , ^ , where D(r) denotes the open disk with radius r centred
at O e t R " . Let (()y : At-» R be smooth functions with supports in
^r^A^+i)) and identically equal to 1 on (^(Afs./)). Let Z, be an
open neighbourhood of 0 in the linear space An of polynomial functions
on R" of degree at most < f , <f == (s+1)9 such that

W+^((v n (i-^JKAQc: u
m=\,...,p

for any 7, ^ = 0, .. . , q, p ^ q and ^ e Z,.

We apply the following Lemma A with Z = Z,; c= A^ and the
compact neighbourhood D(Sig) of 0 e R" and let 0 < E( < oo be a
number with the property in the lemma.

Let U' be the set-theoretical union of jet sections J(s+l)g(N) of g
such that

IK/^^II^^

for any i == 1, 2, . . . , where || ||f denotes the sup. norm of derivatives
of order ^ a on the set K c: [R". We claim that U ' possesses the
required property in Lemma 2.4.1.

Let X == { X i , . . . ,Xq} c: N . By an easy argument we see there is a
function j(i) such that

Xn ̂ \D(r^,) - 2)(r,,(,))) - 0,

for any i == 1, 2, . . . , and by renumbering the index i, we have

x^ U ^(^Ow))), p^.
^l,...,?

We define a partition of X into the disjoint p sets

X, c ̂ -W,,^)) - U ()).Wow))
m=l,...,(-l
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i = 1, . . . , p . By Lemma A, there are A, e A'n such that the mappings
f ' i - . N - ^ P :

/ ' ,=/+ h, o 4),-l • 4),,«) • n (1 - <t>» 7w)
Bl-l,... , 1 - 1

are well defined and satisfy

JW) c U and 77;̂ ) = ^r(/+/l.)(x) = 7^(x),

for x e X t , i = l , . . . , p . Now define f'eCW(N,P} by /'=/', on
^.''(^('•uw+i)) - U ^mWs^^)) .and f = / on the comple-

m = l , , . . . ,i- 1

ment of these subsets above. Then /' possesses the required properties:

^f'W^U .and J'm-^fW-JW
for xeXi, i ^ 1, . . . ,j?.

LEMMA A (Golbitsky-G^iaemin, Lemma 2.5 [GG]). - LetO < s,0 < <?
be integer^ K c R" a compact connected neighbcw'kQod of the origin
and let Z c: A^n, ^ == (s^-1)9 be a neighborhood of the constant mappmg
O^Ai. Then there is a positive number £ > 0 such thai for any distinct
q points jpi, . . . , pq e K and any smooth function g : R" -> R with
l l ^ l l f<s+i ) < € there is a polynomial function VeZ for order ^ <f such
that

QWy QW
^^(PO-^-(P.)

for i == 1, , , . , p, 0 ^ |a| ^ s.

APPBNDIX 2.

TWO EXAMPLES DUE TO DU PLES8IS AND DUFOUR
Example 1: due to du Plessis

C1 stability is not generic in C^M3-^4-^2),

Proof. - Let ( J ' , g ) : M -^ N -> P be a composition of proper
mappings and assume the composition g o /: At "̂  P is submersive at
X ,€M~-£( / ) , i = = l , . . . , 4 , /(^) ^ y and the multi germ
f^:(M,Xi) ̂  (N,y) is C00 stable, i.e., Imdf^ are in general position.
LetC/^) be a perturbation of (/,^). Then by the stability of the
multigerm above, there are again 4 points x\ close to ^ respectively
such that f ' (x ' i ) s= / and g ' o f is submersive at x;. The cross ratio
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Cy of Im dfx^ n ker dgy in ker dgu is clearly C1 invariant of diagrams of

the type or —. —, ^ — , etc., while the ratio C ,̂ can vary by a perturbation
of /,^. Hence (f,g) is not C1 stable.

Example 2 : due to Dufour.
All topological equivalence classes in an open dense subset of

C^^M^N^P2) have infinite codimension, if W^N) = W^P) = 0,
W^N) ^ 0 and W^P) = 0.

Proof. — Let (f,g) : M <- N -> P be a divergent diagram of smooth
mappings. The Thorn polynomial for the singularity ^ l ' l (g) is the
polynomial W^y) - M^i(Y)2 of Stiefel-Whitney class of the difference
bundle y = TN — g* TP. By the condition above we see the polynomial
is notO in H\N^).

So generic mappings g : N -> P have cusp singularities and in their
neighbourhoods there are triples of points x, ^ £(/) u S(^) with f(Xi) = y .
Dufour [D2] proved that the germs of (f,g) at x ^ x ^ ^ x ^ are C°°
equivalent if and only if they are topologically equivalent and C°°
equivalence classes are all of infinite codimension in the jet space
J^.l)3 x J^d.I)3. From this fact the statement follows.

Furthermore, Dufour [D3] proved that C°° classification and topo-
logical classification are the same for mappings in C^M1^-^2-^?2).

The two examples above are caused by the existence of «wild»
diagrams of map germs imbedded in the global diagrams as multi
germs. Now we denote them in terms of morphisms of oriented diagrams
as follows :

3 \
3 \

example 1 4 -> 2 65 wild
3 ^ [1
3 ^ V
3 -> 4 ^ 2 As

1 ^ 2 \
example 2 1 <- 2 -> 2 Eg wild' ' 2 " i

1 ^ 2 - ^ 2 As

This explanation suggests that the stability problem is closely related
with morphisms of oriented graphs and their expanded diagrams.
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