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ASYMPTOTIC BEHAVIOR
OF SCATTERING AMPLITUDES

IN SEMI-CLASSICAL AND LOW ENERGY LIMITS

by D. ROBERT and H. TAMURA

0. Introduction.

In the present paper we study the asymptotic behavior of scattering
amplitudes of Schrodinger operators is semi-classical and low energy limits.

Consider the Schrodinger operator H(h) = -(l/2)h2^ + V,0 < h <
1, in the n-dimensional space J%,n > 2. We assume the potential V(x) to
satisfy the following condition.

Assumption (V)p. — V(x) is a real C^-smooth function and satisfies

\9^V{x)\<Ca<x>-^a\ p > l ,

for any multi-index a, where < x >= (1 + [a?!2)1''2.

Under the above assumption, H(h) admits a unique self-adjoint
realization in L2 = L2^) with domain D(A) = ff2^),^2^) being
the Sobolev space of order 2. We denote by the same notation H(h)
this realization. Assumption (V)p also enables us to define the scattering
matrix 5(A;/i) with energy A > 0 as a unitary operator acting on
j^2^n-i^ 5'Ti-i being the (n — l)-dimensional unit sphere. The scattering
matrix 5(A; h) takes the form

5(A;A)=Id-(27r%)T(A;fa)

with T called T-matrix. We know ([2], [9]) that T(A;/i) is an integral
operator and the kernel T(0,^;A,/i) is smooth in (0,e<;), 0 ^ a/. Then
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the scattering amplitude f(ijj —^ 0\ A, h) with the initial direction a; and
the final one 9 is defined by

(0.1) /(^ -^ 0; A, fa) = c(A, fa)T(0, a;; A, ft)

with

c(A,fa) = -27^(2A)-(n-l)/4(27r/l)<n-l)/2exp(-^(n-3)(7^/4)).

If y(a;) satisfies (V)p with p > (n + 1)/2, then the scattering
amplitude is usually defined through the asymptotics as |a?| -^ oo of
the outgoing eigenfunction of H(h), We can easily see ([5], [15]) that
f(uj —> 0;A,A) is related to the kernel r(0,C(;;A,fa) through relation (0.1).
The quantity \f{uj -^ 6\ A, /i)|2 is called the differential cross section, which
is observable through actual physical experiments and is one of the most
fundamental quantities in scattering theory. One aim of this paper is to
study the asymptotic behavior of f(uj -^ 0; A, h) in the semi-classical limit
h-^0.

We first formulate the obtained result precisely and give a brief
comment on some results related to it. The precise formulation requires
many notations, assumptions and definitions.

We begin by reviewing briefly the classical particle scattering. For
details, see the book [19]. Assume (V)p with p > 1. The classical phase
trajectory is defined as a solution to the Hamilton system

(0.2) Wdt)q=p, Wdt)p=^^V(q).

If \q(t)\ —^ oo as t —»• ±00, then the particle behaves like a free particle as
t -^ ±00. Thus there exist (r±,v±) € R" x (fi^O) such that

lim (\q(t) - v±t - r±| + \p(t) - v±\) = 0.
l—>-±00

The mapping
5ci : (r-,v-)-*(r+,v+)

is called the scattering transformation in classical mechanics.

We now fix the initial direction (j € S'71"1 arbitrarily. For nota-
tional brevity, we take (0,..., 0,1) as the direction a;. We denote by A^
the hyperplane (impact plane) orthogonal to ci; and write the coordinates
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in AU, as z = (^i,. .^Zn-i). We also use the notation ? == (^,0) =
(2;i,..., Zn-i, 0) so that ? is considered as a position vector in It71. For
given ^ € A^, we consider the phase trajectory {qoo(t',z,\),poo(t^,^)}
asymptotic to {V2\ujt + ?, V^o;) as t —» —oo;

lim |goo (*; ̂  A) - V2\ut - ?| = 0,
(0.3) t—00 _

lim |j?oo (^ ̂  A) - v2Ao;| = 0
t—^—oo

in the C00 -topology for the impact parameter z. Such a trajectory is
uniquely defined as the solution to (0.2) with initial condition (0.3) at
t = —oo. We assume that energy A > 0 under consideration is non-
trapping in the following sense.

Non-trapping condition. —Let {q[t',y,ri),p(t',y,r])} be the solution
to (0.2) with initial state (y,yy) at t = 0. We say that energy A > 0 is
non-trapping, if for any R > 1 large enough, there exists T = T(R) such
that \q(t',y,rf)\ > R for \t\ > T when \y\ < R and A == (1/2)H2 4- V(y),

The non-trapping condition means that all particles with energy A go
to infinity as t —> ±00. Let {goo^^A^poo^^A)} be as above. Assume
that A is in non-trapping energy range. Then, by definition, it follows that

(0.4) lim \q^z,\)\=oo
t—^+00

and hence there exist $00 (z; A) and Too(z; A) smooth in z € Ao; such that

lim |Qoo (<; ̂  A) - V^A$oo (z; A)t - roo (^; A) | = 0,
(0.5) ^+00 _

lim boo(t;2,A)-v^A$oo(^;A)|=0
t—*+00

in the C'°°-topology for z. Thus the classical scattering transformation Sci
maps (?,^/2Aa;) into (roo^A^V^^ooG^A)). By conservation of energy,
^oo (^; A) takes values in 571-1; $00 ; A^ -^ S'71-1.

Recall the notation z = (2:1,..., ̂ n-i) (coordinates in A^). We define
the angular density <?(z; A) by

(0.6) a{z, A) = |det ($00, (9/^i)$oo,..., W^-i)$oo)|

for the phase trajectory {qoo(t\ z, A),poo(^; ^, A)} with properties (0.3) and
(0.5).
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Regular condition. — We say that final direction 6 € S'71"1,^ ^ a;, is
regular for initial direction a;, if for all z 6 A^ with $00(^; A) = 0,

(0.7) ^^o.

Remark. — The regular condition means that the system {(9/9zi)
^oo? • • . , {9/9zn-i )$oo} can be taken as a base of the tangent vector space
at 0on S71'1.

Assume that final direction 0 is regular. By the implicit function
theorem, this implies that many particles are not concentrated near the
direction 6. Let 0 6 S^ be in a small neighborhood of 0. Then there
exists only a finite number of Wj = w^-(?;A) e A^,l <, j < <(= ^(0;A)),
such that $00 (wj, A) = 0.

We are now in a position to formulate the first main theorem.

THEOREM 1. — Fix the initial direction (j € S'71"1 asuj = (0,..., 0,1)
and keep the above notations. Assume : (i)(V)p with p > 1; (ii)
energy X > 0 is in a non-trapping energy range; (Hi) final direction
6 € S"'1^ i- u, is regular for u. Let wj = Wj(6',\) € Ao/,1 < j <, £,
be such that $00 (wj; A) = 0. Then the scattering amplitude f(u -» 6\ A, h)
obeys the following asymptotic formula as h —^ 0 ;

t
(0.8) /(^ -. 0; A, h) = ̂  ?(w,; A)-1/2 exp(2/i-1^ - ̂ 7r/2) + 0(A),

j"=i
w&ere

(0.9) ^ = ( {boo^w^A)!2^ - y(goo(^w,,A)) - \}dt
J—oo

-^^(w^A),^^,

<, > being the scalar product in R^, and ^ is the path index (Keller-
Maslov-Morse index) of the phase trajectory {goo(^,A),poo(;^,A)} with
z = Wj on the Lagrangian manifold

{(^)e^x^ : x=qoo^z,\)^=p^z,X),zeA^teR1}.
Remarks. — (i) Under the same assumptions as in Theorem 1, we

can prove that f(uj -^ 0; A, h) admits an asymptotic expansion in h. (ii)
The Lagrangian functions Lo(q,q) and L(q,q) associated with the free
and interacting systems are defined as LQ = lgp/2 and L = Igl2^ - V(g),



ASYMPTOTIC BEHAVIOR OF SCATTERING AMPLITUDES 159

respectively. Thus the integral in (0.9) may be considered as the difference
of actions along the trajectories {<?oo(^?A),poo(^^^)} and {V2\(jt +
?, v2X(jj} with z = Wj, which are asymptotic to each other as t —> —oo.

We shall explain the relation between |/(o; —> 0;A,/i)|2 and the
differential cross section o'ci(0; A) in classical mechanics in the semi-classical
limit h —> 0. For initial direction o;,0ci(^ A) is defined by

^i(0;A)= E ^^"^
e==^oc(z,\)

where the sum is taken over z € A^ satisfying the relation $00(^; A) = 0.
Fix a final direction 0o. Assume that 0o is regular and that I = 1 for this
fixed OQ. Then it follows from the above theorem that \f(u --> OQ\ A, fa)|2 —^
o'ci(^o;A) as h —>• 0. As is expected, this implies that the differential
cross section \f(ijj —> OQ\ A, A)|2 in quantum mechanics is convergent to the
classical one <Tci(0o;A) in the limit h —> 0. In general case i > 1, we have
the convergence

(0.10) I l/^-^A./i)]2^-^ [ a^\)d0
Ju Ju

for a small neighborhood U of 0^ if V^(5^ - Sk) ̂  0,1 ^ j < k <, £, for
0 € (7. Unfortunately we do not know whether or not this assumption is
really satisfied.

We shall make a brief comment on the results related to the above
theorem. The semi-classical asymptotics for scattering amplitudes has
been studied by Protas [13] and Vainberg [16] for a class of finite range
potentials under the assumption that A > supY(a;),y € CS°(R^),
is in a non-trapping energy range. The case of non-compact support
has been recently studied by Yajima [18] under assumption {V)p with
p > max (1, (n - 1)/2). Assuming only (0.4) and (0.7) for (A,0), he has
proved the formula (0.8) with the L2 error estimate, when f(uj —> 0; A, A) is
considered as a function of (A,0) and hence the convergence (0.10) follows
when averaged over energy A satisfying (0.4). The proof is based on the
Enss-Simon formula defining scattering amplitudes in the framework of
time-dependent scattering theory ([6]). It should be noted that the strong
non-trapping condition is not assumed for energy A. However it seems to be
difficult to prove (0.8) for fixed energy without assuming the non-trapping
condition. Roughly speaking, the difficulty comes from the uncertainty
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principle for the time-energy variables and from the effects of resonances.
To prove (0.8) for fixed energy, we require an information on the behavior
as t —^ ±00 of the propagator exp(-i/i~4i:f(/i)). In particular, we have
to estimate the local decay as t —^ ±00 uniformly in A. The non-trapping
condition enables us to obtain such an estimate.

The other aim of this paper is to study the asymptotic behavior of
scattering amplitudes in the low energy limit for a class of slowly decreasing
potentials to which the Born approximation method cannot be directly
applied. The argument used in the proof of Theorem 1 applies to such a
low energy case.

Let H = -(1/2)A+V, where the potential V(x) is assumed to satisfy
(Y)p with 1 < p < 2. Consider the Schrodinger equation

(-l/2)A+y(rc)-A)^=0.

We now make a change of variables x —^ y = X^^x to transform this
equation into

(-(1/2);^-^ + A-^A-1/^) - 1)̂  = 0.

Define the Hamiltonian H^(h) as H\(h) = -(l/2)h2^ + V\ with h =
A7,7 = 1 / p - 1/2 > 0, where Vx = A"1^-17^). We denote by
fp.{<jj —> 9\H) and fp,(u —^ 0',H\(h), the scattering amplitudes at energy
p, > 0 of the Hamiltonians H and H\(h), respectively. Then we can easily
prove that

(0.11) f^ ^0^H)= X-^-^Pf^ ^ 0',H^h))

with h as above. This relation follows from the general representation
formula for scattering matrices (Theorem 7.2, [1]).

Thus the argument used in the semi-classical case is applied to study
the low energy behavior as A -> 0 of f\{<jj —> 0;jff). We will prove that
/A (a; -^ 0; H) behaves like f\ ̂  x-^-1)/2? as A -> 0 for a class of repulsive
potentials behaving like

V(x) = $(^1)1^ + od^); M ̂  +00,

with $ € C0^,?71""1),^ > 0. The precise formulation will be given in
section 6, together with some comments on the related results.

We conclude this section by making some comments on the notations
accepted in the present paper. (1) <, > denotes the scalar product in
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R^. (2) For given self-adjoint operator A, we denote by R(^A) the
resolvent of A; jR(C;A) = (A - CF^ImO ^ 0. (3) We denote by | |o
and (,) the L2 norm and scalar product in L2 = I2(Rr^), respectively.
(4) We define the weighted L2 space 1̂  = L^(R^) with the norm | \a by
^ = {/ '' \f\a = I < x >a f\o < oo}. (5) We denote by || ||̂  the
operator norm when considered as an operator from L^ into L^.

I* Representation for scattering amplitudes.

The proof of Theorem 1 is done by applying the stationary phase
method to the representation formula for 7(0,0;; A, h) obtained by [9]. The
aim of this section is to formulate such a formula.

Let Ho(h) = -(l^/^A. We denote by ^o(^; A,o;, h) the generalized
eigenfunction of HQ (h);

^Q(x',\,u},h) = exp(^/l~l^/2A< x,uj >).

By the principle of limiting absorption, we can define the operator
R(\±iO;H(h) : L^Ll^,7>l/2,by

R{\ ± iO^H(h)) = 5 - limfi(A ± i^H(h)) in I2^.

If V(x) satisfies (V)p with p > (n + 1)/2, then the outgoing eigenfunction
^+([a;|af;A,a;,A),a; = \x\x, of H(K) is given by -^+ = ^o - -K(A 4-
z0;fl'(fo))y'^o and the kernel T(0,a;;A,fa) is expressed as

^(e,a;;A,/l)=co(A,/l)2(y^+(•;A,a;,/l),^o(•;A,^A))

with

(1.1) co(A, h) = (27^/l)-7l/2(2A)(n-2)/4.

On the other hand, the scattering amplitude f(uj —> ff',\,h) is defined
through the asymptotic behavior as \x\ —> oo of ^4. along the direction 6;

^+ = ̂ o + f(u -^ e^.h^x^-^exp^h--1^^! +o(l))

and we can easily see that /(a; —> 0',\,h) defined in this way satisfies the
relation (O.l).However, in the general case p > 1, we cannot necessarily
define T(0,c<;;A,A) as above. Thus, the first step toward the proof of
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Theorem 1 is to establish the nice representation formula for T(9^uj\ A, h)
which is well defined even in the case 1 < p <, (n + 1)/2. Such a nice
formula has been already obtained by [9].

1.1. The precise formulation requires many notations and definitions.
We begin by introducing a class of symbols.

DEFINITION. — For given Q C R^ x R^, we denote by AmW the
set of all a(a;,$), (x^) € 0, such that

l^cfa(:r,0| ^ Ca0L < x >m-H< $ >-^

for any L > 1. If, in particular, Sl = R^ x R^, then we write A^. for
AmW.

We say that a family of a(rr, $; e) with parameter e belongs to Am(^)
uniformly in e, if the constants Ca/3L above can be taken independently of
e. Most of symbols we use in later application have compact support in $
and hence are of class Ay^(n).

We write x = x/\x\ and $= $/|$|. For given triplet (R,d,a),R » 1,
d > l , — l < < 7 < l , w e introduce the notation

r±(^,d,<r)={(a;,0 : \x\>R,d-l<\^<d,<x^> ^ a}.

We now fix do and o-o, <TO being taken close enough to 1.

Then according to the result (Proposition 2.4) of [8], we can construct
a real C'°°-smooth function (f>±{x^) with the following properties : (i)
^±(^5$) solves the eikonal equation

(1/2)| V^±(rr^)|2+y(^)=(l/2)|$12

in T^{Ro,do,±ao) for some Ro > 1; (ii) <M^O- < ̂  > belongs to
Ao; (iii) For all (re, Q € R^ x J^

K^/^^)^^^) - ̂ (| < ^(fio) < 1/2,

6jk being the Kronecker notation, where e(Ro) can be made as small as
we desire by taking Ro large enough. Throughout the entire discussion,
we fix the triplet (Ro^do^o) with the meaning ascribed above.

Let a{x^) € Am and (f>±(x^) be as above. Then we define the
Fourier integral operator J/i(a;^±) : 5(1%) -^ S(R^) by :
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(h(a;<f>±)f)(x) = (27^A)-"yy>exp(^/l-l(^±(a;,$)
-<y,^>))a(x^)f(y)dyd^,

where the integration with no domain attached is taken over the whole
space.

1.2. We can define Fo(X,h) : L2, -> I2(Sn~l),'Y > 1/2, by

(Fo(A,/i)/)(oO = co(X,h)f^(x;\,^h)f(x)dx,

co(A,/i) being defined by (1.1). Let VF±(/i) be the wave operator defined
by

W±(A) == s - lim exp(^/l-ltfl"(/l))exp(-^/l-ltJfo(/l)).
t—»'d:oo

We fix d, 1 < d < do, and (T, 0 < a < (TO, arbitrarily. Assume
that / € 14,7 > 1/2, has energy support in (d^/^d2^) ; Fo(\,h)f = 0
if A > d2^ or A < d~2/2. Following the argument in [8] (see also [15]), we
construct an approximate representation for

exp(-^-4ff(ft))Ty±(fa)/, t ^ 0,

in the form
Ih(c±', <t>±) exp^/i-^jyoWV.

The symbol c± = c±(^,$; h) is determined to satisfy

exp^/r^K-O/^A + V(x) - (1/2)|$|2) exp^h-1^)^ - 0.

We formally set
00

c±(x,^h) - ̂ c±j(^,0^
J=0

and determine c±j inductively by solving the transport equation

< ^x<f>±^xc±o > +(l/2)(A^±)c±o = 0

(1.2)

< ^x<f>±^xc±j > +(l/2)(A^<^±)c±j = (i/2)A^^-i, j > 1,

with the condition at infinity

(1.3) c±o —^ I? c±^ —> 0, j > 1, as |a;| —> oo.

Since ^x<t>± = $ + 0(|a;|~1) as |a;| ̂  oo, we can solve (1.2) with (1.3) in
T'^(2RQ,d,±a) by the standard characteristic curve method.
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The solutions c±^(a?,$) are represented as follows. We consider
the 4- case only. Assume that (:r,$) e r+(2J?o,d,-o-). Consider the
characteristic curve r+ (<; x, $), ̂  0;

(d/A)r+ = V^+(r+,^),r+(0, ;a;,$) = x.

Set

^+(^,0 = (l/2)/>oo(A^+)(r+(T;a:,$),OdT.
Then

c+o=exp(F+(0;a;,0)
and

/•°°
c+, = c+oM / ~(z/2)(A^+,_i)r+(T;a:,0,Oexp(-F+(T;rc^))dT.

Jo

If (a?,0 € r+(2fio,d,-(r), then r+(t',x^),t >: 0 satisfies

k+(^^1^(1+^14)
and

|^9fr+(^;^0| ^ G^ < x ^-Hjal ^ 1.

This proves that c+j(a:,$) belongs to A-j(T+(2Ro,d, -o-)). In a sim-
ilar way, we can also prove that c-j{x, $) belongs to A-^(I\-(2J?o, d, +<r)).

We can extend c±^ obtained in this way to the whole space R^ x R! so
that: (c.O) c±j € A-j ; (c.l) supp c^ C r±(fio,do,±cro); (c.2) c±j solves
(1.2) with (1.3) inr±(2fio,d,±(7);(c.3)c^ solves (1.2) inr±(2fio,do,±(r).
This is possible, because equation (1.2) is linear, but the condition c±o —^ 1
is not necessarily satisfied for $ with d^1 < |$| < d-1 or d < |̂ | < do.

We now fix an integer N large enough (e.g. N = lOOn), and set

N
c±W=c±(x,^h)=^c^(x^)hj.

j=0

We define J±c(/0 by

(I-4) ^±cW=^(c±(/i);^).

Then we can prove that

W±(h)f = ̂ ^^exp(^/l-4ff(/l))J±c(/l)exp(-^/l-ltffo(fa))/
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for / € 14,7 > 1/2, with energy support in (cT^d2^).

1.3. We take dj and ^, 1 < j < 4, as follows : 1 < d^ < d^ < d^ <
di < do and 0 < (74 < (73 < 0-2 < (TI < (TO. For the region F±(3fio, di, =^i)
we define J±o(fa) in the same way as J±c(/0;

^±a(A)=4(a±(/i);0±),

where the symbol

JV

a±(A) = a±(a;,$;fa) = ̂ a±,(a;,0y
j=o

has the properties (c.0),(c.l) for r±(32io,di,To-i),(c.2) for r±(4Ao,
^2,=Fo-2) and (c.3) for r±(42?o,di, =F<r2). We further define ^±aW by

^±aW = H(h)J±aW ~ J±a(h)Ho(h).

This operator can be written as

fc±a(A)=4(fc±a(A);^)

with the symbol fc±a(/0 = k±a(x^',h) given by

(1.5) exp^Ti-1^-^)/^ + V - (l/2)|$|2)exp(^/l-l^)a±(/l).

By definition, it follows that fc±a(/0 has the following properties :
(fc.O) A'^fcjbaW € A-i uniformly in/i; (fc.l) supp fc±a C r±(3fio,di,To-i);
(fc.2) h-^^k±aW € A_(^+2)(r±(4fio,di,T^2)) uniformly .in ft.

Similarly we define

J±bW = 4(b±(A);^±)

for the region F± (51^,^3, ±0-4) C ^(Sfio^i^o-i) (be careful for the
notations), where the symbol

N
b±(h) = b^x.^h) = ̂ b^(x^)V

j=o

has the properties (c.O), (c.l) for F±(5%, ds, ̂ 4), (c.2) for F±(6%, ̂ 4, ±
(73) and (c.3) for F±(6ao,d3,±(T3). We also define

K±bW = H(h)J^W - J^(h)Ho(h) = 4(fc±,(A);^).
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The symbol k^bW = k^{x^ $; h) satisfies (fc.O), (fc.l) for r±(5jRo» ^3? ̂ 4)
and (fc.2) for r±(6J%o,d3,±^3).

1.4. We now formulate ihe Isozaki-Kitada representation formula
for T(A;/i) (cf. Theorem 3.3, [9]).

PROPOSITION 1.1. — Let the notations be as above. Let energy \
be fixed in the interval {d^2/2,(fi/2). Then :

r(A,/i) = r-n(A,/i) +r-i(A,/i) - r2(A,/i),
where

T±i =Fo(A,/i)J^(fa)^±fr(ft)^o*(A^)
Ts = Fo(A, h)K^(h)R(\ + zO; H{h))(K^W 4- J^(ft))Fo*(A, ft).

We now denote by r±i(0,^;A,/i) and r2(0,a;;A,fa) the kernel
of 2±i(A,/i) and T^(\,h), respectively. It is easy to prove that
T±i(0,a;,A,/i) = 0{h°°) for 0 ^ LJ. In fact, the kernel T±i(0,cx;;A,/i) is
represented as

Co(A, h)2 f expiih-^^x, 0, ̂ ))fc±b(rc, ̂ /2Aa;; /i)a4-(rE, \/2A0; /i)da:,

where ^± = <M^ v^a;) - ̂ +(a:, \/2A0). If 0 / a;, then |V^±| ^ C > 0,
as is easily seen, and hence the above relation follows immediately by
partial integration. Thus, by definition (0.1), we have

(1.6) f(uj -^ 0', A, h) = -c(A,/i)r2((9,o;;A,/i) +0(/i°°).

2. Resolvent estimates.

In this section we analyze the kernel T^(6,uj,\,h) by making use of
microlocal resolvent estimates. We keep the same notations as in section 1
and assume, without loss of generality, that A € (d^2/^,^^). For R > 1,
let \(x\ R), 0 <. x <. li be a smooth cut-off function such that ^ = 1 for
|a;| < R and \ = 0 for |a;| > R + 1. We set

Xa(x) == x(^; 20^o), Xb(x) = x(x^ lORo).

The aim of this section is to prove the following lemma.
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LEMME 2.1. — Assume that X is in a non-trapping energy range. Let
7 > 7i/2 be fixed dose enough to n/2. Then :

(i) \\K^(h)R(\ + zO; H(h))K^W\\.^ = O^/2)
(ii) \\K^(h)R(\ + iO^H(h))(l - Xb)K.,W\\,^ = 0(/^/2)

(iii) ||((1 - Xa)K^WYR(\ + zO; ff(fa))^-bWll-^y = O^72).

Remark. — The above lemma will be intuitively clear. Let

S+(a,o-;$) ={x€RS : \x\ >R,<x,([»a}

for ^ 9^ 0. Then estimate (i) follows from the fact that outgoing
particles starting from E-(-(5.Ro,04,$) (D support in a: of A;4-&(/i)) with
momentum Va;<^+ ~ $ never pass over E4-(3Jio?—cri;0\S4-(4Jio»—cr2;$)
where the symbol fc+a(/i) of J<'+o(/i) has only a weak estimate by property
(fc.2). Estimate (ii) will be also clear from the same consideration as
above. Estimate (iii)follows from the fact that scattered particles pass
over E+(20Jio?—o'i;0\S4-(20JZo,—^2;$) with momentum different from
V^+ ~ $.

Now, we shall accept the above lemma as proved. If we set

e+o(rr; h) = Xa(x)k+a(x, V2X0, h)

e-b(x\ h) = Xb(x)k-b(x, \/2A^; /i),

and if we write <^+ and <^_ for <^>+(;r, V2XO) and (f>-(x, \/^\^\ respectively,
then it follows from Lemma 2.1 that

T2(0, a;; A, h) = co(/c, /^(w-fr, e+o exp^/T1^)) + ̂ (/i^3)

with
w-fr(a:; h) = Ji(A + i-O; H(h))e-b exp(zA-1^-).

Recall the definition of fc-&(/i) ((1.5)). Then a simple calculation proves
that

w-b = /-6 exp(^/i~1^-) 4- jR(A -4- lO; H(h))g-b exp(i/i~1^-),

where
/^(a:;/l)=X6(^-(^^/2Aa/;/l)

(2.1) ^(a:;/i) == exp(^/l-l^)[x6,ffoW]&-(^^/2Aa;;/l)exp(^/l-l^-),
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[,] being the commutator notation. The same argument as in the previous
section shows that

(f-bexp(ih~1 (/>,), e+aexp^h-1^)) = 0(h°°)
and hence

T^e, ̂  A, h) = co(A, h)\g^ exp(ih-1 ̂ _), w+J + O^73),
where

w+a(:r; h) = fi(A -10; H(h))e+a exp(ih~1 <^_).
Thus, as an immediate consequence of Lemma 2.1, we obtain the following
result by repeating the above argument and by making use of relation
(1.6).

COROLLARY.— Define Go (0,o/; A, A) by
(2.2) Go = WA + zO; H(h))g^ exp(zft-1^), g^ exp(ih-1 cj>+))
with

(2.3) ^+a(a?;ft) =exp(-^/l-l^+)[^,^o(ft)]a+(^,^/2A0;ft)exp(^/l-10+).
TAen

(2.4) /(a; -. 0;A,A) = ci(A,fa)Go(0,a;;A,/i) + 0(^/3)
with

ci(A,/i) = (27^)(2A)(n-3)/4(27^/l)-(n+l)/2exp(-^(r^ - 3)(7r/4)).

The proof of Theorem 1 is now reduced to the study on the asymptotic
behavior as h -^ 0 of C?o(0, ̂  A, h).

2.1. We prepare two lemmas to prove Lemma 2.1.

LEMMA 2.2. — If A is in a non-trapping energy range, then

W±iO^H(h))\\^-a = 0(fa-1), a > 1/2.

The above lemma has been already proved in [15] by making use of
outgoing and incoming parametrices for exp^-ih^tH^h)) constructed by
[8] and also Gerard and Martinez [7] have recently given a short proof
based on the Mourre estimate. The non-trapping condition is essentially
used to prove this lemma only.
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LEMMA 2.3. — Assume that \ is in a non-trapping energy range,
Let o;±(a;,$) € Ao has support in r±(ii,d,(7±) for R > 2Ro . Then :

(i) \\R(\±i^H(h))^(x,hD^\\.a^-a = 0(ft-1), 6 > 1

for any a > 1/2 .
(ii) Jfo-4- > a^, then

\\u^hD^R(\±iO^H(h))^(x,hD^\\.^a = 0(h°°)

for any a ^> 1.
(iii) Ifa;(a;,$) € Ao has support in \x\ < (9/10)J%, then

\^{x, hD^R(\ ± zO; ̂ (A))^^, hD^)\\^a = 0(A°°)

for any a ^> 1.

The microlocal resolvent estimates as in Lemma 2.3 have been studied
in the case h = 1 by [10]. (In this case, the non-trapping condition is not
necessary.) The proof of the lemma is essentially based on the same idea
as in [10] (see also [17]).

2.2. We first prove Lemma 2.1, accepting Lemma 2.3 as proved.

Proof of Lemma 2.1. — We begin by the following general remark.
Let a±(rc,$) 6 Ao be supported in r±(i?,d,(r),it > JZo? and let a/±(a;,$) €
Ao vanish in T±(R,d,a±) D r±(.R,d,cr), R>R>RQ, d> d, a- >
a > 5+. If RQ is chosen large enough, then

^±{x,hD^)Ih(a^(t>±) : L2^-^L2a

is bounded with bound 0(h°°) for any a > 1. This follows from the
standard calculus of Fourier integral and pseudodifferential operators.

(i) By properties (fc.l) and (fc.2), the symbol fc+a(A) of K^aW has
support in r+(3.Ro?rii,~^i) and satisfies fc+a(ft) = 0(1^ < x >~N) in
r+(4Jio,di,-o-2)- On the other hand, the symbol fc+&(fa) of K^W has
support in r+(5-Ro?ri3?04)- We note that

r+(4JZo,di,-(Ti)\r+(4fio,di,-<72) C r-(4JZo,di,-<r)

for any (T, 0 > —o" > —crs. Hence, by the above remark, estimate (i) follows
from Lemma 2.3.
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(ii) Estimate (ii) is verified in the same way as (i). We give only a
sketch. The symbol (1 - Xb)k-b(h) has support in r-(10J%o»d3» -0-4) and
is of order 0^ < x >~N) in r-(10J%o,d2, -0-3). Since

r-(10fio,d3,-^4)\r-(10J?o,d3,-<T3) C r+(10Jio,d3,-<r)

for any (T, —0-3 > —a > —a^y we can prove (ii) by making use of the same
argument as used to prove (i).

(iii) By taking the adjoint, it suffices to show that

\\(XbK-bWrR(\ - i^H(h))(l - Xa)K^(h)\\-^ = 0(/i^/3).

This also follows from Lemmas 2.2 and 2.3 by making use of the same
argument as above. We omit the detailed proof. D

2.3 Proof of Lemma 2.3. — We may assume that 1 < d < do and
<T+ > —OQ. Take the triplets (.R^dj,?^), 1 < j < 2, as follows :
R > R^ > fii > 2Ro, do > di > d^ > d and 0-4. > Sa > ?i > -ao.
For brevity, we further assume that a < N / 2 — 1 for N fixed arbitrarily
in section 1.

(i) We consider the + case only. Let the symbol c+o^O be
as in subsection 1.2. Recall that c+o = 1 4 - 0(|a:|~1) as |rr| —^ oo
in r^^-Roi^i^i)- Hence, by the calculus of Fourier integral and
pseudodifferential operators, we can find a symbol ejv(/i) = ejv(rr,$;/i) €
AQ (uniformly in h) with support in r 4- {R^id^^a^) such that

J+cW(^(^(A);^+))*=a;+(a:,/l^)-/lN^(a:,/lJD^/l),

where J+cW is defined by (1.4) and ci;^(a:,^; h) belongs to A-N uniformly
in h. By the same argument as in subsection 1.2, we can construct an
approximate representation for

U(t\ h) = exp(-i/i~4ff(/i))o;+(a:, hD^), t > 0.

We define UN{^ h) and JZ^(t; fa), t > 0, as follows :

UN = J+cWexp(-z/i-4ffoW)(4(e^(/i);^+))*
RN = A^+c(fa)exp(-^h-ltJfo(^))(4(eNW;^+))^

where

K^(h) = H(h)J^{h) - J^WH^h) = 4(A:+cW; M
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and the symbol A+c(/i) = k+c(x,^h) satisfies (A;.0),(fc.l) for r+(.Ro,do,
-o-o) and (fc.2) for r-^Jio^o,?!). Then it follows that

ih(9/9t)UN = ^(A)t^ 4- J^.

Hence the Duhamel principle yields

(2.5) U(t', h) = UN + /^ exp^/T^/i))^^, 7^; A) + G^(t; A),

where
/**GN=ih-1 / exp(-^/l-l(^--5)^(A))^(5;/l)d5.

«'o
We assert that :

(2-6) ||^(;/i)||-^,_, = 0(< t >-6)^ > 1,

(2.7) ||̂ ; 7i)||-,+^ = 0(^ < t >-6).

Then estimate (i) follows from Lemma 2.2 and the assertions above. In
fact, by (2.5), we have

3

R{\+i^H{h))^(x,hD^)=^Qk(\,h),
k=l

where
/•oo

Qi = ih~1 I exp^h^tX^N^h^dt
Jo

02 == hNR(\ + z'O; H(h))uN(x, hD^ h)
yoo

Qs = ih-1 \ R(\ +10; ff(/i)) exp(^/l-15A)AJv(s; /i)d5.
JQ

This relation proves (i) immediately.

We now prove (2.6) and (2.7). We may write (EMt;/i)/)(a;) as

(2.8) (2^)-" yy exp(ih-1^ x, $, 2/))c+(a:, $; /i)e ,̂ $; h)f(y)dyd^

where ^ = <^+(a;,0 - <^+(2/,0 - (1/2)^|2. If (y.O € supp e^ then
< ̂  $ » ̂ 2 and hence

|V^(<M^ 0 4- (1/2)^|2)! > C(l 4- |y| + ̂ ), ^ > 0.
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Hence, by repeated use of partial integration, we can write (l7jv(t; h)f) (x)
as

(W;/tVCr) = (27^/l)-n/Yexp(^/l-l^)a(t,a;,$,y)/(2/)d^,

where |a| < Ca < x >a< y ̂ ^^ t >~6. This proves (2.6).

To prove (2.7), we again represent {RN^ h)f){x) in a form similar to
(2.8). Assume that (x^) e supp fc+c(/i). If (x^) € r+(2fio,do,?i), then
k+cW = 0(/i^ < x >-^) by property (fc.2) and if (a:, Q i ̂ +(2J^o,do,5:l)
and (2/,$) e supp e^ (and hence < i/,$» ?s), then

|V^|>C(l+|rr|+|2/|+t), ^0,

by the choice of (Ti,S2 > ?i. Thus the same argument as above proves
(2.7).

(ii) Estimate (ii) is proved in the same way as (i). We give only a
sketch. We may assume that 0-4- > a^ > a^ > a-. Then we can show by
the same argument as used to prove (2.6) that

\\^-{x,hD^UN{W\,^ = 0(h°° < t >-°°)

for any f3 > 1. Since UJN e A-N, it follows from estimate (i) that

\^-(x,hD^R(\+iQ,H{h))u;N(x,hD^h\\^=0(h-1)

for any /?, (3 < N / 2 -1. Similarly it follows from (i) and Lemma (2.2) that

\\^(x,hDM\ + i^H(h))R^h)\\^.^_6 = 0^ < t >-8)

for any f3 < N / 2 . Thus estimate (ii) is proved by combining the three
estimates above.

(iii) Estimate (iii) is also proved in the same way as (i) and (ii). We
omit the detailed proof, n

3. Preliminary step by short time parametrices.

In this section we analyze Go = Go(0,^;A,/i) defined by (2.2) by
making use of short time parametrices for exp(-i/i~4fi'(/i)).
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Let {g(t; y, r]\p(t\ y , rj)} be the solution to the Hamilton system (0.2)
with initial state (y, r]} at t = 0. We denote by F* the canonical mapping

^ : M -^ (q{t',y,r]),p^y,rj)).
The analysis is based on the following proposition.

PROPOSITION 3.1. — Let u}{x,^) € AQ be of compact support.
Assume that 0:1 (a;, ̂ ) € Ao vanishes in a small neighborhood of

{(:c,0 : (x.^^F^y^),^^) € suppo;}.

Then

||^(a:,/l^)exp(-^/l-l^(/l))a/(a;,/l^)||-^^ = 0(/i°°)

for any a ^> 1, wiere the order relation is uniform in t when t ranges over
a compact interval in R1.

The above proposition corresponds to the famous Egorov theorem on
the propagation of singularities for hyperbolic equations. For a proof, see
[14] (Chap. IV).

3.1. We keep the same notations as in sections 1 and 2, and we write
again <^+ and (f>- for (j)^.(x,V2\0) and ^-(a^v^Ao;), respectively.

Assume that A € (d^2^,^^) is a non-trapping energy range and
that y € supp g-b C {y : lORo < \y\ < lORo + 1}. By the non-trapping
condition, there exists TQ^> 1 such that

{(rc,0 : a:=g(ro;2/,V^-),$=p(ro;2/,V^-)}cr+(30fio,d4,0)

with Va;<^- = Va;^-(i/,\/2Ac4;). Recall that ^+o(a;; h) is supported in
{x : 20RQ < \x\ < 20Ro + 1}. We now use the relation

./•r
R(\ +10; H(h)) = ih~1 / exp^/r1^) exp(-i/i-4fl'(/i))A

Jo
+ exp(^/l-l^A)J^(A + zO; H(h)) exp(-^/l-l^i:f(fa))

for T > 0. Then it follows from Proposition 3.1 and (iii) of Lemma 2.3
that

(fi(A +10; H(h)) exp(-^/l-l^oJf(/l))^-b exp(z/i-1^-), g+a exp(^-^+)) =
0(/i°°).

Thus we obtain
rTo

Go = ih~1 / exp(z/i-4A)F(A;0,a;,/i)A+0(/i00),
^o
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where

F = (exp(~^A--4JE^(/l))^-frexp(^/l-l^-),^+aexp(^A-l^+)).

3.2. We further analyze Go(0,^X,h). We recall the notations in
Introduction. Let {qoot',z,\),poo{t',z,\)} be the phase trajectory with
properties (0.3) and (0.5). Let wj = Wj(0;A) € A^,l <, j <, t, be as in
Theorem 1; $oo(^j; A) = ^- Define

Zj={zeA^ : \z- Wj\ <e}, 1 < j <, i,

for e > 0 small enough (and hence Zj H Zk = 0,^' 7^ fr), and

Vj = {y € supp g-b '' y= 9oo(5; w^, A), 5 < 0}.

Then there exist So and 5i,6i ^> 5o ̂  1, such that

Y, cn-^ = { y : 2/=goo(^,A),^€^,-5i <5<-5o}.

Let TT-^ € C§°(H-j),0 < Tr^j <, 1, be such that TT-J = 1 on Yj.

Recall that <f>- = <f>-(x,V2\^) solves the eikonal equation
(l/2)|Va;^-|2 +V(x) = A in S- = {a: : |a:| > RQ,< x,uj >< 0-0}
and Vx<t>- behaves like Va;<^_ = \/2Ac<; + 0(|a:|~1) as |a;| —> oo in S-.

Thus it follows from the Hamilton-Jacobi theory that Va;<^-(y, "\/2Aci;)
= poo (^; ̂  A) for y = (?oo (5; 2^, A) € S- and hence

(3.1) q(t', y , V^-) = q^(t + 5; 2:, A)

for y as above. Therefore, if y ^ n-j, then the classical particle
starting from y with momentum Va;0- = V^-^V^SiAo;) passes over
the support of g^.a with momentum different from Va;<^+ ~ V2X0. Thus,
by Proposition 3.1, we have

__ rTo
Go =ifa~1^ / exp(tfa~4A)F^(t;(9,^,A,/i)^+0(/i00),

,=i ̂

where

F-̂ - == (exp(-^/l-4Jf(/l))7^-^-bexp(^/l-l^),^+aexp(^/l-l^-^-)).

We further define

X ^ = { a ; € supp .̂a : x=q{t\y^s<t>-),y^Yj}'
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Then there exists Ti » l,Ti < To, such that

Xj C H+j = {x : x = g(t;2/,V^-),y € n-^Ti < * < To}.

Let TT-^- € Co^IL^O ^ TT^ ^ 1, be such that TT-^ = 1 on Xj. We again
use Proposition 3.1 to obtain

_ rTo
(3.2) Go =z/T1^ / exp(^-4A)^(^;(9,^,A,/i)^+0(/i00),

j=i^i

where
(3.3)

Fj = (exp(-^/l-4If(/l))7^-^_fcexp(^/l-l^_),7^+^+oexp(^/l-l^+)).

3.3. We now construct an approximate representation for
^j(t,x\h) = exp(-^/l~4ff(/l))7^-^-6exp(^/l~l^_),^l < t < To, with
x 6 n+^ with the aid of the Maslov theory ([12]).

LEMMA 3.2. — Tie point x = q(t\y, V^-) € IL^ with y € Tl-j is
non-focal in the Maslov sense;

D(t,y) = det (Qq(t',y,V^.)/9y) ^0, Ti < t < TQ.

Proof. — By (3.1), the determinant under consideration is written
as

(3.4) D{t, y) = D^{t + 5, z)Doo(5, z)-\

where

(3.5) ^ooM = det (Qq^z,X)/Q(s,z)).

By (0.3), 23oo(5, z) + 0 for 5, -5i < 5 < -5o. By (0.5),

goo(^ + 5; z, A) - V2\^(z', \)(t 4- 5) + roo(^; A)

as t —> oo. We may assume that t + s ^> 1. Hence -Do(^ +5,^) ~
(t + 5)n-l(2A)n/2?(^; A), a(z, A) being defined by (0.6). By assumption,
a(z', X) ^Ofoi z E Zj, This proves the lemma. D
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We now recall the representation (2.1) for g-.b' We can write g-b as

g^b(x; h) = ihgob{x) + h2gb{x', h),

where

(3.6) gob =< Va^-, Vxfr > b-o(x, V2\u)

and gb € C^(J^). Similarly

g^,a(x\ h) = ihgoa{x) + A2^^; A),

where

(3.7) ^oa =< V^+» VXa > 0+oOr, V^).

Lemma 3.2 enables us to construct an approximate representation for
^j(t,x', A), Ti < t <: To, in the asymptotic form

00

(3.8) exp^-^^^^-WTr/^p^^l'1/2^^^^^
A;=l

for x = q(t',y^x<t>~) e II+j with t/ e II-j, where Sj(t,y) is the action
along the trajectory joining the points x and y;

(3.9) ^(M^V^K />(b(T;y,V^-)|2/2-y(g(T;^/,V^-))dT
./o

and /Aj is the path index of the above trajectory, while i^jk is smooth in
t,Ti < ^ < To, and y € n+j, and

^i(^2/)=^-j(2/)po&(2/),

gob being defined by (3.6).

Remark. — We should note that the above path index p,j coincides
with the one defined for the trajectory {goo(^w^A),poo(^^?A)} in
Theorem 1.

We insert the above approximate representation into the integral (3.3)
and make a change of variables x —> y with x = q(t^y^x<f>-)- This is
possible by Lemma 3.2. For brevity, we consider only the leading term
Lj(t\ 6, a?, A, A), 1 <: j <: t, given by

Lj = A2 fexp(ih^^y) -i^l^M^y^D^y^dy,
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where
^=S,(t,y)-(l>^q(t,y^^^V2X0)

Mj = 7r-j(y)gob(y)7r+j(q(t; y, V^-))^oo(g(^ V, V^-)).

Thus the proof of Theorem 1 is reduced to the study on the asymptotic
behavior as h —> 0 of the integral Lj.

4. Stationary phase method.

In this section we complete the proof of Theorem 1. We apply the
stationary phase method to the integral

rTo
Nj(0,uj,\,h) = / e^(^h~~lt\)Lj(t,6^,\,h)(lt, 1 <. j ^ i,

JTz

and prove that

(4.1) Nj = C2(A, h) exp(z7r1^- - i^/2)a(wj', A)-^^! + 0(h))

with

C2(A,/i) = -(2A)-(n--3)/4(27^/l)(n-l)/2A2exp(^(n ~ l)(7r/4)).

(See Theorem 1 for the notation Sj.) This, together with (3.2) and (2.4),
yields the desired asymptotic formula for f(u} —> 0; A, A).

We make a change of variables y —^ (x,z) with y = qoo(s',z,\) €
Tl-j,z € Zj,-S\ < s < -So. Then, by (3.1) and (3.4), Nj is represented
as

fTo f—So
Nj = h2 / / exp(i'A~4A - ̂ 7r/2)Zy (t, s; 0, a;, A, A)d5cte,

JTi J-5i

where

j, = yexp^-^.^^^v.^^^lOoo^+^z)!^2!^^,^!1/2^

^ =^(t,^oo(5;^A))-<?!)4-(goo(<4-5;^A),\/2A0)

/;' = ̂ -J^oo^; Z, A))^o&(goo(5; 2;, A))7T+^(goo(^+5; 2^, A))^)a(9oo(^+5; ̂ , A)).
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We may assume fj to have support in Zj with respect to the z variables.

We apply the stationary phase method to study the asymptotic
behavior as h -> 0 of the integral Jy. As is easily seen from the proof of
Lemma 4.5 below, z = Wj is the only stationary point of $j(^,5,z),(^,5)
being fixed.

4.1. This subsection is devoted to the preliminary step for applying
the stationary phase method to the integral Ij.

We denote by {q+(t;x^),p^-(t',x^)} the solution to the Hamilton
system (0.2) with 9-4-(0; a;, ̂ ) = x and p-L(oo;rc,$) = limp-i-(t;rc,^) = $.

tfoo

If (a?,$) € r^.(RQ,do,—ao), then such a trajectory exists uniquely and
g+(t;a;,$) behaves like

lim |g+(t; x, 0-^-aoo(^,0|=0
I—+00

in the C'°°-topology, where

(4.2) aooM = x + /^(^(T;^) - Qdr.
./o

Since

(4.3) V^(<7+(^0,0 =P+(^,0,

we can represent 0+ = (f)^.(x^) as
(4.4)

<^+ =< aoo(a:,$U > - rdp+^^O^^-V^^^O) - \^/2)dr
Jo

for (a;,0 € r+(I?oi^o — ^o)- Similarly we have

(4.5) (l>-(y,V2\uj=2s\+ F (\p^z,\)\2/2-V(q^z,\))^\)dr
J—QO

for y = goo(5; z, A) € 11- ,̂ because

lim < q^(r 4- 5; 2;, A) - \/2Ara;, \/2Ao; >= 2sA.
r—»-—oo

LEMMA 4.1. — V^+(a;,$) = aoo(a?,$) in r-(-(J?o,^o,-^o)-

Proof. —Set A(a;,$) = (9/^)^+(a;,0,l < Jk < n. Then /fc
obeys the equation < Va;<^+,Va;/jk > —$fc = 0 with the condition
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fk (^?0 — ^k —> 0 as |:r| —> oo. We can solve this equation by making
use of relation (4.3) and the solution fk is represented in the form (4.2).
This proves the lemma. D

LEMMA 4.2. — Denote byA(rc,$),(a:,$) € r+(Jio,do» —^o)? thenxn
matrix A(x^) = ̂ ^(x^^/QxaQ^^a^n- Then

det A{x^) = exp( F ̂ M(q^x^)^)dr).
Jo

Proof. — By (4.3),

{d/dt)q^x^) = V^+(<?+(^,0,0

with g4.(0;:r,$) = x. Hence, by the Liouville theorem,

ft
det (9q^x^)/9x) = exp( / (A^+)(g+(T;a;,0,Odr).

^0

This, together with Lemma 4.1, proves the lemma by letting t —> oo. n

LEMMA 4.3. — Let Doo(s,z) be defined by (3.5). Then

D^z) = (2A)l/2exp( f (A^-)(goo(T;^,A),^/2Aa;)dT).
*/-00

Proof. — Since

(d/dt)q^(t',z,\) = V^-(goo(^^A),^/2A^)

and since goo(t; z, A) behaves like goo ~ V2\(^t + ? as t —^ —oo, the Liou-
ville theorem again proves the lemma, n

LEMMA 4.4. — Let gQa and gob be as defined by (3.7) and (3.6),
respectively. Then :

poo
(i) 9oa(x)=xoa(t,s)exp(2-1 / (A^+)(goo(T;w^,A),V^A0)dT)

Jt-\-s
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with x = q^(t + s; wj, X) € II+j, where

(4.6) xoa =< V^+(.r,^),V,Xo(a;) >, a; = <^(( + s;w,,A).

(") ffofr(y) = Xo»(a) exp(-2-1 / (A^_)(<^(r; Wj, A), V^hQdr)
J—00

with y = ̂ (5; Wj, A) € n_j, where

(4.7) xob =< V^-(2/,V^Ao;),V^fr(2/) >, y = goo (5; w,, A).

Proof, —(i) Recall that a+o = a+o(^,0 satisfies the transport
equation

< V^+(^0,V^a+o > +(l/2)(A^+)(rr,Oa+o = 0

with the condition a+o -^,M -^ oo, in F+(4^0,^2,-02). Hence the
solution a+o is written as

yoo
a+oM = exp(2-1 / (A^+)(g+(r;a^),OdT).

^0

For a; = q^(t + 5; w^, A), we have

(4-8) 9+(T;a;,v^A0)=goo(T+<+s;w^,A)

(4.9) p+(r; a;, v^^) = poo(T + 1 -h 5; w^, A).

Thus (4.8) proves (i).

(ii) (ii) is proved in a similar way. We omit the detailed proof.

4.2. We now calculate the determinant and signature of the (n -1) x
(n - 1) matrix Q^/Qz2 = (Q^/Qz^z^^., at the stationary
point z = Wj.

LEMMA 4.5. — At the stationary point z = wj :
(i) sgn(92^/^2) = n - 1.

(ii) |det (c^/c^2)! = (2A)(n-2)/2a(w,;A)J9oo(t+ s,w,)E^s),
where S^z; A) is defined by (0.6) and

JSo=det A(q^(t+s^Wj,\),V2\0)
/.oo

= exp( / (A^+)(goo(T;w,,A),v^A0)dr).
*/t+5
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Proof. — We first note that by Lemma 4.2 and (4.8), del A(x, V2XO)
with x = qoo(t + 5; Wj, A) is represented as above.

The Sj = Sj(t,qoo(s',z,\)),Sj being defined by (3.9), is the action
along the trajectory joining the points x = qoo(t + 5; z. A) and y =
goo (5;^, A). Therefore, by the Hamilton-Jacobi theory,

QSj/Qza =< poo{t + 5; z. A), <^oo(^ + ̂ ; z, X)/9za >, 1 < a < n - 1.

Since poo(t + s;-z,A) behaves like poo ~ ^/2A$oo(^;A) as t -^ oo, we can
write poo = poo(^ 4- 5; ̂ , A) as

Poo =P+(^oo(5;^A),v^oo(^;A)) = V^+(goo(^5;^A),^/2A$oo(^A)).

Thus, Q^j/Qza is represented as

<9^/<9^ =< V^+(^oo,V^A$oo^;A)) - V^+(^oo,^/2A0),^oo/^a >

with goo = 9oo(^ 4- s; z, A) and hence

Q^^/QzaQzo = ^/2A< A(qoo,V2\0)9^oo(wj',\)/9z^9qoo/9za >

at the stationary point z = Wj. We may assume that ^ 4- s ^> 1. Then
A(goo, "N/2A0) ~ Id(n x n identity matrix) and

<W^a ~ (2A)l/2(t+5)^oo(w,;A)/^.

This proves (i) at once.

To prove (ii), we use Lemma 4.1 to obtain

V^+(goo(^ + 5; W j , A), V2\e) = v^oo^-; A)(^ + s) + roo(^; A)

and hence
$00 (w,; A) = (2A)-1/2 tA(qoo,V2\e)9qoo/9s.

Since < $005^00 >= 1 and < ^oo,9^oo/9za >= 0, we can easily prove the
relation

[(1)5, 92^*/^2] =ts^;A) • tA(q^V2\e)'9qo./9^z),

where

S(^ A) = ((2A)-1/2^, (2A)l/2^oo/^l,..., (2A)l/2<9^/<9^-l).

Thus (U) follows immediately from the above relation, o
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LEMMA 4.6. — Let Sj, 1 < j < i, be as in Theorem L Then

^j(t,s,Wj)=Sj-t\.

Proof. — We recall the representation (3.9) for Sj{t,y).
We have q(r\y^^ (fa)z-) = q^(r + 5;w^,A) and p(r;2/,V^_) =

PooO- + 5;w^,A) for y = goo(5;Wj,A). Hence, by (4.5),
ft+S

Sj(t,y) = \(t +2s)+ (boo^w^A)!2^ - V(goo(T;w,,A)) - \)dr
J —00

for y as above. On the other hand, we have

aoo(a;, v^A(9) = v^A0(^ + 5) + ̂ (w^-; A)

for x = 9oo(t + 5;^, A). Hence, by (4.4), (4.8) and (4.9), ̂ (^v^) is
represented as

2\(t 4- 6)+ < roo(w^; A), V^A^ >

~ / (boo(T;w,,A)|2/2 - y(goo(T;w,,A)) ~ \)dr
Jt+s

for rr as above. The two expressions above prove the lemma, o

4.3. We now apply the stationary phase method to the integral
Ij = J^,s; 0,0;, A, A). Since -K-j(y} = 1 for y = goo(5;w^,A) € H-^
^d 7r-^ (a?) = 1 for x = goo(< + s;Wj,A) € n+^, we combine Lemmas 4.3
~ 4.6 to obtain that

Ij=C3(\,h)exp(ih-\Sj-t\))xob{s)xoa(t,s)(l-^0(h))
with

C3(A,fa) = (2A)-(n-3)/4(27^/l)(n-l)/2exp(^(n- l)(7r/4)),
where ^oo and ^o& are defined by (4.6) and (4.7), respectively. As is easily
seen,

Xoa(t,s) = Wdt))Ca(qoo(t+s;Wj,X))
Xob(s) = (d/ds)xb(qoo(s',Wj,\)).

Hence
rTo ^-So

/ / Xob(s)\Qa(t, s)dsdt = -1.
JTi J-Si

Thus we obtain (4.1) and the proof of Theorem 1 is now complete.
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5. Resolvent estimate at low energies.

In the previous sections, the semi-classical resolvent estimate (Lemma
2.2) has played an important role in proving the asymptotic formula (0.8).
In this section, we will prove such a resolvent estimate at low energies
which is also important in studying the asymptotic behavior of scattering
amplitudes in the low energy limit.

Consider the Schrodinger operator H = ~(1/2)A + V in J^ n > 3
where the potential V(x) is assumed, in addition to (V)p with 1 ̂  p < 2\
to satisfy the following conditions :

(V.O) V{x) is repulsive, V >_ 0;

(V.I) -W^r)y=-|rr|- l<a;,V^»CM^- lforH > R > 1.
The aim of this section is to prove the following

THEOREM 5.1. — Assume that the space dimension n > 3 and that
V(x) satisfies (V)p with 1 < p < 2, (V.O) and (V.I). Then

pi(A±zO;^)||,,_,=0(A-1), A-^0,
for any a > 1/2.

As stated in Introduction, we make a change of variables x -^ y =
A17^ and consider the Hamiltonian H),(h) defined by

(5.1) ^A (A) =-(1/2)^+1^

with h = A^,7 = 1 / p - 1/2 > 0, where V),(x) = A-^A-1/^).

As an application of Theorem 5.1, we obtain the following corollary
which corresponds to the semi-classical resolvent estimate (Lemma 2.2).

COROLLARY 5.2. — Assume the same assumptions as in Theorem
5.1 Then

\\R(1 ± zO; i^(A))lk-a = 0(A-2^) = O^-20/^)

with h = A7,7 = 1 / p - 1/2 > 0, for any a > 1/2.

Proof. — We may assume that a > 1/2 is close enough to 1/2. Let
u^x) = (R(l + iO^H^h))/)^) with / € L2,. Then u^x) can be repre-
sented as ̂ (a;) = (a(A+zO;ff)^)(A-1/^) wiihg^x) = A/(A1/^). Since
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< A1/^ ̂ ^ A-20^ < x ̂ ^ and < A-1/^ >2Q< A-20^ < a; >20,
it follows from Theorem 5.1 that \u\\-.a < ̂ A"207^/^. This proves the
corollary, o

5.1. Theorem 5.1 is proved through a series of elementary lemmas.
Throughout the discussion below, the assumptions in Theorem 5.1 are
assumed to be satisfied.

LEMMA 5.3. — Ifu € ^s/s and satisfies -(l/2)Aii -h Vu = 0 in the
distribution sense, then u = 0.

Proof. — The proof uses the assumption n > 3. Set ^(r) =
(1 4- r2)-1/2^ = \x\. Let (j) € C^GR^O ^ ^ <. 1, be a smooth cut-
off function such that </> = 1 for |a:| <, 1 and (j> = 0 for |a;| >, 2. We further
set ^R(x) = <^(a:/J%)^(r). We multiply the equation -(l/2)AiA + VIA = 0
by ^RU. Then, by partial integration,

/ 2~l^R\'Vu\2dx + A^^ - 4-lA^)H2d:c = 0.

Since V > 0 by assumption (V.O) and since A^ = 0(|a?|~3) as |a;| —> oo,
we can let R —> oo to obtain

I*2-l^|V^|2(fa+ /(^y^^A^H^^O.

By direct calculation,

A^ = (1 + r2)-5/2^ -- n)r2 - n) < 0.

Thus the lemma follows at once. o

LEMMA 5.4. — Let \R = ^(rc) be tie characteristic function of
BR = {x : \x\ < jR}, R > 1. TAen

||x^(A±^o;ar)||^o=o(l), A-^O,
fora=(l+p)/2.

Proof. — We consider the + case only. The proof is done
by contradiction. Deny the statement. Then there exist sequences
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{^}^n{^}^i,^ > 0, and {fj}^f, € L^, such that : (i) A, ^ Ao;
(ii) ̂  -^ 0; (iii) fj -> 0 strongly in L2,; (iv)

\XRUJ\Q = |x^(A^ +^;ff)^|o = 1.

By elliptic estimate, {uj}^ forms a precompact set in L2^). Thus we
may assume that Uj converges to some UQ.UQ + 0, with \XRUO\O = 1. We
further assume that the limit Ao = 0. If Ao + 0, then we can prove that
UQ = 0, following the argument used in proving the principle of limiting
absorption ([!]). This contradicts UQ + 0. In the case Ao = 0 also, we can
prove that UQ = 0.

Let {x^^Ka^n be a real C^smooth vector field of the form
X" = g(r)xa/r, r = |a;|, where g(r) has the following properties :
(g.l) g(r)/r > 0; (g.2) g\r) > 0; (g.3) g{r) = 1 - r^,0 < 6 < 1,
for r > R > 1. Since

\y = 9x^/9x0 = g'XaXff + (g/r)(6ap - x^\ Xa = Xa/r,

it follows from properties (g.l) ~ (g.3) that the n x n matrix Q(x) =
{x/^ }i^a,/3<n is positive definite and

(5.2) Q(x)>C6<x>-(l^>C6<x>-2a .

For notational brevity, we use the summation convention and write Ua =
(9/9xa)u and Uao = (92/9xa9xf3)u, etc.

We now multiply the equation

-(l/2)Ai^ + Vuj - (\j + i^)uj = fj

by x^Uja + 2-l^a)^. Then, by partial integration, we obtain the
following relation :

/{2-1 Re x^a^ - 2-lx^y^•|2 - ̂ x^u^dx

= Re (f^x^Uja + 2-l^a)^•) - ̂ Im (^„x(Q)^a).
Since

^\U^Q = |Im(/,,n,)| ̂  \fj\M.^

we have by elliptic estimate that the right side is estimated from above by

C\fjU\fj\a + |V^-(_^ + 1^-1-a).
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On the other hand, by making use of (V.I) and (5.2), we see that the left
side is estimated from below by

C{WL^)/2 + N2-. - \XRU,\I}.
Thus we obtain

(5.3) IV^-I2.^)^ 4-1^|2., < C(\f^ + \XRU,\D. •

Hence, {uj}^ forms a bounded set in L2.^ and uj —r UQ weakly in L2.^.
The limit UQ satisfies -(l/2)Ano + VUQ = 0. By Lemma 5.3, it follows
that UQ = 0. This contradicts UQ ^0 and the proof is complete, a

LEMMA 5.5. — Let a = (l+p)/2 be as above. Then : (i) ||VjR(A±
zO; H)\\^ = 0(1) for any a > 1/2 . (ii) \\R(\ ± i0; H)\\^ = 0(1).

Proof. — The lemma is an immediate consequence of Lemma 5.4
and (5.3). o

5.2. Proof of theorem 5.1. —Let u±\ = R(\ ± iO',H)f with / e
L^, a = (l+p)/2. We know that u^x € L2.^ for any a > 1/2. We multiply
the equation -(l/2)An±^ + Vu^ - AIA±A = / by ^u^,^ =< x >~2a.
Then we have by partial integration that

jt2-l^u^\2dx+ [^V-4-l^)\u^\2dx= Re (/ 4- A^,^±A).

By Lemma 5.5, |Vn±A|-a + \u±\\-a < C\f\a for any a > 1/2 and hence
Alt^l2^ ^ C'l/1^ This proves that \\R(\ ±iO',H)\\^ = 0(A-1/2) and
also \\R(\ ±iO\H)\\a,-a = 0(A~1/2). The theorem is proved by repeating
the above argument for / e £^, a > 1/2. D

6. Asymptotics at low energies.

In this section we study the asymptotic behavior of scattering
amplitudes in the low energy limit. Consider the Schrodinger operator
H = -(1/2)A + V in R^n > 3, where the potential V(x) is assumed
to satisfy (V)p with 1 < p < 2. Let iT^/O be defined by (5.1) with



ASYMPTOTIC BEHAVIOR OF SCATTERING AMPLITUDES 187

h = A7,7 = l/p-1/2 > 0. Denote by /^(o; -» 0; H) and f^{u ̂  6\ H\{h))
the scattering amplitudes with energy /A > 0 for the Hamiltonians H and
H\(h), respectively. As stated in Introduction, f\(uj —> 0',H) is related to
/i (uj -^ 6\ H\(h)) through relation (0.11);

A^ -. 0;if) = A-^-^/i^ -. 0;^(fa)).

Thus the problem is reduced to the study on the asymptotic behavior as
h —» 0 of f^(uj —> Q\ H\{h)) with fixed energy fi = 1.

6.1. We require many assumptions to formulate the obtained result
precisely. Roughly speaking, the asymptotics as X —^ 0 of f\ (a; —^ 0\ H) is
determined by the asymptotic behavior as |a;| —> oo of V(x) in the case of
slowly decreasing potentials. We consider the following class of potentials
with homogeneous property at infinity.

Assumption (A). — (A.O) V(x) satisfies (V)p with 1 < p < 2.

(A.I) V (x) is repulsive; V > 0.

(A.2) There exists $ € C'00^71"1), ̂  > 0 (strictly), such that

1^(W - WI^DM-^) = od^-^l), H < 2, as \x\ ̂  oo.

We fix again the initial direction uj € -S '̂"1 as u = (0,...,0,1)
and use the notation A^ with the meaning ascribed in Introduction.
Define Vo(x) by Vo(x) = ^(^/IrrDIa;!'^ with $ as in (A.2) and denote
by {gooo(*; z),pQoo{t\ z)}, z € A^, the phase trajectory satisfying (0.3) with
energy A = 1, which is defined as a solution to the Hamilton system (0.2)
with V = Vb. Similarly we denote by {q\oo(t'^),p\oo(t',z)} the phase
trajectory associated with the potential V\ = A^V^A^^a;). In general,
VQ (x) has a singularity at the origin and also V\{x)\x=o —^ oo as A —> 0.
However, in the repulsion case which we consider here, classical particles
never pass over a neighborhood of the origin (classically forbidden region).

Assumption (B). — \qooo(t', z}\ —^ oo as t —^ oo for z € A^.

It follows from (A.2) that as A -> 0

(6.1) ^y^)=^yo(^)+o(i)M^H, |a|^2,
uniformly in a:, \x\ > c > 0. Hence, under assumption (B), we can easily
prove that \q\oo(t^)\ — ^ o o a s ^ - ^ o o f o r A , 0 < A < l . Assumption
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(B) also enables us to define the angular densities a(z;Vo) and a(z',V\)
by (0.6) with energy A = 1 for the trajectories {qooo(t',z),po^(t;z)} and
{Q\oo(t',z),p\oo(t',z)}, respectively. For final direction 0 € S'71"1, we make
the following assumption.

Assumption (C). — ?(z; Vo) 7^ 0 for all z e Ao, such that

\im\po^z)-V20\ =0.
tfoo

LEMMA 6.1. — a{z\ V\) -> <7(^; Vo) as A -^ 0 uniformly in z.

We further proceed with the argument, accepting the above lemma as
proved. Under assumption (C), it follows from Lemma 6.1 that there exists
only a finite number of Vj = Vj(0', A) € A^/, 1 <, j <, £, i being independent
of A,0 < A < 1, such that lim \p\oo(t',Vj) - V20\ = 0.

tfoo

6.2. We are now in a position to formulate the second main theorem.

THEOREM 2. — Assume that the space dimension n > 3 and that
(A),(B) and (C) are satisfied. Let the notations be as above. Then the
scattering amplitude f\{u} —^ 6\ H) obeys the following asymptotic formula
as A -> 0 ;

h{u - 0;ff) = A^71-1)/2^^;^)-1/2
j=l

exp(i\~^Sj - ̂ 7r/2)(l + 0(A7))

with 7 = 1 / p —1/2 > 0, where /Aj is the path index of the phase trajectory
{Q\oo(t'^j),P\oo(^Vj)} with Vj = Vj(0',\) as above and

Sj= I {\Px^(t^j)\2/2-V(q^Vj))-l}dt-<r^(v^V20>
J-oo

with rxoo{vj) = lim(gAoo(^) - V20t).
t\00

Remarks. — (i) The path index /ij is independent of A,0 < A <: 1.
(ii) The quantity Sj can be described in terms of the phase trajectory
associated with the original Hamiltonian H = —(1/2)A + V. Let
{^oo^^^Poo^^^)} be the phase trajectory defined as the solution
with property (0.3) to the Hamilton system(0.2). Then a simple calculation
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yields that

9x^t;z) = A^UA-^+V^A-^.A)
Px^t; z) = \-l^p^\-(l/f+l/2)t•, A-1/^, A).

Thus we have

A-^5, = / {boo^A)!2^ - V(q^(t;Uj,\)) - \}dt- <
J —00

roo(^-;A), V2X0 > with Uj = A-^u^A).

Proof. — As stated above, in the case of repulsion, any new difficulty
does not occur from the fact that V),(x)\x=o -^ oo as A -^ 0. The proof
is done by applying to f^u -^ 0;ff^(A)) the same arguments as used to
prove the semi-classical asymptotic formula (0.8). In particular, the resol-
vent estimate (Corollary 5.2) enables us to follow the same arguments as
in sections 2 and 3. We omit the detailed proof. D

6.3. Proof of Lemma 6.1. —Let &oo(^) = limpooo(^)A/2 and
tfoo

^Aoo(^) = l[mp\oo(t,z)/V2. To prove the lemma, it suffices to show that
t|00

(6.2) |<9?(^oo^) - W^))l -^ 0, H ^ 1, as X ̂  0,

uniformly in z € A^.

In the proof, we denote by e{\) a quantity of order o(l) as A -^ 0.
Assume z to be fixed. By (6.1), we can easily prove that

\q\oo(t', z) - gooo(*; z}\ + \P\oo(t\ z) - Pooo(^; z)\ < ̂ r(A)

for t, -oo < t < T, T » 1 being fixed arbitrarily. Define the mapping Q
from C'([T, oo); R") into itself by

(Qq)W = ^oo(T; z) + pAoo(T; z)(t - T) - f t\^^x)q{r))drds.
JT JT

Then the q\oo{t^z),t > T, is obtained as the fixed point of the mapping
Q. We now introduce the norm | • |oo in (7(^,00);^) by |g|oo =
^PorM"1!^)! ̂ d define the subset DT as

^={geC'([r,oo);.R71) : |g-gooo(-;^|oo<e(A)}

with e(A) to be determined below. IfTis large enough, then we can choose
e(\) in such a way that Q : DT —> DT is a contraction mapping. Thus
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we have

|^oo(t; z) - gooo^; z)\ < e(X)(l + |^|).

Since

^Aoo^) -$0oo(^)) = r {(V^o)(<70oo(T^)) - (V,yA)(9Aoo(T;^))}dT,
J—oo

this, together with (6.1), proves (6.2) with |a| = 0. A similar argument
applies to the case |a| = 1 and also it is easy to see that the convergence
is uniform in z. This proves the lemma. D

6.4. We end the section by making a brief comment on the results
related to Theorem 2. For brevity, we confine ourselves to the case n = 3.
Many works have been done on the asymptotic behavior of scattering
amplitudes at low energies. See, for example, [3], [4] and references quoted
there. Roughly speaking, in the case of rapidly decreasing potentials (V =
0(\x\~p)^p > 2), the behavior is determined by the Born approximation
and it strongly depends on the fact whether the Hamiltonian H under
consideration has a zero energy resonance and bound state or not. In the
case of repulsion we consider here, H does not have zero energy resonances
and bound states. On the; other hand, little attention has been paid to the
case of slowly decreasing potentials. In [II], Kvitsinskii has dealt with the
special case V(x) = ala:)^,! < p < 2, including the case of attraction,
a < 0. Our theorem may be considered as a slight generalization to the
case without spherical symmetry, although the restrictive smoothness and
repulsion conditions are assumed. In the case of attraction, we have to take
into account not only the possibility of zero energy resonances and bound
states but also the fact that classical particles pass over a neighborhood
of the origin, where A~ly(A~l/pa;) -> oo as A -^ 0. These facts produce
additional difficulties. Furthermore, it is reported in [11] that the backward
scattering amplitude f\(uj —^ —ci;;ff) has the different type of singularity
at zero energy; f\ ^ A'^,/3 = (6 - p)/4p, for V = ala;]"^, a < 0, with
1 < p < 2 (Glory effect, [20]). In our terminology, this implies that the
final direction —a; is not regular. Thus it will be interestirig to extend
Theorem 2 to a wide class of potentials without spherical symmetry.
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