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HYPOELLIPTIC DIFFERENTIAL OPERATORS Q

par Lars HORMANDER (Princeton)

1. Introduction.

A differential operator P(rc, D) with coefficients in C00 is
called hypoelliptic if the equation

(1.1) P{x, D)u = f
only has solutions u e C00 when /'eC00. (For the notations see
section 2.) When the coefficients are constant, a complete
algebraic characterization of. hypoelliptic operators was given
in [1]. For variable coefficients a sufficient condition for hypoel-
lipticity has been given by several authors (see [2], [3], [4],
[6]), namely that the operators with constant coefficients
P(x, D) obtained by giving x fixed values shall be hypoelliptic
and equally strong in the sense defined in [1]. In fact, the
latter condition enables one to carry over most results known
in the case of constant coefficients at least locally by means
of a perturbation argument (see [4]). A weaker sufficient
condition has also been given by Treves [6], but it is extremely
implicit and difficult to verify for a given operator. His proofs
depend on the construction of a parametrix for the adjoint
operator by the method of successive approximations, in an
abstract and very intricate form. We shall here use the same
idea but in a technically different and really straight-forward

(l) This work was sponsored by the Office of Ordnance Research, U. S. Army.
31.
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way. This will yield sufficient conditions tor hypoellipticity
which are weaker than those of [2], [3], [4] and are satisfied
by the only other example of a hypoelliptic operator given
in [6].

2. The plan for constructing a parametrix.

In this section we shall only give a formal outline of the
construction of a parametrix which will be carried out in
section 4. Accordingly, we shall postpone discussing the
convergence of the integrals occurring here.

We first introduce some notations. Differential operators
will be written in the form

P(rr, D) = ̂ (^D01

where a == (a^, ..., a^), called a multi-index, is a sequence of
integers between 1 and the dimension n of the space, and

D01 = (—— Ib/b^) . . . (—— ^/^TflJ.

The empty multi-index will be denoted by 0; we set D° === 1.
The length k of the multi-index is denoted by |a|. If

^=(^ ..., SL)
is a real vector, we write

P(x, \} = Sa,(.r)̂

where Sa = Sa, • * • ^- The derivatives of P(.r, i;) with respect
to E; are sometimes denoted by P<a)(a;, ^);

PW{x^)=^P{x^)l^...^.

Derivatives with respect to ^ or x will be denoted by D|
or DS. Finally, we shall use the notation

P(x, ^) = (SIPC^, W.

A fundamental solution E(a;, y ) of a differential operator
P{x, D) is a kernel (in fact a distribution) such that

(2.1) 9(^)=P(^ D)fE(^ , yMy)dyi/
if 9 has compact support. In the case where the coefficients
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are constant, it is convenient to construct a fundamental
solution by means of the Fourier transformation, that is, to
set

fE{x, y)^y}dy=(2^nfei^P(^^)d^
where

(2.2) 9(^) = fe-^^x) dx

is the Fourier transform of 9. We shall imitate this in the
case of variable coefficients, thus try to find a kernel K such
that

(2. 3) 9(^) = P{x, DW-fe^^x, S)y(^) ̂

when 9 has compact support. Operating under the integral
sign we find that this is equivalent to

(2. 4) 9(^) == {2^-nfei<x>^P{x, D, + S) K^, S) y(S) ̂ .

Thus we have to find a kernel K such that

P(rr, D, + ^) K(^, ^) = 1,

or, which is equivalent in view of Taylor's formula,

(2. 5) P{x, $) K{x, $) + S PW(^ ^) DSK(^, ^)/|a| ! = 1.a^o

The equation (2. 5) can be solved approximately in the
following way. First we neglect the sum since it would have
been absent if the coefficients were constant. Thus we define
a kernel Ko by the equation

(2. 6) P{x, S) Ko(^, S) = 1.
To compensate the error committed in solving (2. 5) in this way
we then define successively kernels K^by means of the recursion
formula

(2.7)
P{x, S) K^,{x, S) + S P^, ^) DSK^, S;)/|a|! = 0, /^O.

a^o ——

Adding the equations (2. 7) and (2. 6) we obtain

(2. 8) P(^, D, + S) (Ko + • • • + K,) + P{x, ^) K^ = i.
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Hence, formally, we obtain instead of (2. 3)
(2. 9)

^x)=P(x, D)(2^nfei^\K^ S)+'--+K^, S))y(S)^
+ (2^)-"p<^> P(x, S;) K^{x, S) y(S) ̂ .

If the polynomial P{x, S;) has real zeros, the kernels Kj
become singular. However, if the zeros are all contained in
a fixed compact set, as will be the case here, it is easy to avoid
the singularities in the following way. Choose a function
^o e C? which is equal to 1 in a neighborhood of the zeros of
P{x, ̂ ) (as a function of ^). Set ^ == 1 — ^, so that ^ = 1
outside a compact set. Since
1 == ̂  + ̂  = P(o;, D, + S)(Ko +...+ K,)^

, , ..^, +P(a:,S)K,,^+^we may then replace (2. 9) by
(2. 10)

^x)=P(x,DW-nfei^\K,{x, ^)+...+K^, W^)^)d^
+ (2^)-J>^(P(^ ^)K^,(^, ^)^(S)+kS))y(S)^.

In the next section we shall introduce certain conditions
which ensure that the kernel Kj^^x, S;) decreases very rapidly
as ^ -> oo when / is large. The last term in (2. 10) will then be
an integral operator with a very smooth kernel when expressed
in terms of y instead of y. The first term on the right hand side
of (2. 10), on the other hand, will be easy to study with the
same methods that are used in the case of constant coefficients.

3. The condition HE.

The recursion formula (2. 7) indicates that to be sure that
K^i decreases faster than Ky at infinity, we need to know that
differentiation of P(x, ^) with respect to S; will decrease the
growth at infinity more than the corresponding differentiation
with respect to x will increase the growth. This leads to the
condition posed in the following definition.

DEFINITION. — The operator P{x, D) will be said to satisfy
the condition HE in 0 if P{x, D) is not identically 0 in any com-
ponent of Q and
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a) The coefficients are in (^(Q);
b) There are functions Uj{x, ^) defined in Q X R71 such

that for all a and (3

(3. 1) IDjDgP^^I^Cp.^l+ISD-^'MP-^^P^^^eR",
(3. 2) 1 ̂  M/a, $) ̂  C,(l + ISI)1-^

jFfere d is a positive constant, C^ ̂  and Cy; are bounded when x
varies in compact subsets of Q, and we have used the notation

MP-^MpMp, ... M^/M^ ...

Since this condition, although very convenient in the proofs,
may seem involved and difficult to check, we also give a simpler
but more restrictive condition.

THEOREM 3. 1. — Let the coefficients of P{x, D) be in C^Q)
and set

M(^) = sup P(y, ^/P(^, S;).
^.yGQ

Assume that the coefficients only depend on x^ ..., x^ and set
\OL\k = the number of indices <^ k in a. If there are positive
constants C and d such that

(3. 3) \PW{y, ^)[/P(t,, ^) ̂  C(l + |^|)~^1M(^)-1^,
(t/, ^) e Q X R",

(3.4) M(i;)^ 0(1+1^
it then follows that P{x, D) satisfies the condition HE.

PROOF. — Set M,(^) = M(S) when / ̂  /c and M/S) = 1
when / > /c. If ^ = 0, the inequality (3. 1) then follows from
(3. 3), and (3. 1) is trivial if |(^ = 0 but |p| ^= 0, the left
hand side being 0. Hence we may assume that \^ ̂  0.

It is clear that (3. 4) implies that the degree of P{x, ^) in i;
is bounded when x e Q. Hence there exists a maximal set of
points Xj such that the polynomials Py(^) == P{xj, ^) are linearly
independent. We can thus write

PCr, ^) = ̂ (x) P^)

with uniquely determined coefficients ^6C°°(Q). From the
formula

DPPC^, ^) = SDJc,^)P^(^),
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we obtain by using (3. 3) and the definition of M(^), with y
replaced by x^ that

\DlPW{x, S)|^ Cp.,(l +^|)-dlalM(^aMP(^ ^).
When |P(^ =^= 0, this implies (3. 1). The proof is complete.

REMARK. — The sufficient condition for hypoellipticity
given in [2], [3] and [4] is that M shall be bounded and (3. 3)
valid with the factor M"^ omitted. Hence Theorem 5. 1
below will contain the results of those papers. In section 6 we
shall also give some other examples, in particular one studied
in [6].

Before proceeding we shall write (3. 1) in a more useful
form. First note that taking ? == 0 in (3. 1), squaring and adding
over all a =^ 0, we obtain, since Mj{x, S;) ̂  1,

P{x, S)2 ̂  |P(^ ^ + CJP(^, ^(1 + ISI)-2^
Here Ca; is bounded on compact subsets of Q. (From now on
this will be the case whenever we indicate that a constant
depends on x. The same notation will be used for different
constants.) Hence there is a constant Aa; such that

(3. 5) P(o;, S) ̂  2\P{x, S)|, IS) > A,,
so we may replace (3. 1) by

(3. 1)'
\D^P{x, ^Cp,,(l + I^D-^IMP-^, 1;)\P(x, S)|, 1^| > A,.

We note that if follows from (3. 1)' that P{x, ^) =7^ 0 when
|^| ^_ Ay. For if P(a;o, ^o) = 0 ^d |So| ̂  A^, it follows from
(3. 1)' that D^P(a;o, So) = 0 for all a, hence P{xo, ^ = 0 for
all \. Since (3. 1)' with a == 0 and |p| = 1 shows that

jgrad, P(.r, ^)| ̂  C,. .|P(^, S)| when \\\ > A,,
it would follow that P{x, ^) = 0 for all S; and all ^ in the same
component of Q as XQ, which contradicts the definition. We
can thus define the kernels Kj{x, S;) by means of (2. 6) and
(2. 7) when |^| > A,.

THEOREM 3. 2. — IfP^Xy D) salsifies the condition HE and the
kernels Ky are defined by (2. 6) and (2. 7), we have the estimates

(36)
|DtDIK/3;^)|^C.,^^(l+|^|)-(((la'^MP-a(.r^)/|P(.r^)|,|^|^A,.
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REMARK. — Note that for / === 0 this differs from (3.1)' only in
the fact that P(rc, S;) has been replaced by 1/P(^, !;) == Ko(*r, ^).
It is thus clear that (3. 6) for / == 0 implies (3. 1)' so that
(3. 6) is in fact equivalent to the assumptions.

PROOF OF THEOREM 3. 2. — When / == |a| == |(3| == 0,
the estimate (3. 6) is trivial. We shall prove it in general
by induction. With the convention K_i = 0, it follows from
(2. 6) and (2. 7) by application of the differential operator
D|DJ that

(3. 7) P(^, S)D|DgK^, ̂ )=-S'(DrDJ'P(^ S))(DfDJ''K,(^))
-S ^^W^DJ'P^, ^(DIX^K^, S;))/|Y|!

if |a| + |p| + / =^= 0. The sums are extended over all a',
a", P', P" with a' + a" == a and ^ + (i" == j3, except in the
sum denoted by S', where the term a' = = ? ' = = 0 shall be omit-
ted.

Assume that (3. 6) is already proved when / is replaced by
a smaller number or the multi-indices a, j3 are replaced by
multi-indices of smaller total length. In view of (3. 1)' we
can then estimate the right hand side of (3. 7) by a constant
times
(l+|^|)-^l^)MP-^, ^)+ S (l+l^l)"^^'^1^"1^-01^^).

Since |y| — 1 ̂  0 in the last sum, this proves (3. 6).
Two corollaries of Theorem 3. 2 will be useful in the next

section.

COROLLARY 3. 1. — If P{x, D) satisfies the condition HE,
we have

(3. 8) |Dg(P(o;, ^)K,(^, ^))| ̂  Cp,,,/l + \W\-^, |^| > A,.

PROOF. — The inequality follows immediately from Leibniz'
formula, (3.1)' and (3.6) if we estimate M^(x, ̂ ) by C^(l + |^l)lp ' ,
which is possible in view of (3. 2).

COROLLARY 3. 2. — IfP(x, D) satisfies the condition HE and
we denote by m^ the order of P{x, D) we have

(3. 9) |DiDgK/a;, ^)| ̂  Cp,,.,,/! + Î D'̂ lM^MPi),
1 ^ 1 > A,.
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PROOF. — I n (3. 6) we estimate M?-" by (C^(l + IS))1"'')1^,
which is possible in view of (3. 2). It then only remains to
prove that

(3. 10) l/|P(a;, S)| ̂  C,(l + W-, |^| ̂  A,.

By forming the Taylor expansion of P(x, ^) at S we find that
^ 0) ̂  C^(l + \^p^, ^,

hence
(3. ii) i/p^, ̂  ̂  c^i + mp{x, o).

As proved after (3. 1)' the polynomial P{x, ^) is not identically 0
for any x, hence P{x, 0) is continuous and ^ 0 everywhere.
The inequality (3. 10) is therefore a consequence of (3 11)and (3. 5). -i v . /

For reference in section 5 we end this section by proving

THEOREM 3. 3. — If P{x, D) satisfies the condition HE, it
follows that the adjoint operator P*(x, D) also satisfies the condi-
tion HE.

PROOF. — First recall that the adjoint is defined by the
identity

f(P(x, D)u^dx=fuP^x, D)^dx

when u and v are in Co°(Q). This means that if we write
P(x, D) = Sa/^P/D)

where P/D) are differential operators with constant coeffi-
cient (for example the operators D01 indexed as a sequence),
then

P*0r, D)^ = 2P^ (—D)(a^) = S((— D,)^)(PW(— D)p)/|a| !
Thus

(3. 12) P*(^, -^)=S(—1)1-1 D^PC^, ^)/|a| !
which gives in view of (3. 1)'

(3. 13) |P*(a, -S;)-P(^ ^)|^C,(1 + I^-IP^, S)|, l^A,.

Hence we can find B^ so that
(3.14) \P(x, S)|^21P^, -^)| when |^|>B,.
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From (3. 12) and (3. 1)' we now immediately obtain using
(3. 14) that

(3.15) \DW(X, -^)|
^Cp,.(l+ ISD-'-IMP-^, W(x, -S)|, 1^1 >B,,

which proves the theorem.

4. Regularity properties of the parametrix.

We assume once for all in this section that P(o?, D) satisfies
the condition HE. By Q' we denote a relatively compact
open subset of Q and by A7 an upper bound for Aa; when x e Q'.
We shall study the integral operators in (2. 10) for x e Q',
taking ^o(S) = 1 when |S|^A'. Note that if o?eQ' it follows
from (3. 9) that all integrals in (2. 10) converge, hence that
(2. 10) is valid.

THEOREM 4. 1. — The integral

(4.1)
F/a, t/)=(2^)-np<^^(^(S)P(^ S)K^(o:, S)+^o(S))^

x^ Q',

converges absolutely and Fj is in C*(Q' X R") if d(j +1) > {n + k).
If ycsCo^R"), we then have

(4. 2) jF,Cr, y)^y) dy = (2^)-nJ>^(P(a:, i;)K (̂o, ̂ (i;)
+^(S))y(S)^.

PROOF. — From Corollary 3. 1 it follows that when I R I ^ A *
andrceQ', |^|>A',

.(4. 3) (1+|S|)^'P'|DS(P(^ S)K^(^ ^MC^I+ISI)^^

Since the exponent /r — d{j + 1) is < — n by assumption, the
inequality (4. 3) shows that the integral (4. 1) and the integrals
obtained by at most k differentiations under the integral sign
are absolutely and uniformly convergent. This proves the
theorem since f f g d x = j f g d ^ for arbitrary integrable
functions f and g.

In general, the other terms in the right hand side of (2. 10)
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cannot be written as integral operators on <p with functions
as kernels. However, we can introduce distribution kernels in
the following way. If F is in Co°°(Q' X R"), we set

P(x, ^=fe-^¥(x, y ) d y
and write

(4. 4) E/F) = (2^J> ̂ , W^F{x, S;) ̂  dx.

Since Ky is bounded by a power of |^ at infinity (Corollary
3. 2), it is clear that this does define a distribution in Q' X R".

THEOREM 4. 2. — The distribution Ey in Q' X R" defined by
(4. 4) is an infinitely differentiable function outside the diagonal.
If <p e CO^R") and x is in Q' but not in the support of y, we have

(4. 5) jE/a, y)9(y) dy = (2^-nfei<xf ̂ K,(x, S)^i(S)y(S) ̂ .

PROOF. — To prove that Ej is smooth outside the diagonal
we shall study the product {x — y)yEj' Since

e^^fe^'^x-y), ¥{x, y) dy = D^^{x, ^)),

we have
({x - y)JE,)(F) = E^(x - yWx, y)) =

= {^fe^^x, ̂ (- D^{K^ W^))d^ dx.

If we choose QC soi large that
d(j + |a|) > n + w, w == sup m.r,

a?eQ'

it follows from (3. 9) that (— D^ {Kj{x, ^)^(S)) is integrable,
uniformly in x. Hence we obtain
((x-yW(F)=

ffF(^ y)dxdy{2^-nfei<x^-^— D^(K/a;, $)^(S))^.

This means that (a;—y), E^ is equal to a continuous function

(4. 6) (x—y)^ = W-fe^ ?>(— D^ (K/rc, S) ̂ (^))^.

If the inequality
(4. 7) d{j + |a|) >n + m + |p| + |y|
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is valid, we still obtain a uniformly convergent integral if
we apply the differential operator DJDJ to the integral (4. 6),
for in view of (3. 9) the integrand obtained after differentiating
will have a bound of the form

C(i + i^y^ipj-m-^iai)
which is integrable in view of (4. 7). Hence E^ is infinitely
^differentiable outside the diagonal.

To prove the last statement we observe that if geQ°(Q')
has a support disjoint from that of <p, the definition (4. 4)
of Ej applied to ¥{Xy y ) = g(x) <f{y) shows that

JV^ y ) g { x ) ^ { y ) d x d y
= (2^-nfg{x) dxfe1^ ̂ , ^) ̂  y(^) ̂

since g{x) 9(17) vanishes in a neighborhood of the diagonal.
This implies (4. 5). The proof is complete.

If g e Q° (Q') and 9 e Co" (R") we shall, following Schwartz [5],
denote the function {x, y) —> g{x) y(y) defined in Q' X R" by
g X y. We also recall that a distribution E in Q' X R71 is called
regular in x if for every fixed yeC^R") there is a function
Ey e (^(Q') such that

(4. 8) E(g X 9) = / gEy dx, g e C; (Q)';

similarly E is called regular in y if to every fixed g e C? (Q')
there is a function E*g e C^R") such that

(4. 9) E(g x y) = f(^g) y dy, ye C?(R»).

(Obviously Ey and E*g are uniquely determined by these
identities.)

THEOREM 4. 3. — The distribution E^ in Q' X R" defined
by (4. 4) is regular both in x and in y.

PROOF. — To prove the regularity in x, which we do not
strictly need in the next section,we only have to note that the
function

(4.10) (E,y)(a0 = (21t)-nJ>^K^, 2;)^)y(S;) ̂
satisfies (4. 8) and is in C°°(Q') if !p«=Co°(R'1) In fact, since y
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tends to 0 at infinity faster than (1 + 1^1)"^ for every N, it
follows from (3. 9) that the integral (4. 10) is absolutely and
uniformly convergent and remains so after any number of
differentiations with respect to x.

The regularity with respect to y is less trivial. Writing

(4. 11) G(^) = W^fe1^ S>K^, ̂ )Wg{x) dx,

we have

Ey(g X y) =fG{^)d^ =fG(x}f(x}dx

provided that G is integrable. We shall prove this and,
moreover, that G(2;)(l + \^\Y is bounded for every N. This
will show that G e C^R") and since E}g == G, the proof of
the theorem will then be complete.

To estimate G we multiply (4. 11) by jS;)^ and integrate by
parts. If we denote the Laplace operator by A, this gives

j^G^) = (2^)-n(- 1)^ f^?>A£(K/o, ^)g{x))^)dx.

Now g is in Co° (()'), so we obtain by using the estimate (3. 9)
that

isnG^i ̂  qi + ii;i)̂ (1-̂ .
Since G == 0 in a neighborhood of 0, this gives with another

constant
|G(^)| ̂  C(l + 1^-^^).

This completes the proof of the theorem, for k is an arbitrary
positive integer.

REMARK. — The proof of this theorem is essentially the
same as that of proposition 1. 18 in [6].

5. Hypoellipticity of operators satisfying the condition HE.

It is very well known how regularity theorems can be proved
when one has a parametrix with the properties obtained in
the preceding paragraph. However, we shall supply the proof
here for the convenience of the reader. (See also Schwartz [5].)
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THEOREM 5. 1. — Every differential operator satisfying the
condition HE in Q is hypoelliptic in Q.

PROOF. — Denote the adjoint operator by P(a?, D). Accor-
ding to Theorem 3. 3 the operator P(x, D) also satisfies the
condition HE. We have to prove that if us 3)'(Q) and
P*(^, D)u == /*, then ueC°°((o) if (D is an open subset of Q
such that /eC^co). There is no restriction in assuming that
<o is relatively compact, and multipliyng u by a function in
CO°(Q) which equals 1 in co we may then reduce ourselves to
the case where ue8'(Q). We choose a relatively compact
subdomain Q' of Q such that the support of u is contained
in Q'. Replacing CD by a smaller domain we may finally write
f == g -|- h where g e Co°(Q') and h vanishes in co.

Summing up, we have to prove that if u e §'(Q'),
P*(^ D)u=g+h,

where g e Co° (Q') and /i vanishes in (D, then u e (^"(co) for an
arbitrary integer m.

With (FeCo°((o) we now apply (2. 10) in combination with
(4. 2) and (4. 10). This gives

f{x) = P(x, D) S (E,9)(^) + fFj{x, y) y(y) dy

Let (A be the order of the distribution u and choose / so large
that Fj e (^^(Q' X R"). Since u has compact support we then
obtain

(5. 1) u(y) = (P*u)(s E,y) + /(u(F,(., y))y(y) dy.

Here we have used the properties of the direct product of
distributions (Schwartz [5]); the notation ^(Fy(-, y)) means
that the distribution u operates on the variable indicated by
a dot. Since Fy is in C^^, this a function in (^"((o). The other
terms in (5. 1) we rewrite in the following way
(P*u)(E,y) = (g + A)(E,y) = E,(g x 9) + A(E,9)

=/(E;g)yA/+/W., yMy)dy'
The last computation follows again from the fact that

(E^)(a?) ==JE^, y)y(y)dy, a?<co,
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in view of Theorem 4. 2, by using the properties of the direct
product and the fact that the support of h belongs to COD.
Hence u is in co equal to the function

y ̂  i (E*g)(y) + 1 A(E,(., y)) + u(F,(., y)).
0 0

Since all terms except the last are in C^Q)) and the last is
in (^"((o), this completes the proof.

6. Examples.

We first give an example which proves that an operator which
is elliptic except at a point where the principal part degenerates
may still be hypoelliptic if the principal part vanishes so rapidly
that the strength of the operator does not change too fast.

EXAMPLE 1. — The operator corresponding to
(6.1) P ( ^ S ) = l + M ^ p

satisfies the condition HE, hence is hypoelliptic, if v > (JL.

PROOF.—We shall choose for / = 1, . . . , n

M/rr, ^ )=M^, S) = ((1 + p^)/(l + r2^))^
where p == |^| and r == \x\. We may of course assume that
r < 1; the inequality (3. 2) is then fulfilled since v > (JL and

1 ̂  M(o;, ^) ̂  (1 + p2^.
For 0 ̂  / ̂  2v and 0 ̂  k ̂  2^ we shall prove that

(6. 2) r^-V^W-^l + p)^! + rV^)

is bounded if 0 < d ̂  1 — pi/v. That (6. 2) is bounded for
0 < p < 1 is trivial. If the number c defined by

^ = 2(x — k + (fc — /)pi/v + rf/c

is negative, the boundedness of (6. 2) is trivial also for p > 1
since the total order in p of the factors in (6. 2) which do not
contain r is pic. On the other hand, if c ̂ . 0 we can estimate
(6. 2) for p > 1 by a constant times

r^^-^p^y/Cl + r^p2^^--^.
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Since 2v — / — vc = /cv(l — rf — P^)/^ ̂  0 and
2 + (k - /)/v - c = /c(l - d)/(x > 0,

this proves the boundedness.
We shall also give two examples of operators in two variables,

related to the example of Treves [6].

EXAMPLE 2. — The operator corresponding to
(6. 3) P{x, ̂ ) = ̂ m + ^» + ic(xW +1

satisfies the condition HE, hence is hypoelliptic, if c e C00 is
real valued and

(6. 4) (a — l)/2m + bftn < 1, a/2m + (b — l)/2n < 1.
Note that (6. 4) means that the first order derivatives of

the polynomial Pa(S) == ^t shall be strictly weaker than
Pi(^) == ^m + Si71 4- 1- The operator is of constant strength if,
and for general c only if, a/2m + bftn <^_ 1. The example
then gives nothing new.

The example studied by Treves [6] is of the form (6. 3) with
m = = l , n = = 2 , a = = l , b = 3 and c depending only on x^.
The inequalities (6. 4) are not satisfied in this example, so we
give another containing the example of [6] where we use
in an essential way that c only depends on o^.

EXAMPLE 3. — The operator given by (6. 3) satisfies HE,
hence is hypoelliptic, if c e C°° is a real valued function of x^
only, and

(6. 5) (a — l)/2m + bftn < 1,. 0 < a < 2m.

We leave it to the reader to verify that the hypotheses of
Theorem 3. 1 are fulfilled in examples 2 and 3.
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