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THEORY OF BESSEL POTENTIALS. PART I (*?)
by N. ARONSZAJN and K. T. SMITH

INTRODUCTION

The present paper is the second 1n a series, the purpose of
which is to give a basis for a treatment of differential eigen-
value and boundary value problems.

In the first paper [1], a general theory of functional spaces
and functional completion was developed. Now, this general
theory is applied to special spaces which are most important
for the study of differential problems, especially of elliptic
type.

Many results of this paper were announced several years
ago and the paper was then referred to as « Theory of Poten-
tials ». It was decided that the original title was misleading
since we treat only potentials corresponding to special types
of kernels and not those corresponding to more or less arbi-
trary kernels as has been done for instance in [7 a], [13 a],
and [13 c].

Originally, the authors used the Riesz potentials of order a,
i.e. potentials corresponding to kernels

(1) Re)= %

in n-dimensional Euclidean space R"
Despite the fact that many elegant and important results

> < a<n,

(*) Paper written under contract Nonr 58 304 with Office of Naval Research.
(2) Part II to appear in the next volume of this journal.
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386 N. ARONSZAJN AND K. T. SMITH

were obtained for these potentials by Riesz, Frostman, Cartan,
and others, their application to differential problems was
sometimes awkward. The reason for this was the limitation
on the order, « << n, whereas for differential problems we
need potentials of arbitrarily high order. We were thus led
to consider potentials based on the kernels

2)  Gaft) = ey Ka_a(alla] *
2 3 11:"’2F<%> :

where K,_, is the modified Bessel function of third kind. It

2
therefore seems appropriate to call the corresponding potentials

« Bessel potentials of order a ».

The kernels (2) which are defined for all @ > 0 have the same
basic properties as Riesz kernels, i.e. positiveness, compo-
sition theorem, etc., and in addition they converge to zero
exponentially at infinity. This makes for much greater ease
in the development of the theory. For a << n, R, represents
the principal part of G, at the origin with the result that the
corresponding Riesz and Bessel potentials form the same
classes of functions in every bounded portion of the space.
The classes of potentials P* which form the main object of
research in this paper are exactly the Bessel potentials of
order a of L? functions. The potentials of L? functions would
be of interest in themselves (in the case of Riesz potentials
they were considered by B. Fuglede [11 a]), but they do not
enter into the framework of our applications to differential
problems which are based on Hilbert space or « quadratic »
methods (3).

The first part of the paper (Chapters I and II presented
here) gives the theory of potentials of order a in the whole
space R" The second part will deal with these classes in
subdomains of R" and also on differentiable and Riemannian
manifolds.

The contents and main results of Chapters I and II can be
summarized as follows.

(3) This means they are based on the use of quadratic norms in functional spaces,
or more generally, vector spaces; by some authors they are referred to as « L2
methods ».
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In Chapter I we recall the main results of the theory of
functional spaces and functional completion [1] and add a few
results not given before.

In the first section of Chapter II we consider functions
ueCy and define the Dirichlet integral of order «, d,(u) for
arbitrary « = 0. This 1s done at first by using Fourier trans-
forms (as in [8] and [1]), after which a direct form for d,(u)
is given in terms of derivatives of u of orders < «. In [1]
we showed that for a < %, C7, with norm \/d,(u), has a perfect
functional completion which coincides with the Riesz poten-
n
2 I
Cy with this norm has no functional completion. We then
consider the norm |uf, = ||ulfis + du(u), and the norm |[ul|,
(equivalent to |ul,) which is first expressed by Fourier trans-
forms and then directly in terms of derivatives of w.

In Section 2 we show that C7, with the norm |u|,, has a
functional completion for all « relative to the class U, of excep-
tional sets of Lebesgue measure 0. We study the basic pro-
perties of all (imperfect) functional completions of this space
relative to a class of exceptional sets contained in ,. This
space has a perfect functional completion (shownin § 5 to be P*).

In order to study the properties of the perfect completion P?,
it was found convenient to replace |u|, in C7 by the equivalent
norm ||ul|,, and this last norm is maintained in the remainder
of the chapter.

In Sections 3 and 4 the basic properties of the Bessel func-
tions K, are collected, and the resulting properties of the
kernel G, are given.

In Section b, as was mentioned above, we prove that P*
is the perfect functional completion of C7 with norm ||ull.,
and the basic properties of P* and of its class of exceptional
sets Ay, () are given in so far as they are obtainable from the
general theory of functional completion. For a > n/2; P¢
1s a proper functional Hilbert space (its reproducing kernel
is Gyo(z —y)).

In Section 6 we define and investigate the capacities of

tials of order a of L? functions. We show now that for « >

(4) This is in accordance with established notation: for @ << n/2, the sets in %3,
are the sets of outer eapacity 0 of order 2a in the sense of Frostman.
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order 2z in a manner similar to that used by Frostman [11]
and Cartan [6] in their study of Riesz potentials. The outer
capacity Y., of order 2, thus defined, coincides with the capa-
city ¢, = c} as defined for P* by the general theory of functional
completion. It is worthwhile noticing that the logarithmic
capacity y,, which for Riesz potentials requires special treat-
ment with definitions and proofs somewhat changed, does not
present any exceptional character for our potentials.
Sections 7 and 8 contain the most important results from the
point of view of applications to differential problems. In
Section 7, Theorem I gives differentiability and continuity
properties of functions weP* which allow |[|u]|} and d,(u)
to be defined by the same direct formulas which were
used in Section 1 for functions in C7. In conjunction with
Theorem I, Theorem I1I gives necessary and sufficient conditions
for a function w to belong to P*. Remarks 2 and 3 which
follow Theorem II weaken these conditions quite considerably.
The theorems in Section 8 concern the restriction of a func-
tion ueP* in R" to a subspace R*CR". Theorems 1 a and
1 b show, essentially, that for a function u’ defined on R to

be a restriction of a function u € P* (R"), it is necessary and
n—k

sufficient that w’ e P°~ * (R*). Theorem 1cgives a basis for
what we call the compensation method which 1s very useful
in the study of elliptic differential problems. In Chapter IV
(which is to appear shortly in Part II of this paper) these
theorems, are extended to restrictions to submanifolds of R

Section 9 treats functions u defined in an open set D CR®
which are locally in P#; the class of these functions is denoted
by P%(D). These classes form a first step to the introduction
of the classes P* on a Riemannian manifold.

In Section 10, we study the relations between L¢ and P*
classes. We depart from our general restriction and consider
Bessel potentials of L? functions (the proofs do not differ from
those in the case p = 2). We obtain the following theorem :
if ¢ = p = 1 and one of the two conditions holds :

1 1 o . . 1 o
1o —>——— with p>1 and — — — £ 0;
g p n P p n 2
ol l % Githp=1o L%y

q p n p n
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then fe L?implies G,f« L?.  For Riesz potentials, by Soboleff’s
theorem we can consider only the case when condition 1 is satis

fied and then we have R,f € L71n general only for 11 =

P n

In Section 11 — the last section — we compare our classes P*
with the corresponding classes of Riesz potentials, B-L classes,
W™ and H™ classes. These classes, introduced by different
authors, have similarities either in definition or purpose to
our P* classes.

Before finishing the Introduction we mention the recent
papers of L. Slobodetzky [14a] [14 b] where expressions
similar to our direct formulars for d,(u) are introduced and
applied.

We should also mention that many of the results of the
present paper and of its second part were referred to and applied
in several papers by the authors, in particular in [0], [15 a],
and [2]. In these references, however, we were considering
the corresponding results for Riesz potentials.
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CHAPTER 1

SUMMARY OF THE GENERAL THEORY
OF FUNCTIONAL COMPLETION

This Chapter contains a short summary of the definitions
and results from the general theory of functional completion
which are needed in the rest of the paper. It is taken from [1]
but it also contains a few minor observations which are
not included in [1]. For simplicity, only complex spaces
are considered. The changes which must be made in the real
case are quite trivial.

§ 1. — Functional spaces and functional completion.

An exceptional class on a set & is a hereditary and s-additive
class of subsets of &, that is, a class ¥ of subsets of & with
the two properties: (a) If ACB and Be, then Ae¥; (b)
if each member of a sequence of sets belongs to ¥, then the
union belongs to A. Henceforth ¥ denotes an exceptional
class on a set &.

A property of points of & is said to hold except ¥ (to be
written exc. ) if the set where it fails to hold belongs to .
If u and ¢ are complex valued functions defined on § — A
and & — B, respectively, and « is a complex number, then
u + ¢ denotes the function defined on § — (AUB) by point-
wise addition and au denotes the function defined on & — A
by pointwise multiplication. It is obvious that if » and ¢
are defined exc. A, then u 4 ¢ and au are defined exc. ¥.

A linear functional class relative to U (rel. A) is a class &
of complex valued functions defined on & exc. % such that
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if u and ¢ belong to F and « i1s a complex number, then u + ¢
and au belong to #. U is the exceptional class for F. The
saturated extension of ¥ is the class of all functions deﬁned
on & exc. A which are equal exc. Y to some function in F, and
J 1s saturated if 1t 1s 1dentical with 1ts saturated extension.

A normed functional class F rel % is a linear functional
class & rel A on which there is defined a norm ||u|| =0 with
the properties: 1° ||u|| = 0 if and only if u(z) =0 exc. A;

20 [|eu| = |a[|u]| for any complex «; 3° [[u]| < [ju— ¢[| + [|¢l] (*)
From 3° and 1° it follows: 4° if u(z) = ¢(z) exc. A then
[lul] =|]¢||]. The saturated extension of a normed functional

class rel ¥ is also a normed functional class rel. Y (when the
norm is extended in the obvious way).

If in a functional class F we introduce the equivalence rela-
tion f~ f' <= f(z) = f'(z) exc. ¥, the set of equivalence classes
obviously forms a vector space V. If F is normed, V becomes
a normed space (since f~ f implies ||f|| ={|f’]]). In this case
we transfer without further explanation all the notions usual
in a normed vector space to the class #. For instance:
fo— f (f. converges to fin norm); {f,} is a Cauchy sequence;
a subset of F is dense in F; F 1s complete or separable, etc.

A functional space rel % is a normed functional class rel %
in which there is the following relation between the norm and
the values of the functions:

1.1. THE FUNCTIONAL SPACE PROPERTY. — FEvery sequence
which converges (in norm) to 0 contains a subsequence which
converges to 0 pointwise exc. .

The saturated extension of a functional space rel. Y is also

a functional space rel. .

A functional completion of a normed functional class ¥
rel. A is a functional space F rel. % such that:

(@) ADA. 3

(b) Each function ueJ belongs to # and has the same

norm in both classes. 3
(c) F 1s dense (in norm) in .

(d) F is complete.
(5) The usual form of Minkowski’s inequality, |ju + ¢|| < ||u|| + ||#||, is not ade-

quate here since in general F is not a vector space : (v + v) — ¢ is not identical with
u (u may have a smaller exceptional set than (u 4 ¢) —¢).
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We say that & is a functional completion of 7 rel. 9. The
saturated extension of a functional completion of a normed
functional class is also a functional completion of the given
normed functional class. Since it i1s technically convenient
to work with saturated completions, and it involves no loss
in generality ,it will be assumed that all functional completions
are saturated.

A functional completion is perfect if its exceptional class
is contained in the exceptional class of every functional
completion.

The main problems in the theory of functional spaces and
functional completion are: (1) to determine when a normed
functional class 1s a functional space; (i1) to determine when
a normed functional class has a functional completion; (i) to
determine when a normed functional class has a perfect func-
tional completion (°); (iv) to describe the exceptional class
for the perfect completion.

It is easy to see that if a normed functional class has a func-
tional completion relative to one exceptional class, then usually
it also has a functional completion relative to infinitely
many others. In this connection, however, the following
result holds, and is easily proved.

1) Relative to a given exceptional class there is at most one
(saturated) functional space which is a functional completion
of a given normed functional class. In particular, the perfect
completion, when there is one, is uniquely determined.

It is clear that the properties of a normed functional class
which have been defined so far remain the same if the norm
on the class is replaced by an equivalent norm. In parti-

cular, if there exists a functional completion rel. 9[ with respect
to one of two equivalent norms, then there exists a functional

completion rel. % with respect to the other, and the two com-
pletions are composed of the same functions. A converse
of this also holds.

2) If a linear functional class F rel. A s a complete func-
tional space with respect to two norms, then the two norms are
equivalent. More generally.

(%) It is not known whether the existence of some functional completion implies
the existence of a perfect functional completion.
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3) If F s a complete functional space rel. U, and if F¥CF
is a complete functional space rel. A with respect to a norm,
||lull’y then there ts a constant c such that for all u e & ||u|| < d||u]|.

Prorr. — The identity mapping from ' into ¥ is a closed
mapping. In fact, if u, >u in F and u,— ¢ in F then by
the functional space property some subsequence {u,} con-
verges pointwise exc. ¥ to both v and . Hence u = ¢ exc. .
By using the closed graph theorem we obtain the statement.

§ 2. — The set functions § and $ and capacities.

In this section we describe certain functions and classes
of sets which lead toward solutions, partial or complete, to
the problems listed in section 1. The classes provide explicit
bounds for the exceptional class of a perfect completion; in
every example where a perfect completion has been found,
its exceptional class coincides with the bounds given. Throu-
ghout the section, A is a fixed exceptional class and F is a
fixed normed functional class rel. %; ¥ is an exceptional
class containing .

The class € is the class of all sets BC 8 for which there is
a function u e F satisfying |u(z)] =1 on B exc. Y. For each
B €&, §(B) is the infimum of ||u|| over all such w.

The class & is the class of all sets BC§& for which there is
a Cauchy sequence {u,} in F satisfying lim inf|u,(z) =1
on B exc. %. For each Be?q, g(B) is the infimum of lim ||u,||
over all such Cauchy sequences.

_ Remark. — If F is a complete functional space, then clearly
¢ =24
If ¢ and & are the classes of null sets of & and §, respecti-

vely, then obviously Y c . Conversely, there is the
following result.

1) If § is a functional space rel. %, then ADL,. If F has
a functional completion rel. ¥, then AD L, ().

Upper bounds for the exceptional class of a perfect comple-
tion are provided by additional set functions called capacities.

(") 0 is the class of countable unions of sets in £°.
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An admissible capacity for a normed functional class F is a
set function ¢ on the hereditary o-ring €, with the following
properties.

(@) ¢ is an outer measure on &, (*).

(b) For each B e ¥, ¢(B) is finite.

(c) To eache >0 corresponds ann < 0 such that if §(B) <,
then ¢(B) <.

Each real valued, non-decreasing function ¢(t), defined for

t > 0 and satisfying ¢(0) = lim ¢(t) = 0 and ¢(t) > 0 for ¢t >0,
t>0

determines an admissible capacity ¢, as follows: For each

Be®,
= inf ) ¢[3(B

where the infimum is taken over all sequences {B,} in € such

that BC U B,. The most important of the admissible capa-

n=1

cities are the capacities ¢, determined by the functions
o(t) =t*, a > 0.

We use especially ¢, and c,.

In the following propositions ¢ is an admissible capacity
for ¥ and YU, is its class of null sets.

2) Every Cauchy sequence in J contains a subsequence which,
for each € >0, converges uniformly outside some set of capa-
city < e.

3) LA

4) F is a functional space rel. A, if and only if ||u|| = 0 whe-
never u(z) =0 exc. .. F has a functional completion rel. A
if and only if |[u.||—>0 whenever fu,} ts a Cauchy sequence
which converges pointwise to 0 exc. ¥..

5) If F is a functional space rel. ¥ or if F has a functional
completion rel. U, then the same is true rel. YNY..
6) If cy and ¢, are the ¢ capacities formed for 5 and § where
F is a functional completwn of F rel. ?[C%Ic , then ¢, = c,.
Proposmons 1) and 5) give.

() Measurability with respect to ¢ plays no role in this theory.
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7) If 7 has a perfect functional completion, then its exceptional
class 9 satisfies A Y.,

In every example where a perfect functional completion
has been found, it has turned out that in fact @ = A,
Conversely, if € = ., holds, then if there is any functional
completion, there is a perfect functional completion, and its
exceptional class is €% = A,

§ 3. Majoration properties.

The object of the section is to describe three majoration
properties and a few of the results that can be derived for
normed functional classes that possess them. All of the func-
tional spaces which are commonly used in differential problems
do possess at least the weakest of the three. The majoration
properties are as follows.

POSITIVE MAJORATION PROPERTY. — 1 he set & can be written

as &= U &, and constants M, can be chosen in such a way that
n=1

for every function wueJ and every n there exists a function

u, € F satisfying

[|lud| < M, |lu|| and Re u;(z) = |u(z)| for z <8, exc. A.

GLOBAL MAJORATION PROPERTY. — There is a constant M
such that for every function u e F there exists a function u' e F
satisfying

[l@]] < M [|u]| and Re u'(z) = |u(z)| exc. A.

STRONG MAJORATION PROPERTY. — For every function ue F
there exists a function u' €JF satisfying

WI<IWl and  Rew(a)=|u(a)| exc. %.

In so far as the general theory of functional completion is
concerned, the main interest in the majoration properties
lies in the next proposition.

1) Let F have the positive majoration property. Then
2 = Ac,, and the following statements are equivalent.
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(a) F has a functional completion.

(b) F has a perfect functional completion, and the exceptional
class for the perfect completion is & = ..

(c) ||us] = O whenever {u,} is a Cauchy sequence which
conyerges pointwise to 0 exc. U,

It is not difficult to see that if F has the global majoration

property, then B e @ if and only if ¢,(B) < «, and if Be @
then S(B)gcl(B);%S(B).

2) If § has the strong majoration property, then § = c,;
if 7 is also complete, then § = & = ¢,.

3) If F has the strong majoration property and is reflexive,
then the infimum in the definition of ¢ is attained. Moreover,
if B is the union of an increasing sequence {B,}, then

¢ (B) = lim ¢,(B,).

Proor. — Let I's denote the closed convex set of all ued
satisfying Re u(z) =1 on B exc. Y. From the strong majo-
ration property it follows immediately that &(B) is the distance
from the origin to I's, and in a reflexibe space this distance
is attained.

Since a reflexive space is complete, it follows from 2) that
8 = ¢;. Therefore, in order to prove the second part of the
proposition, it is sufficient to show that if lim §(B,) << o
then §(B) < lim §(B,). For each n, let u,eI's, be such that

[lui| = é(B,). Then, since lim [|u,)| << o, there is a subse-
quence {u,,} which converges weakly to some u € #. For every
i >k, u, <l . Therefore, since I's, is closed and convex,

uels,, and, since this holds for every k, uels = nFBnk‘
Hence =t
$(B) < |jul] < lim |u, || = Lim &(B,).

The main interest in the strong majoration property, howe-
ver, comes from its application in another connection, namely,
in the theory of pseudo-reproducing kernels and in the theory
of balayage and classical type capacities. It has been shown
in [2] that if ¥ 1s a real functional Hilbert space with a pseudo-
reproducing kernel, then the kernel is non-negative if and
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only if F has the strong majoration property. It will not
be necessary to make use of this result in the later chapters,
since the kernels are given by explicit formulas from which
their properties can be derived. Nevertheless, the result
underlies many of the developments. In particular, it is
the need for the strong majoration property and positive
pseudo-reproducing kernels which is responsible for the choice
of the norm ||u||, in Chapter II.

In many questions a change from one norm, |Ju||, to an
equivalent one, |ju||’, is immaterial. The classes ¢, &, ¥,
and @ are unchanged; & and § are replaced by &’ and &,
¢, and ¢, by ¢, and ¢;, where
Y ¢ a c

) ) - s

by ° Cy Cy

all lie between two positive constants. Admissible capacities
remain admissible capacities. The validity of the positive
and global majoration properties is unchanged. However,
the validity of the strong majoration property is dependent
on the particular norm used, and the need for this property
can impose a particular norm, even one which is more compli-
cated than some equivalent norms.

§ 4. — Propre functional spaces.

A proper normed functional class i1s a normed functional
class rel. {0}; a proper functional space is a functional space
rel. §0}.

The complete functional spaces occuring in analysis arise
most often as functional completions of proper normed func-
tional classes. This does not mean, however, that the com-
plete spaces are proper functional spaces, for in the process
of completion it usually happens that some sets become excep-
tional. This cannot happen if the original proper normed
functional class i1s a proper functional space.

1) A proper normed functional class F is a proper functional
space if and only if for each x € & there is a constant M,, such that
for every function ued, |u(z)] < M, |4l
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It can be shown that if # is a proper functional space, then
a({z}) 5 0, provided there is at least one function in F which
does not vanish at . More precisely, if @, denotes the set-
function which takes the value 1 on every set containing z
and the value 0 on every set not containing z, then for each
set Be ¥, p(B) < M,¢,(B). The main result on functional
completion of proper functional spaces is obtained easily
from this fact and the results of the precedings section. Also
it can be obtained directly.

2) A proper functional space F has a functional completion
if and only if |ju,| — O whenever {u,} is a Cauchy sequence
which converges to O at each point. If a proper functional space
has a functional completion, then it has a proper functional
completion.

§ 5. — Restrictions to a subset of &.

Let F be a normed functional class rel. 9, and let D be a
subset of & which does not belong to . Let A(D) denote
the class of all subsets of D which belong to ¥. If ued,
let u' denote the restriction of u to D. Each function v’ is
then defined on D exc. A(D), and the class F(D) of all v’ is
a linear functional class on D rel. A(D). There is a natural
norm on ¥(D) given by

[|w|lo = inf |¢f],

the infimum being taken over all veF for which ¢ = '
exc. A(D). In general, F(D) is not a normed functional class
rel. A(D). However,

1) If  is a functional space rel. A then F(D) is a functional
space rel. A(D). Moreover, the set functions &', &', and cp
corresponding to ¥(D) are the restrictions to D of ¢, ¢, and c,.
If ¢ is any admissible capacity for F then the restriction of ¢

to D s an admissible capacity for F(D). If F is complete, so
is F(D).

Proor. — If u' = 0 exc. A(D), then u’ = 0" exc. A(D), so
that ||u/|lb < ||0]] = 0. On the other hand, if [|u'|lp =0.
then there is a sequence {¢,} in F such that ¢, = u’ exc.
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A(D) and such that ||v,]| > 0. By choosing a subsequence
if necessary, it can be assumed that ¢, — 0 pointwise exc. .
This obviously requires that v’ = 0 exc. (D). Hence F(D)
is a normed functional class rel. A(D). A similar argument
shows that %(D) is a functional space rel. %(D).

It is evident that &’ is the restriction of ¢ to D, and also
that if ACD then ¢'(A) < &(A). On the other hand, if ACD
and §'(A) < d, then there exists a Cauchy sequence {u',} in
(D) satisfying

lim inf |uz(z)| = 1 on A exc. (D) and lim ||u;|[p < d.

By picking a subsequence if necessary, it can be assumed

that

||uwillo + Z [|unt1— tal|p < d.

Functions ¢, in F exist such that o] = u; exc. (D) and
Vnt1 = Unt1 — Uy exc. A(D) and E o] <d. Uw,= Z ks
n=1 k=1

then clearly w, = u, exc. (D). Therefore,
lim inf |w,(z)|=1 on A exc. Y

and in addition {w,} is a Cauchy sequence such that

Lim [|or,]| < Y [loal] < d.
Hence §(A) < d.

The assertions about capacities are immediate consequences
of the fact that &’ is the restriction of & to D.

Finally, if F is complete, the argument above shows that
F(D) is complete. Indeed, the sequence {w,} converges to
some w € &, and, therefore, the sequence {u,} = {w;} conver-

ges to w' e (D).



CHAPTER II

SPACES OF POTENTIALS

§ 1. — Definition and elementary properties
of the Dirichlet integral.

In this section the Dirichlet integral over the Euclidean
space R", do(u) = dy me(u), of arbitrary order « >0, 1s defined
and expressed in terms of the function u and its derivatives.
The following notation is used: if ¢ = (35, ..., i,) where i,

is an integer between 1 and n, then [i|=m, ¥ _l—[E,k
when § = (&, ..., &,), and

"u _"u
0T;, ... b.z,;m (bx)"

Y

Diu =

If « is an integer, the Dirichlet integral of order « is com-
monly defined by the formula

(1, 1) do(u) = da, no(u) = 2 JIDup da.

lij=
If % is the Fourier transform of u, that is. if

i(E) = (2r)~" [ =i Du(g) da,
then d,(u) 1s expressed in terms of @& by the formula
1,2) do(u) = [ EP(E) dE.

Formula (1,2) can be used to define d,(u) for arbitrary
26
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a > 0. However, it is convenient to have an expression for

d.(u) which, like (1, 1) involves u and its derivatives, but not

the Fourier transform. This will make it possible (in Chapter

III) to define the Dirichlet integral of order a not only for

functions on the whole space R”, but also for functions on

an open set D < R* and it will simplify a number of proofs.
If 0 < a < 1, then by Parseval’s formula we have

ffl —?+%dedy ff‘ z) —ufa)f dzdz

z|n+2a
—fl szji?—}aﬁd dE=fF(E)|ar=ds.

It is easy to see that F(§) is homogeneous of degree 2a
and is invariant under orthogonal transformations. Hence

F() = C(n, «)|&)?*, where if z = (7, z,),
a) =f_J_i":_1|’__ dz’ dz,

n+2a

(= + z) *
=f ""—1["dzf dw’

|z 2q +1 p— n+3a
| SRR
— 93-2a,, “_’f sin® r s r o f _Ji____

T n+2a P
2

The last two integrals and w,_, (the area of the unit sphere
in R*™') can be evaluated in terms of the Gamma function
to give

n+42

2—m+1ﬂ—:—

(1,3)  C(n, “)=p(a N 1)I‘<a _}_%)sin'n:a.

Thus
1 lu(x) u(y)[? ;
1,4) dy(u) = f W dedy if 0<a<i.
.. _ . 1
It is important to notice that for a \(0 or a 71, Cm, o)

converges to 0 like « or 1 — a respectively. In general,
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if for arbitrary « > 0, «* denotes the largest integer strictly
less than «, then (°)

do(u) = 2 leiuI2 dz if @ is an integer;
|

il=a

(1,5) dolw) =g ¥, [P DuE 4, g
jif=ar

C(n, « — o) |z — y|"rem

otherwise.

It is obvious from the expression (1, 2) of d,(u) by Fourier
transforms that for every function u such that u and |[§]|*i
are square integrable, d,(u) is continuous in « in the range
0 a<a (). If U is an orthogonal transformation on
R" and ¢(z) = u(Uz), then clearly ¢(§) = @(U%), so that by
(1, 2) dy(v) = dy(u). In other words d,(u) 1s independent of
the (orthogonal) coordinates which are used in R™

1) The Dirichlet integral d,(u) is continuous -in « and inde-
pendent of the (orthogonal) coordinates which are used in R™.

In the classical potential theory of Frostman and Riesz,

which 1s valid for 0 < a < 2 it is shown that the functions

2
on R" which are representable as potentials
(1,6) u(@) = [ |z —yI*~"e(y) dy,

where g is square integrable, form with the norm \/d, a com-
plete functional space relative to the exceptional class composed
of the sets of (outer) capacity 0 of order 2a. (See [1].) This
complete space is the perfect functional completion of the
space Cg(R"). Itis a space with a positive pseudo-reproducing
kernel, namely the Riesz kernel

L7 mm—m=3§i§

Spaces with positive pseudo-reproducing kernels are the
natural setting for the classical type theory of capacity. With

|z —yl**~"

(®) In formula (1, 5) the notation «* is needed only when a is not an integer;
it will be needed later, however, for all a.

(%) Itis not obvious from (1, 5) that d.(u) is continuous at a = integer; the corres-
ponding result for domains 74 R", which will be considered in chapter 111, is deeper.
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this particular space there are associated two kinds of capa-
cities, the classical capacity of order 2a and the capacities
defined in Chapter I for arbitrary functional spaces. It is
proved in [1] that the classical capacity of order 2« is identical

. . . 2 . .
with the functional space capacity ¢,. For @ = — the situation
n

1s quite different: the potentials in (1, 6) cannot be formed
for all square integrable g, since [z|*~" is not square integrable
at oo; the pseudo-reproducing kernel in (1, 7) is not usable;

and, as we shall now show, the space Cg(R") normed by \/d,
is not a functional space.

2) If « 21’2— the space C3(R") normed by \/d, is not a func-

tional space relative to any exceptional class.

Proor. —Let u be a function in C3(R") whichisidentically 1
on a neighborhood of 0. If ug)(z) = u<—:i>, then

() = p"a(pE) and do(u) = p"**da(u).

Thus, if > %, then as p—>o0, dy(u)) — 0, while, for each z,

u(x) — 1. This shows that the space in question cannot be
a functional space (for the whole R* would have te be an

exceptional set). If a=~g—, choose ¢ so that 0 < e <« and

let v € C5(R"). Then, if d,(u,¢) i1s the bilinear form corres-
ponding to the quadratic form d,(u) we have

da(up, ¥) = [ |E[2ti (8)F(E) dE = [ [E]* iy (5) [E]*—<5(E)
o0 =] < o e[,

so, by what has been proved, d,(u), ¥) = 0. Since this holds
for each ¢ € C7(R") and since d.(ug)) is bounded, it follows
that u¢) — 0 weakly in the Hilbert space which is the abstract
completion of C7(R*) with the norm \/d,. Therefore, by a
well known theorem there is a sequence p, — o such that
the arithmetic means of the sequence {ug,} converge strongly
to 0. The sequence of arithmetic means converges pointwise
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to 1 everywhere, so, as before, the space cannot be a functional
space.

This suggests the problem of defining an a-norm with the
following properties : (a) On the subspace of C7(R") of functions
vanishing outside any fixed compact set the a-norm is equi-
valent to \/d,. (b) The space C3(R") normed by the a-norm
is a functional space which has a perfect functional comple-
tion. (c¢) The completion has a positive pseudo- reproducing
kernel. (d) The classical type capac1ty for this kernel coin-
cides with the functional space capacity c,.

One of the simplest norms on C3(R") for which (a) and (b)
are true 1s the norm

(1,8)  |uh = do(w) + da(u) = [ (1 4 [5E=)]a(%) P

In the next section we prove the existence of a functional
completion relative to the class of sets of Lebesgue measure 0
and derive some properties of the completion relative to any
smaller exceptional class. Later we shall replace |u|, by the
equivalent norm

(1,9) lully = [ (4 + [ER)5aE) pa

for which all the properties (a) — (d) hold.

There is a direct expression for ||ul|, in terms of the function
u and its derivatives, similar to the expression for d,.

Suppose first that 0 << a <1, and consider

2

e uly)

[l ~y12 z
If we put x — y =z, and write z for the point (z, z) € R**'
and £ for (1, E) then

I =

dz dy dz,.

n

Rr

—o0

r iiz.,2

’(Z ) —e R ~

I_ RrRr+1J RR "+1+2a l (E)IszdZ
et ol E)—i -

o an;n-H‘ "+i+2°' Il ‘2dZd

= nHL———f:IL?:za (5)F di dE=C(n-+1, ) [(L+[EPyHaE) | &,
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by the formulas which were used to express d,. Therefore
we can write

(1, 10) [l = f |ul? da;
for 0 < a <1,
Me=cmrrs) L)) UL dudydzy;
[l —yl’ 4]

if m is the greatest integer < a,

ol = 35( % ) Do
The last formula in (1, 10) is obtained from the expressions
of the various norms by Fourier transforms.
Another formula will be given later (formula (4, 9)) which
does not use an extra integration.

§2. — Functional completion with respect to |ul,.

In this section we investigate the normed functional class
F, obtained by giving the class C7(R") the a-norm |u|,. Using
the results quoted in Chapter I we show that &, has a functional
completion relative to the class of exceptional sets of Lebesgue
measure 0, and we establish some properties of the completion
relative to any smaller exceptional class.

It 1s obvious that the class € of sets B on which some func-
tion in %, is =1 is the class of all bounded subsets of R*
and, therefore, that the class €, is the class of all subsets of R"
Consequently, an admissible capacity for &, 1s an outer measure
¢ on R” such that

(a) Each bounded set has finite (outer) measure.
(2.1) {(b) To each ¢ >0 corresponds an v >0 such that if
Be® and ¢(B) < v, then ¢(B) < «.

If ¢ denotes the (outer) Lebesgue measure on R" then
obviously (a) is satisfied, and since |ul, = ||u|l. it follows that
for each bounded set B, ¢(B) < ¢(B)2. Hence (b) is also satis-

fied, and the Lebesgue measure is an admissible capacity

for %,.
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1) 9, has a functional completion relative to the exceptional
class of sets of Lebesgue measure 0 (1).

Proor. — It has been shown that the Lebesgue measure
is an admissible capacity for &,. Therefore, by virtue of
proposition 4, § 2, Chapter 1, it is sufficient to prove that if
fu,} is a Cauchy sequence in &, which converges pointwise
to 0 almost everywhere, then [u,l; 0. Since |uls = ||ulls,
the sequence {u,} is a Cauchy sequence in L2, and so by the
usual Lebesgue theory, ||u,||.. — 0. Therefore the sequence
{4,} of Fourier transforms is Cauchy in the L? space formed
with the measure (1 4 |£[*)dE, and converges to 0 in the ordi-
nary L2 space. It follows from the usual Lebesgue theory
that {&,} converges to O in the L? space formed with the mea-
sure (1 + |EP*)dE, that is, that |u,|, — 0.

In the rest of the section %, will denote any saturated func-

tional completion of J, relative to an exceptional class 9y,
which is contained in the class of sets of Lebesgue measure 0 (12).

2) If uega, then u e L2, and |ulf; =f(1 + [Ep*)a(E) [ d8.

Proor. — If u e, then there is a Cauchy sequence {u,}
in F, which converges pointwise to u exc. ¥,,, hence almost
everywhere. It follows that weL?. The sequence {i,} of
Fourier transforms is Cauchy in the L? space formed with the
measure (1 + [Ef*)d and converges to @ in the ordinary L2
space. It follows that {#,} converges to & in the L? space

formed with the measure (1 + [§f*)d. Thus,
ol [ (1 + [ER)(E)? dE.

At the same time, by definition |u|, =

CoroLrARrY. — If two functions in %, are equal almost every-
where, then they are equal exc. N,,.

Proor. — By 2) their difference has norm 0.

(1) It is easy to see that if a = 0 the class of sets of Lebesgue measure 0 is the
exceptional class for the perfect completion of F.; the perfect functional completion
of &, is simply L3.

(%) The notation 5. is chosen to agree with the notation which will be used later.
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3) If B is a set of finite measure, then on the subspace of %,
of functions which vanish outside B exc. Uy, the norms |ul, and
Vd, are equivalent. In fact, there is a constant ¢ such that if
u vanishes outside B exc. W,y then

do(u) < c|BP¥"dy(u).
Proor. — If u vanishes outside B, then for every &
2,2) [a(2)2 < (27)~"[Blda(w)
Hence, for every r > 0,

do(u) < (2%)~"|B|dy (u) & + fm m%‘i—alﬁ(ﬁ)lzdﬁ

EIS" 1
< 2 (2%)7"B|ridy (u) + Ed“(u)’

n iin
and so, for r<< 2m <m> R

u n(2x)" .
do(u) = r**[n(2%)" — w,|B|r"] da(t)-

The inequality in the proposition is obtained by minimizing
the coefficient of d,(u).

) If B<a and B is a set of finite measure, then |ulg is
completely continuous on the subspace of %, of functions which
panish outside B exc. Usq.

Proor. — (The 1dea of this proof is due to Garding.) It
will be shown that if u, vanishes outside B and the sequence
fu,} converges weakly to 0 in F,, then |usls = 0. For every

r>1
2,3) < 1+ 526 )2 dE g
2,3) s [ (4 ) 12O ot g )

Since a weakly convergent sequence 1s necessarily bounded,
for every positive number ¢ a positive number r can be chosen
large enough so that the second term on the right side of
(2, 3) 1s less than € for all n. For fixed r the first term on the
right side of (2, 3) converges to 0, for the functions &,(§)
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converge pointwise to 0 () and by (2, 2) they are uniformly
bounded. Thus if u, vanishes outside B and {u,} converges
weakly to 0 in J,, then |u,|g — 0.

A function 1s said to be of class C™" on an open set if the
function is of class C™ on the open set and every derivative
of order < m is Lipschitzian (). If u 1s a function of class
G on R”, then the integrals in (1, 5) are defined, and they
are obviously finite if u has compact support (**).

In the proof of the next two propositions and in several
later proofs we will need the well known process of regulari-
zation. A family of regularizing functions is a family

es(x) = p™" e<—:i> for  0<px1,

where e 1s a non-negative function in Cy(R") satisfying
ex) =0 for |z|=1 and fe(:v) dz = 1.

If u is a locally integrable function, the functions

u(r) = uxe (x fu e(x —y) dy

are called the functions obtalned from u by regularization, or,
more briefly the regularizations of u. A few of the standard
properties of the family {u.{ are as follows:

(a) Each u, is of class C”.

(b) uy(x) — u(z) almost everywhere.

(c) If u belongs to L? (or locally to 17) then so do the u,
and u, — u in L? (or locally in L?).

(d) If uels, 1<p< 2, then u,eL? and 4, = (2r)"/2ie

Other propertles of u, w1ll be stated when they are needed

5) If u is square integrable and |ul, is finite (), then u is

(*3) In fact, @,(£) is the inner product in L2 of u, with (2x)="/2¢~= % times the
characteristic function of B, and weak convergence in J, implies weak convergence
in L? (which has a smaller norm).

() By this it is meant that there is a constant M such that if [{| < m then

|Diu(z) — Diu(y)| < Mlz — y|
for all z and y in the open set.

(*8) If « is not an integer this is self-evident; if « is an integer it follows from the
classical theorem that the partial derivatives of a Lipschitz function exist a.e. and
are bounded.

(*6) If it is known only that u is square integrable then the expression of |u|. by
Fourier transforms must be used here, but if it is known that the necessary deriva-
tives of u exist, then either expression of |u|. can be used.
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equal almost everywhere to a function in J,; if, in addition, u
s continuous, then ue%,.

6) There is a constant ¢ (depending only on «* and n) such
that if ¢ is of class C*™" on R” and satisfies |Dg(z)| < M a.e.
for |i| < o* + 1 and if ue9, then

(2, 4) oued, and |pul < cMul.

Proors. — First we show that if ¢ is of class C*"" on R™
and if u is of class C* and |ul, is finite, then the inequality
(2, 4) holds. For this the direct expression (1, 5) of |u|,
1s used.

Since each derivative Di(¢u) is a sum of products D;gD,u
with |j| + |k| =i|, if « is an integer, then, by (1, 5), d.(¢u)
is majorated by a constant (depending only on a) times a sum
of terms of the form

f| D;¢Djupdz < M2d,, (u) where  |j| + k| = a.

It 1s obvious from (1,8) that if B < a then dg(u) < |uf.
Hence (2, 4) 1s proved if a is an integer. If « is not an integer,
then by (1, 5) d.(¢u) is majorated by a constant (depending
only on «*) times a sum of terms of the form

([ BB
C(n, a — a¥) y[rrieTie

S2MPd k0 on(u)+ 2 ﬂ ID"ulw y)Dip(@)—Dyg(y)[ dzdy,

C(n,a—a*) y]"*"“_"’"

where |j| + |k| = «*. The first term on the right has already
been considered, and for the inner integral in the second we
have

D¢ (x) —Dg(y |Dg(y +2) —Dig (y)?
dz

|x |n+’a—!a‘ |zln+2a——2a‘

SM*[ |z|"'"°‘”“’*’dz+4M“f |z["rteriat dz < ¢ M.
_ l2I<1 lzI21 x—a

Hence the second term on the right above is at most
cM2d,, (u), and the inequality (2, 4) is established for ¢ of class.
Ce"" and u of class C* with |u|, finite.

Next we show that if u is of class C* and |u|, is finite, then

ueF,. Let o be a function in C7(R") which is 1 on a neigh-.
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borhood of 0, and for p >0 put cp(o)(x) = o(pz). If
IDip(z)| <M for |{| < o + 1, then |D,<p(c) )< M for
|i| < «* 4+ 1, so by what has been proved, as p — 0, [9c)u|q
is bounded. Consequently there is a sequence p, — 0 such
that the arithmetic means of the sequence {p,, u} converge
in %,, and since the arithmetic means obviously converge
pointwise everywhere to u, it follows that u e J,.

Now we prove 5) by regularization. We note first that for
regularizing functions e, &.(§) = é(pk), and since

@)= (2m)=™  and  &(0) = (2m)~"",
it follows that as p — 0 the functions
U (8) = (2m)"¢,(8) 4(%)
are uniformly bounded by |@(f)| and converge pointwise to
4 (§).
Therefore, since |ul, 1s ﬁnlte, |ugla 1s finite, and, as p — 0,

|u — uglo = 0. Since u, is of class C*, it follows from What
has been shown that u, «%,. Thus, as p -0 {u,} is Cauchy

in J,, so there exists a function ¢ € %, and a sequence p;, —> 0
such that u,, — ¢ pointwise almost everywhere. Therefore
u = ¢ almost everywhere. Moreover, if u is continuous, then
u.x —> u everywhere, so that u = ¢ exc. 9,, and hence u e %,.
This completes the proof of 5).

The proof of 6) is completed as follows. Proposition 5)
shows that each function of class C*"" with compact support
belongs to .. Therefore, the transformation Tu = gu trans-
forms &, into %,, and by the first paragraph in the proof this
transformation is continuous. If T denotes its extension to
J, by continuity, then for each ue$, there is a sequence
{u,} in 9, such that u, — u both in ¥, and pointwise exc. U,
and such that Tu, — Tu both in %, and pomtmse exc. Nsq.
Since Tu, = gu, and since gu, — ¢u pointwise wherever u

is defined, a fortiori exc. s, it follows that Tu = gu. This
completes the proof of 6).

CororrLary 1. — If u is locally in 3, and |u|, is finite, then
ue,
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Proor. — To say that u is locally in §, means that each
point in R" has a neighborhood on which u coincides with
a function in J,. If this is the case, then by using 6) we can
choose for each point a function ¢ in Cy(R") such that ¢ =1
on a neighborhood of the point and such that gue %, Now,
by 5) u is equal almost everywhere to some function ¢ & %,.
Hence gu = ¢v almost everywhere, and by the corollary to

proposition 2, gu = ¢y exc. Wse. It follows that u =y
exc. Ay, SO that ued,.

CoroLLARrY 2. — If ¢ is bounded and of class C*"" on R®
and ¢ = 1 on a neighborhood of 0, and if ¢¢)(x) = 9(px), then,

as p—>0, pu —>u in F, for every ued,.

Proor. — By (6) the transformations T,u = gu of %,
into itself are uniformly bounded. Therefore, it is sufficient
to show that T,u — u for all u in some dense subset of F,.
It is obvious that this is the case for ue&,.

7) Let u be a square integrable function and let m be an integer
< a. Then u is equal almost everywhere to a function in 9,
if and only if for each j with |j| = m there is a function v; e Fom
such that Dju = ¢, in the sense of distributions.

Proor. — To say that Dju = ¢; in the sense of distributions
means that for every function ¢ e C3(R")

[uDgda = (— 1)/ [vzda.

Suppose first that ue%,, and let {u,} be a sequence in
Cy(R") which converges to u in #,. From the obvious rela-
tion

da(v) =|'|2 dun(Dpp)
Jjl=m
it follows that the sequence {Du,} is Cauchy in %,_,, and
hence that there exists vjefia_,,, such that Du, —¢; in
Fom If g eCo(R"), then

(s Dy )us =lim(ty, Dyp)us = Limn(—1)"(Du, ) = (— )" (8 9

and the first part of the statement i1s proved.
Following a general theorem about temperate distributions
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and their Fourier transforms [14, vol. 2], if Dju = ¢, and both
u and ¢; are square integrable, then "% ... §; 4 = ¢, (V).
Hence, if ;e J,_, then

[lEpapde =3 [ |Epetn|6pdE < oo.
By 5), u is equal a.e. to a function in %,.

Propositions 1)-7) describe most of the properties of the
functional completion of F, which subsist for an arbitrary
completion J, whose exceptional class is contained in the class
of sets of Lebesgue measure 0. The finer properties which are
developed in later sections are properties of the perfect com-
pletion. Therefore, we shall close this section with a few
remarks of introduction for the next.

We have stated at the beginning of this chapter that &,
has a perfect functional completion and that if the norm |ul,
is replaced by the equivalent norm

llulls = [ (14 [ER)[a(E)p d

then the perfect completion is a space with a positive pseudo-
reproducing kernel; this kernel will be denoted by G,,. It
will be shown that every function u in the perfect completion
can be represented as a potential

(2,5)  u(z) = Gag(@) = [ Galz —y) g(y)dy

of a square integrable function g, and that the following rela-
tion holds:

(2, 6) ke = llglhe = [ 1g d

If (2, 5) and (2, 6) are accepted for the present, we can deduce
an expression for the kernel G,.

Since the potential G,g defined in (2,5) is a product of
composition, if follows (provided G, is integrable) that

(Gag)" (§) = (2m)" Ga(8)3(E).
If (2, 6) is to hold, then
S+ [Py 2m)GaB)8(8) 1 e = [ 18(E)I" dE

(¥) This simple case of the general theorem can be proved directly without much
trouble.
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for every square integrable function g. Our condition is
therefore satisfied by

A

(2,7) Go(8) = (2m)7"" (1 + [E[*)~*"

This gives the expression for the Fourier transform of G,.
However, if @ > n, (1 + [§|*)~** is integrable, and (2, 7) can
be inverted to give

@b

(2.8) Gale) = %) [ - epyes

There 1s a well known formula expressing the Fourier trans-
form of a function f(§) which is a function of |§| alone as a
single integral involving the Bessel function J, (**):

29 fw)=lal* [ fe)e" Iuoslelel)de.
Formulas (2, 8) and (2, 9) give

dz.

2—n o0 2

Gule) = (2m) el * [ o T Glalde

From this we obtain for & > n (*).

(2,10) Gala) = ot K,_.(a)lal * » ()

(3

where K,(z) is the modified Bessel function of the third kind.
It will be shown that if G,(z) is defined by (2, 10) for all « >0,
then G, 1s integrable and its Fourier transform is given by
(2, 7), and, 1n fact, that G, has all the properties that have
been attributed to it. In the next section some pertinent for-
mulas and properties of the Bessel function K, are listed.

§3. — Formulas and properties of K,.

Most of the results listed in this section can be found both
in [10] and in [16], and all can be found in one or the other.
(*8) See, for example, S. Bocaner [3].

(**) Formula 20, p. 24 of [9].
(*) L. ScawarTtz [14] introduced functions Lq(|z|) related to G«(z) by the equa-

tion Ge(z) = L¢<% ) (27)n.
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The modified Bessel function of the third kind, K,, is defined

in terms of the more common Bessel functions by

_ * L,z —L(z)
(3,1) K, = 2 sinvy T
where I(z) = e_limJy(iz),

and J, is the Bessel function of the first kind of order v.
The above formula for K, for v an integer should be under-

stood as a limit K, = lim K, ,e.
€>0

The functions K, and I, are defined for complex values
of v and z, but we shall be concerned only with real values of
v and positive real values of z. The function I, (the modified
Bessel function of the first kind) has the series expansion

L e
3,2) L= (72

mm! v+ m+1)

from which it follows that K,(z) is an analytic function of
z except at z = 0, and for z 0, K,(z) is an entire function
of v. Obviously

(3, 3) K_(z) = Ky(2).
From (3, 2) it follows immediately that
(3,4) Ky (z) ~2T(v)z="(®) as z—>0, for v>0,

Ky (z) ~ log 1/2 as z—>0.
It is known that
1/2

3,5 K(2) ~<2EZ-> o as 7> forally.

The following integral formula holds.
< \ 12 )
—T) 2e”" 1 v—y

3,6) K(z) =_2—>_1— f et =<1+%¢> dt
P<V + 7) 0

for >0, v>———;—~

(%) As usual, we write f(z) ~ g(z) as z—gq iflim ) 1.
:>a §(z
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We shall also need the differentiation formula

(3,7) <—1— ;l‘i>m (7K, (2)] = (— 1)z ="K, 1 n(2).

zZ az

We mention also the differential equation of second order
satisfied by K, (which can be deduced easily from (3, 7)
and (3, 3))

~K, (2 )-I— (2v+1) d

(3, 8) @(z z d(

J(2) — 2K, (z) = 0.

§ 4. — Formulas and properties of G,.

The kernel G, is defined for « > 0 by

(1) Gafz)= ! K,_.(2la] *

2 ? - =2 <%> :

Most of the necessary formulas and properties of G, are almost
immediate consequences of the corresponding formulas and
properties of K, ,. They are listed in this section.

The kernel G,(z) is an analytic function of |z| except at
z = 0, and for z == 0, G,(x) 1s an entire function of «. From

(3, 4) we obtain

(4,2) Asz—0 G.(z) ~
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and from (3,5) we obtain
1 a—n—1
n+a—1 n—i1 o lxl ? e
()
Clearly G, 1s a function of |z| alone; it will sometimes be

convenient to write Gu(r) for G,(z) with |z] = r. With this
notation (3,7) gives

d

(4, 3) aslz] >0, Gylz)~

-1z
.

. 1 a—n

(4a 4) _Gm(r) = Tava—2 r’ Kn—a+2(r)-
dr 9 2 "/2]:‘ i 2
T 5 >
Hence for « > 1, there is a constant ¢ such that
G,
(4 5) ) < e[Gule) + Gom(a))

Formula (3, 6) shows that all K,, and therefore all G,, are
everywhere positive; (4, 4) then shows that G, is a decreasing
function of |z|. Formulas (4, 2) and (4, 3) show that G, is
integrable.

Since G, 1s integrable, the Fourier transform G,(§) exists
for each &; as a function of a it is analytic for o > 0.
Therefore, from (2, 7) we obtain by analytic continua-
tion

(4,6) Gu®) = (2m)™ (L4 [E)*" for a>0.
A simple consequence is
(4, 6') [ Gu(@) dz = (2m)"G(0) = 1.

From (4,6) it is evident that the following composition
formula holds.

(4,7)  Guatp(2) = Ga» Gg() = [ Guly)Gglz — y) dy.

We give now a mean value theorem similar to the Frostman
mean value theorem for the kernel |z|*—".
1) For each ry > 0 there is a constant c¢ (depending only
27
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on ro, @, and n) such that for every point z, every sphere S(z, r)
with r < ry, and every function g > 0,

@ Sl S, Cla— ) < Gz —a)
O S, G S Cugla),
(@  limr— [ Gagly) dy = Gagla).

r>0 iS(.’D, r)| 8z, r)

We use here the notation G,g introduced in (2,5). When
g =0, G,g(z) will be considered as defined everywhere possi-
bly with the value 4 oo.

Proor. — Parts (b) and (c) are obvious consequences of
part (a), and part (a) i1s an obvious consequence of the special
case in which z= 0. This special case can be formulated as
follows : if f, denotes |S(0, r)|~ times the characteristic func-

tion of S(0, r), then for every z
(5,8  frGu@)<cCofa) for r<re.

From the composition formula (4, 7) it is seen that (4, 8) has
only to be proved for small values of «, in particular, for
a < n. To simplify the notation we shall suppose r, = 1.

By using (4, 2) and the fact that |z|*~" and G,(z) are both
positive we obtain the existence of positive constants ¢; and
¢, such that

a|z* " < Go(z) Z elz*—™  for  |z|< 3.

Hence (4, 8) holds for |z| << 2 (with r, = 1) if and only if it
holds when G,(z) is replaced by |z[*~". That it does hold
in this case is the assertion of the Frostman mean value theo-
rem (22). For || =2 we have, since G,(z) is a decreasing
function of |z|,

fer Ga(2) 0 Galp —1)
Gula) =P~ Galp)

(22) O. FrostmMan [11]. In the Frostman theorem the constant ¢ is independent
of r,. From the exponential decrease of Gq(p) as s — 0, it is easy to see that such
is not the case here.



THEORY OF BESSEL POTENTIALS 419

The supremum on the right side is finite, since G, is continuous
and positive and since, by (4, 3),

lim&g);i) — e
P> Ga(P)

Cororrary. — If §e,} is a family of regulanzmg functions,
there is a constant ¢ such that for every point x and every function

g=0

(@) Gaxeg(z) < cGo(2)
(b) (Gag)* ey(a) < cGag(e)
() lplﬂ(Gag) * eo(z) = Gog().

Proor. — Part (a) follows from (4, 8), since
[z
e(x) =p" e<?>§ cf (z).
The other parts follow from (a).

With the aid of the kernels G, we can give the other direct

expression of ||ull, for 0 < a << 1 promised earlier. From
(1, 10) we obtain

um%%m(y+mm]

2

+cos 5 zo[u() u(y)]

ully = mHaj &f T drdy d,

l ——yl’-l—zﬁ] ’
*sin® 5%
dxdydz
n__l__i d f fnf n+1-+2a 07
[l —yl'+z]
) —u(y)l*cos* 2.7
dzdydz,.
n_|_1 a f fn . n+l2+2a 0
U le—yl*+ 1]

Integration with respect to z, yields the kernel G,,,,,, for
the space R. By using (4, 1) this kernel can be transformed
into the kernel G,,, ., for the space R*. Making these trans-
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formations and using the formula (1, 3) for C(n + 1, &) we
get :

(4,9) |Jule=2""""T(n+ «['(1+a)
[Slnﬂ“f Iu(x) + u(y)lz G2n+2a(0)—G2n+2a($_y) dxdy

T |z —y|"*
sin TTa _ 2 G2n+ 2a(0) 4 G2n+2a(x—‘y)
+ 5 [ ule) —uty) e =W dgay |
Remark. — It 1s easily seen that the first term in the square

brackets is equivalent to the L? norm of u, the second to d,(u).
Another interesting formula for ||u|l,, 0 << a <1, is the fol-
lowing

(4’ 10) ”uHi — w

=

The Dirichlet integral d, is taken with respect to . Beside
the formulas used above, we apply here the composition for-
mula G,,, =G, a*G,.

We give now an important formula connecting G,(z — y)
with the Laplace operator A. It will be convenient in this
connection to extend the definition of G, to all real «, by
formula (4, 1). This gives for all even integers « < 0 a func-
tion G, identically 0.

(4,11) For fized y and z -y,
(1—4)Ga(z—y) = Ga-s(z—y).

[ 4G ol —y)u(z)) dy.

To prove it, we use y as origin and apply the elementary
formula for Af where f depends only on r =jz—y|:

sy =Er0)+ =04 g
We get therefore
(1—8)Gula—y) = Galr) — 2=V L () — L)

Comparing with (4, 1) and (3, 8) we transform the right-hand
2_“%Gu(r) and by (3, 7) and (4, 1) we see that
it is = Gg_,(z—1y).

side into
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As corollary we have for all positive integers m
(6,10)  (L—A)Co(o—y) = Gamam(o—y).

The function G,(x —y) 1s a fundamental solution for the
operator (1 — A)™ (more will be said about this in section 7).

§ 5. — The perfect functionnal completion of F,.

It will be shown that the normed functional class J, has
a perfect functional completion. For « > 0, the exceptional
class for the perfect completion is the class of sets on which
a potential G,g of a square integrable function g can be unde-
fined; the functions in the saturated perfect completion are
those which are equal except on an exceptional set to such a
potential.

For a > 0, let A,, denote the class of all sets A such that
for some square integrable function g > 0,

(5, 1) ACE [Gag(2) = + ],

and let P* denote the class of all functions u, defined exc. A,,,
such that for some square integrable function g,

(5, 2) u(z) = Gug(z) exc. Asq.

Since the kernel G, 1s integrable, it follows from a standard
theorem on products of composition that for every square
integrable function g, G,g is defined and finite almost every-
where and 1s square integrable. In particular, every set in
Ay, has Lebesgue measure 0. Furthermore, the Fourier
transform of G,g 1s

(5,3) (Gug)"(B) = (20)™ Ga(®)8(E) = (1 4 [EF)~"4(5),
which shows that (®).

(5, 4) Gaglle = llgle o  gelL2

Formula (5, 4) shows that if ge L® then the following condi-
tions are equivalent: (@) g = 0 almost everywhere; (b) G,g
is identically 0; (¢) Gqg = 0 exc. Wze; (d) Geg = 0 almost
everywhere; (e) [|Gqgll. =0. Indeed, it is obvious that each

(23) We use here the expression (1, 9) for ||u||a.
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condition implies the one following, and by (5, 4), (¢) implies (a).
Henceforth, P* will denote the normed class in which the
norm is ||ul|s.

1) Ay, ts an exceptional class. P* is a complete functional
space relative to W,,.

Proor. — In order to prove that ., is an exceptional class
it must be proved that ,, is hereditary (that is, that if A € %,
and BC A, then B € ¥,,) and s-additive. The first is obvious.

To see the second, if A, e ¥,,, let g, be a function = 0 in L2
such that

A,CE[Gugafa) = + @] and  [lglhe<27
Then, if

A =nL=J‘A,, and g =;gn,

clearly gis a function > 0 in L? such that (5, 1) holds, so A € ,,.

From the equivalence of (a) — (e) above it follows that P*
is a normed functional class rel. U,,, i.e. that the conditions
u=0 exc. A,, and ||u|l, = 0 are equivalent. From (5, 4) it
is obvious that P? is complete. By definition P* is saturated.
All that remains is to prove the functional space property.

From any sequence converging to 0 we can choose a sub-
sequence {u,} such that

o0
Y el < co.
n=1

If u, = G.g, except on the set A, e,,, let
g(z) = 2 ]gn(x)l

Then gel? and by the Lebesgue convergence theorem,
Gug.(z) >0 for every ze¢ A, =F [G.g(x) = + ]. Hence

u,(z) =0 for every z not in the set U A,, which belongs to A;,.

n=0

This proves the functional space pr:)perty, and the proof of 1)
is complete.

As was mentioned before, the norm ||u||, is obviously equi-
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valent to |u|,. Henceforth in this chapter we will consider
F, as provided with the norm ||u|l,. The set functions &, ¢,
¢, ete., are formed with this norm.

2) P* is the perfect functional completion of F,.

Proor. — In order to show that %, CP?* let ued,, put
g = (1 + |&|*)**4, and let g be the inverse Fourier transform
of 2. Since u is in C5(R"), g is obviously both integrable and
square integrable, so that g is continuous, bounded and square
integrable. Therefore, G,g is continuous and in P* Since
i = (G,g)", it follows that u = G,g almost everywhere, but
since both functions are continuous, u = G,g everywhere.
Thus u eP? and so %,CP*

Let %, denote the closure of %, in P*. &, is a functional
completion of &, of the type considered in section 2, and it
must be shown that §, = P%, and that this completion is
perfect. Since for each u € P%, ||ul|, is finite, it follows from 5)
section 2, that each u € P* is equal almost everywhere to some
p e, Bothuandy arein P* however, and so from u=v a. e.
follows ||u — ¢||. = 0, and hence u = ¢ exc. A,. Thus F, = P2,
All of the results of section 2 are now applicable to P2

Finally, we show that if A € U,, and if S is any sphere, then
there exists a Cauchy sequence in &, which converges point-
wise to + oo everywhere on ANS. This will show that
ANS, and hence A itself, must be an exceptional set for any
functional completion of J,, and this will complete the proof
of 2). By 6), section 2 (take ¢ € Cf and = 1 on S), it is suffi-
cient to show that there is a Cauchy sequence {u,} in P*
such that u, is of class C* and such that u,(z) > + o« at
every point of A. The existence of such a sequence is given
by the following proposition.

3) Let {e,} be a family of regularizing functions. If uelL2,
then u, = uxe, is of class C* and belongs to P* for all a. If
u € P%, then ||ul. < ||ull. and u,—u both in P* and pointwise
exc. QIM Moreover, if u= G,g where g =0, then u, —>u
pointwise everywhere.

Proor. — It is clear that U is of class C*. For the Fourier
transform of u, we have

5, (€) = (2m)(E)8(E) = (2m)a(E)a(oE).
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Since e is of class C7, it follows that the product of ¢ with any

polynomial is bounded, and hence ||u||, << o so that u, e P*
for all a.

If u<P? then

sl = (L 4 EF) (2m)26(05) 2 4(E) Pl <[l
since |é(§)| < (2w)~""

Finally, if u = G,g with gel? then u, = Gu(g=e). It
is well known that when gel?, g+e, € L? and gxe, converges
in L2 to g. Hence {u,} converges in P* to u. If g >0, then
by the corollary to the mean value theorem in the last section
u, — u pointwise everywhere. It follows that whether g > 0
or not, u.(r) — u(x) at every z such that u(z) = G.g(z) is
defined, i.e. pointwise exc. A,,.

4) P* is a proper functional space if and only if & > —;l If

n

. . n ..
o> 5 and m is an integer <_ xr—5 then every function in

P is of class C™.

Proor. — If @ <=, then, by (4, 2) G,(z—y) as a function

of y 1s not square integrable, and there exists a square inte-
grable function g = 0 such that

JGulz—y) gly)dy = + o,

which shows that the set {z{ belongs to ¥,,. On the other
hand, if « >L;-; then, by (4, 2) and (4, 3), G, is square inte-
grable, so for every square integrable function g, G,g is defined
everywhere and i1s a bounded continuous function. The second
statement is proved by making use of (4,4) and a similar
argument. It can also be proved easily by Fourier transforms.

It can be shown that the exceptional class ,, is precisely
the class of sets of capacity 0 for the capacity ¢, associated
with the space P* (#). This result depends on the strong
majoration property defined in section 3, of chapter 1.

5) P* has the strong majoration property.

(*) From now on, £ and & are the class of sets and set function associated with P=
(not as earlier, those associated with &.). The capacity ¢, associated with P= is
the same as that associated with F..
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Indeed, if u = G,g and if u' = G,|g|, then u'(z) = |u(x)]|
exc. sy and ||u'|la =||ula-

6) If Be®, then ¢,(B)<<ow. If ¢(B)<<ow, then Be@
and there is a function g >0 in L? such that u= G,g satisfies

(5,5) u=1onBexc Aya and [julls=23(B)= ¢;(B).

All the assertions follow from the general theory in chapter 1
(propositions 2 and 3, section 3) except the fact that the
minimizing function w is equal to G,g with g =0. But if
u = G,f, take g =|f].

It 1s evident from 6) that

7) Wyq is the class of sets of capacity O for the capacity c,.

Before beginning a detailed study of capacities we record
one additional consequence of the general theory (chapter 1,
§ 3, 3)).

8) If B is the union of the increasing sequence {B,}, then
¢,(B) = lim ¢,(B,).

Remark. — It was mentioned in the footnote to proposi-
tion 1, § 2, that the perfect functional completion of J, is L2.
In order to maintain a systematic notation we shall sometimes
use P? to designate L? and A, to designate the class of sets
of Lebesgue measure 0. It is not difficult to prove (see [1])
that the set functions associated with P° satisfy

B(A) = cy(A) = cy(A) = |A].

§ 6. — Capacities.

A theory of capacity of the classical type rests ultimately
on the use of positive pseudo-reproducing kernels. In the
classical theory of Riesz and Frostman of capacity of order 2«
the kernel is the Riesz kernel (1, 7), which 1s the pseudo-repro-
ducing kernel of the completion of Cy(R") with respect to the

norm \/ d,. In the present theory the kernel is G,,, which
is the pseudo-reproducing kernel for P* (*). In the first
part of the section we assume « > 0.

(%%) It is not necessary that the reader be acquainted with the theory of pseudo-
reproducing kernels. The necessary details will be given fully. Some additional
results on this subject can be found in [2].
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The capacity of order 2a of a compact set C is defined to be
the number v,,(C) determined by

1 .
6,1)  —g=int [ Gula—y) dn(a) s (),

where the infimum is taken over all positive Borel measures
on C of total mass 1. The inner capacity yi,(A) of an arbi-
trary set A is the upper bound of the capacities of the compact
sets CC A. The outer capacity y;,(A) of an arbitrary set A
1s the lower bound of the inner capacities of the open sets GD A.

Remark 1. — The standard capacity of order 2« < n is
obtained in the same way by simply replacing the kernel G,,
by the Riesz kernel (1, 7). The standard capacity ¥,, 1s easily
seen to be invariant under translations and rotations and to
have the following property with respect to a homothetic
transformation with ratio : Yp4(tC) = #"7**54(C). Our pre-
sent capacity obv1ously retains the invariance under trans-
lations and rotations, but it does not have as simple a behavior
with respect to homothetic transformations. It is easy to
show by means of (4,2) that the following relation holds
between our present capacity and the standard capacity :

lim %= 1,4(1C) = 1a(C),

for every compact set C. Corresponding statements hold
for the inner and outer capacities of arbitrary bounded sets,
and in each case the limit is uniform when the diameter of the
set remains bounded.

A capacity of order n has been studied under the name of
logarithmic capacity, studied rather extensively in the case
n = 2 and rather sketchily for larger n. The logarithmic
capacity is obtained as above by replacing the kernel G, by

the kernel log %, where r is any number larger than the dia-

meter of the set C. The resulting set function ¥,(r, C) is
then defined for all compact sets C of diameter < r. Some-
times the set function

0 = rexp(—z— )
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which 1s independent of r, is used in place of the logarithmic
capacity.

It 1s clear from (4, 2) that for each r there is a constant ¢
such that

1. -
= 1 €) = () = exu(r, €)

holds for every compact set C of diameter < r. The exact
limiting relation corresponding to the one given above for
Y2a and Yg, 1s a little more complicated in this case.
If vy 1s Euler’s constant, we have
. (2" '] (n/2) 1
lim) ey — log |+ log 1 =

for every compact set C of diameter < r. Equivalently
2w’ [(n)2) % -

LA L ¥ Ty

Ya(C) e

for every compact set C. To establish these relations, an
improvement of (4, 2) is needed, namely

as w0, Guls) = graprylog 2 + O(1al' %) ("),

lim 2¢~Y —:— exp?—

t>0

Since G,(r)/Rq(r) (with 0 << @ << n) is decreasing for 0 << r < o
from 1 to 0 (using (3, 7), (3, 3), (3, 4) and (3,5)), we obtain for

sets A of diameter < r

TA) S 1A < GE 0 TA);

hence the sets with y3(A) = 0 are the same as those with
$2(A) = 0.
ReMark 2. — Comparison of our potentials with the Riesz

potentials of the same order « <% shows that locally the

() The first part of (4, 2) can be improved to

—-—F( ;a) |ze=" + O (max (|zls="+2, 1))
227721 (/2) ’

for a << n, but this will not be needed.

asz—> 0, Gqlz) =
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potentials are the same, but globally (because of the exponen-
tial decrease of G,) the Riesz potentials form a larger class
(see Remark in § 9). Consequently, there are many state-
ments which are true for the functions in P* and untrue for
the Riesz potentials.  For instance, every function in P*
1s square integrable, along with all derlvatlves of order < a.
Also, the product of a function in P* with a bounded function
of class C®*" is in P* (see 6) §2). In addition, the proofs
of many common theorems are simpler for P*. On the other
hand, several of the formulas become more complicated due
to the fact that G,, is not homogeneous — for instance, the
formulas in Remark 1 and those in proposition 20) below.

The potential of a measure with respect to the kernel G,,
1s defined as follows (*')

Guutr(2) = [ Gaalz — y)di(y)-

G, 1s defined everywhere, provided + oo is admitted as a
value, and 1s lower semi-continuous. Of primary interest
are the measures u. for which the 2a-energy

6,2) iz = [ Gualw — y)din(a)d(y) = | Guapds

is finite. However, we shall begin by proving a few results
about arbitrary measures.

If w is a measure with finite total mass, then, by (4, 6'),

6,3) [ Gup(z)dz = [[ Guulz — y)dp(y)dz = |u},

and in particular, G, i1s finite almost everywhere and is
an integrable function. By using this and (4, 3) the following
result 1s easily proved.
1) If @ vs a measure such that
24 —n—1

(6, 4) SA+la) 7 eloldpa) < o

then Gyau. is finite almost everywhere and is integrable over every
bounded set. If (6,4) holds and 2a>n, Gy is finite and

(*) Henceforth the term measure will refer to a positive Borel measure unless
otherwise stated. If y is such a measure, || = p(R") is its total mass (possibly
+ o). A set E is said to be a support of y if 4(R*— E) = 0; a support need not
be closed.



THEORY OF BESSEL POTENTIALS 429

continuous everywhere. If (6,4) does not hold, then Gyp. ts
iudentically + oo.

The following result does not require proof.

2) The mean value theorem (proposition 1, § 4) holds for
potentials Gy as well as for potentials G,g.

The next two propositions were proved by Frostman [11]
for the Riesz kernel. The proofs given here are quite similar.

3) Let p. be a measure with a compact support C. There is
a constant ¢ (depending on the diameter of C, a, and n, but not
on &) such that if Geep(z) <1 a. e. (@) (*) then Gyou(z)<c

everywhere.

Proor. — Since G, 1s lower semi-continuous, the subset
F of C on which Gup <1 is closed, and by assumption F
contains a support of . If for an arbitrary point z,
denotes a point in F closest to z, then for any point y e F,

e —ylZ 3 lE—yl. Hence, Gufa—y)<Cua( —1))

By (4, 2), there is a constant ¢ (depending only on the
diameter of C, «, and n) such that for every p < the diameter
of C, Gy0(p/2) < ¢Gau(p). Thus, we have Goupt(2) < ¢Goait(ZT) < c.

4) If Gy is continuous on a closed support of w, then Gyou.
is continuous on R™

Proor. — In view of proposition 1) we may assume 2a < n.
This implies that if w({zo})>0, Gait (%)= + oo, hence,
by our hypothesis, & cannot have point-masses. Let F be
a closed support of g on which G,,u 1s continuous and let z,
be an arbitrary point. For each n, write p.=u, + @, where
&, is the restriction of p to the sphere S(zy, 1/n). Since
w(§zo}) =0, it follows that Gap(z) = lim Gyupr(x) for each z.
Therefore, if for arbitrary ¢ > 0,

0, = FNE [Gaapn(#) > Gaapi(z) — €],
then F = U 0,. Moreover, O, is relatively open in F, for

Gye+ is continuous on F and G,,p, is lower semi-continuous.
Consequently for sufficiently large n, O, contains F N S(z,, 1),

(%) a.e. () means « except on a set of p-measure 0 ».
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and, therefore, for sufficiently large n, Gyopn < € on F N S(z,, 1),
and by proposition 3, Gy, < ¢ € everywhere. Thus

Gigpn = Gigi

uniformly, and since each Gy, is continuous at z,, so is G,

We turn now to measures for which the 2a-energy defined
in (6, 2) is finite. The class of such measures will be called Q,,.
Note that (6, 3) shows that (,, contains the restriction of the
Lebesgue measure to any bounded set.

5) The following conditions on a measure . are equivalent.
a) pely.
(b) Gqp ts square integrable.

(¢) Gyp e P2

(d) Every function in P* is u.-integrable.

(e) Every function in P* is p-integrable, and the integral
is a continuous linear functional on P2

Proor. — The composition formula (4, 7) gives
Goapt = GaGapr and. (jtlpa =|Gapfle  and
(6,5) [Gagdp= [Gun(z)g(a)dz for any g=0.
It follows that pe(),, if and only if GeueL2 and that
Gy € L2 if and only if every function in P* is w-integrable.
Therefore, (a), (b), (d) and (e) are equivalent and imply (c).

If (c) holds, then for some g e L?, Gog = Gy, and for every
f=0 in L? we have,

[Gafgdz = [Gugfdz= [GuGupfdv = [ Guf G pda.

Hence, for every f e L2,

[Guf gdo = [Guf Gopeda,

and since f can be chosen so that G,f is an arbitrary function
in C7(R"), it follows that G, = g a.e.  Therefore, G,u e L2.

The third formula in (6, 5) gives the equation which expresses
the reproducing property of G,,.

(6,6) ForeveryueP®and ue(ly,, fu dy. = (u, Gyat)a(*).

(*) (u, ¥)« denotes the inner product in the Hilbert space P<=.
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6) If . and v belong to Qy, and if Gyup = Gsqov almost every-
where, then p. = v (3°).

Proor. — For every fel? (first for f=>0, then for all
fel?)

[Gufdn = [Gupfde = [Guuvfdz = [Gufdy,

and f can be chosen so that G,,f is an arbitrary function in
Co(RM.

Proposition 6) (and the second equality in (6,5)) show that
||}« 1s a positive definite quadratic form on Q,,. If (i, ),
denotes the corresponding bilinear form, then '

(6,7) (i Ve = [ Guale — y)dp(y)dv(2) = [Gous(x)dv(2)
= [Guy(®)dp(y) = (Guatt, Ga)a.

By virtue of 6) and (6,7) the correspondence between the
measures of finite 2«¢-energy and their potentials is 1-1, linear,
and inner product preserving. In order to simplify the nota-
tion, we shall use the same symbol (),, to denote both the class
of measures of finite 2¢-energy and the class of their potentials.

7) Q,q is a closed convex cone in P*. The subspace generated
by Q,, is dense in P* (),

Proor. — It is obvious that Q,, is a convex cone. Ifu, > u
in P%, where u, = Gy,,, then for each ¢ e C(R")

(¢, u)a = lim(p, u,); = lim [ o(@)dy(a).

n>o

Hence, if ¢ =0, then (¢, u); =0, and by the well known
theorem of Rlesz on the representation of non-negative linear
functionals there exists a measure i such that

(6,8) (v, wa= [ v(@)du(z) for ¢eCs(RY).

In general, if a sequence {u,} of measures is such that
[o@)d z)=lim [ o(z) dp, () for o< C3(RY),

(®0) The same statement can be proved (by a different argument) when p and v
are only supposed to satisfy (6, 4).
(®1) For Riesz potentials this result is due to H. Carran [5, 6] and J. Deny [8].
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then for every non-negative lower semi-continuous function ¢

[ 9(z) dp. () <limin [ ¢ (z) dy., (2).

Applying this remark first to ¢ = Gy, and then to ¢ = Gy,
we get

[li+{]sa = lim inf [|s[ e < o0,
so . eQ,,. By (6,6) and (6, 8), (¢, u)e = (v, Gyut)s for every

v e C7(R"), and since such ¢ are dense in P?%, u = Gy, € Q,,.
Finally, to see that the subspace generated by ,, is dense
in P*, we observe that if a function u € P* 1s such that

f uden=0  for all  peQyy,,

then, since the restriction of the Lebesgue measure to any
bounded set belongs to (,,, the mean value of u over every
sphere i1s 0, and by the mean value theorem (proposition 1,
§ 5) u=0 exc. Asq.

For each set A in R*, Q,,(A) will denote the class of measures
w ey, which are supported by A (i. e., p(R*—A)=0), as
well as the corresponding class of potentials. It results
from 7) that if A is a closed set then Q,,(A) is a closed convex
cone, and if A is any set Qu(A) CQ,,(A). It is obvious from
the definition that every restriction of a measure in ,(A)
belongs also to Q,,(A). A similar statement is needed for
Q. (A).

8) Iffis a bounded non-negative Borel function and . € Q,,(A)
then the measure (., defined by

pAE) = [of(2) dp(a)

belongs to Q,,(A). In particular, the restriction of p. to any
Borel set belongs to Q,,(A).

Proor. — We prove first that 8) holds when fe Cy(R").

Since i € Q,,(A), there is a sequence §@,} in Q,,(A) converging
to . It is clear that

(pndlea = (sup f)lIptal e
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and for every ¢ e Cy(R")

(9 Gualpal)a = f wd(pa)y = [ fo dit = (fo, Guatta)s
- (fp, GM!"')d = (“', G&aP’f)a-

Therefore, Gy, (i,); = Gyty weakly, and as Qy(A) is closed
and convex (hence weakly closed) G, ur e Q,,(A), which proves
8) if fe C(R).

Now, it is well known that there exists a uniformly bounded

sequence {f,} in C7(R" such that f, — f a.e. (4). Then for
every v e P*

(9 Guaths)e = [ ofy d > [ of d. = (v, Guatty)a-

Therefore, G,ap;, — Gootr, weakly, and as before G,ape Qu(A).
Next we describe the process of sweeping or balayage. If
A is any set in R" and if ¢ € P%, then, since Q,,(A) is closed
and convex, there is a unique u = Gy, € (5,(A) which realizes
the minimum distance form ¢ to functions-of Q,,(A). This wu,
or the corresponding measure g, is called the result of sweeping
¢ onto A. Simple and familiar arguments show that if
is the result of sweeping ¢ onto A, then (Gyatt —¢, Ggav)a =0
for every v € Q,,(A), and (Gygpt—9, Gyat)e=0. The inequality,
combined with proposition 8), shows that G,,u=>v¢ a. e. (v)
for each ve(,,(A); and then the equality shows that
Gy = v a. e. (@).
9) Let p be the result of sweeping v onto A. Then
(@) Gt =9 a. e. (V) for each v e Qyq(A).
(0) Gogo=v a. e. (@).
(¢) If A s either open or closed, Gyap = ¢ on A exc. Us,.

(d) If A is open and ¢ is continuous on A, Gyop = every-
where on A.

Proor. — Parts (a) and (b) have been proved already.
Part (d) and the half of (¢) which is concerned with open sets
follow from the mean value theorem. ©

To prove the remaining half of (c), let A= n D,, where

k=1

the D, are open and D,CD,_,. Then Q;o(A) =[] Quu(D4),
k=1

28
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from which if follows easily that if w, is the result of sweeping
¢ onto D,, then Gyt — Gyoir. By what has been shown,
Gy =¢ on D, exc. .. Hence Gyotp==¢ on A exc. Yy,
and by the functional space property, Gyt = ¢ on A exc. As,.

If A is a bounded set there exist functions in P* which are

equal to 1 everywhere on A. The measure ., that results
from sweeping any such function onto A is called the capaci-
tary distribution of A. The corresponding potential u, = Ggapra
is called the capacitary potential of A (%2).

10) (a) ua =1 a.e. (v) for each ve(Qy,(A); in particular,
ur =1 on A a.e. (v) for each v e Qy,.

(b) ua =1 a.e. (pa)-

(¢) There is a constant ¢ depending only on r, a, and n such
that if the diameter of A is < r, then ux < ¢ everywhere.

(d) |pa] = llpeallia = [Jwalle-

(e) If A is open, ux =1 everywhere on A.

(f) If A is closed, ux = 1 on A exc. Us,.

Proor. — Parts (a), (b), (e), and (f) are direct consequences
of 9). Part (¢) follows from part (b) and proposition 3).
Part (d) follows from part (b) and (6, 6) and (6, 7).

The next proposition, which shows that ug can be taken for
the function u of proposition 6), § 5 and that the normalized
capacitary distribution realizes the minimum in (6, 1), is the
first step in showing that the relations (c;)? = ¢, = 13, hold.

11) If C is a compact set, then uc minimizes the expression
llv|lx among all ¢ € P* such that y==1 on C a.e. (v) for each

ve Q. Moreover, . realizes the minimum in (6,1), and

|ixe]
lluclla = llcllia = || = 3(C)* = 2a(C).
Proor. — If y > 1 on C a.e. (v) for each v eQ,,, then in

particular ¢ > 1 a.e. (ic). and hence
lluclle = [pel < [ odite = (v, uce < [Iofllluclle-
Therefore, ||uc/ls = ||¥|la, and the first part of 11) is proved.

(®3) Isis easily seen that p, and u, are independent of the particular function which
is swept onto A.
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From this and 10)-(f) it follows that uc realizes the minimum
in the definition of &(C) (*) which gives

lludla = llrollia = |pc| = 3(C)®
If veQ,(C) and |v|=1, then by 10)-(a)

1= < [ucdy = (o v)ax < [lite] el

Thus,
1
\ 2¢ Z _——éf
I = 1,
while if y = -2¢,
el 1
P'C 2a
v - = 2
e = = =

This shows that l—il realizes the minimum in (6, 1) and that
C

the value of the minimum is as stated.

12) If A is a set Fg, then yi,(A) = ¢, (A).

Proor. — By 11) and (5, 5), proposition 12) holds for com-
pact sets. Therefore, by the definition of yi,(A) and propo-
sition 8), § 5, proposition 12) holds for sets F.,.

13) For every set A, c¢,(A) = inf ¢(D), the infimum being
taken over all open sets DDA.

Proor. — It can be supposed that ¢;(A) < o, in which
case, by 6) § b, there exists, g =0 in L? such that G,g >1
on A exc. Ay, and ||G,gll. = c1(A). For each p <1 let

D, = E [Gegl@) > ]
D, is an open set, D, D A exc. A,q, and

(Dy) = 3(D,) < 2-3(4) = —-ax(A).
Let g, e L? be >0 and such that [|G.g[. =1 and such that
A—D,CE[Gog(a) = + @] Let Dj = E[Gagp(a: ]

(%) We use the fact that, by definition of %,, and by (6, 6), each set in A,, is of
measure 0 for each ve Q,,.
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Then D; is open and ¢,(D}) = 3(D’) < e. Hence ACD,UDg,
D,UDs is open and

/ ' 1
&(D,UDg) < ¢,(D,) + ¢(Dg) é?cl(A) + €.
14) For every set A, Y. (A) = ¢;(A2.
Proor. — It is obvious that if A is open then y3,(A) = Yi.(A).
Therefore, from 12) it follows that 14) holds if A is open.

From this, 13), and the definition of ¥},(A), it follows that
14) holds for arbitrary A.

15) If A = |J Ay, then yiu(A gz % (A).
k=1 k=1

Proor. — We first show that if C; and C, are compact and

C=C, UG, then 7v3,(C) < v4a(Cy) + Y20(Cs). If py and py
denote the restrictions of yc to C; and C,, then

Y2a(C) = [pe| < || + [pal-
On the other hand,

ol < [, dpts < luclallital -
Since Ggoiy < Gogptc =1 a.e. (pg), it follows that

Gaapn < 1 ace. ()
so that

lpallie = [ Gaapts dity < g}
Combining these inequalities we get

1] = [uelle = Yaa(Ca)-

Similarly, [it] < Yaa(Ca).

Now let D, and D, be open and let D =D, UD,. It is
well known that an arbitrary compact subset C of D can be
expressed as C=C,UC,;, where C,CD,, C,D,, and both
are compact. By what has been shown,

Y2a(C) = Y2a(C1) + Yeu(Ce) =< Yia(Dy) + Yia(Ds),
and, as C 1is arbitrary, vi(D) < via(Dy) + vie(Dy). If
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D= U D,, D, open, and if CCDis compact, then for some m,
k=1

cc U D, and
k=1

m

T:(C) = 72¢<U >§;Y§G(Dk) é;Yéa(Dk)-

Therefore, since C 1s arbitrary

Yia(D) ékZ Yie (D)

Since the inner and outer capacities are obviously the same
for open sets, this gives 15) for open sets, and 15) for arbitrary
sets follows immediately.

16) For every set A, Y3, (A) = c,(A).

Proor. — If AC | J A, with A, e, then

k=1

Yea _S_igAk:—i Akz—Es

Hence v3,(A) < c3(A). On the other hand, if y3.(A) < o,
then 15,(A) = ¢,(A)R = 3(A)* = c,(A).

Because of the above results it 1s possible to make use of
an important theorem of Choquet [7] on capacitability.
Choquet’s theorem can be stated as follows:

Let v be an increasing non-negative set function defined on
all compact sets, and let ¥ and y° be constructed from y as in
the paragraph after (6,1). If ¥°(C) = y(C) for every compact
set C and if Y°(A) = lim y°(A,) whenever A is the union of the
increasing sequence |{A,}, then Y(A) = Y'(A), for every ana-
lytic set A.

By 14) we have y3,(A) = ¢;(A)®2. Hence, if C is compact,
then by 11), 73(C) = ¢,(C)? = §(C)2 = ‘M(C). In addition
if A is the union of the increasing sequence {A,}, then by 8),
§ 5, vsa(A) = lim ¥3,(A,). Thus, the second part of the theo-
rem below follows from Choquet’s theorem. The first part
has been proved already.
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TaeorEM 1. — For every set A, vi.(A) = c;(A) = ¢;(A)?,
and if ¢;(A) <o, ¢(A) = 8(A). For every analytic set A,
Yia(A) = \l'ga(A)'

The several notations for the capacity of order 2« will now
be dropped. Henceforth y,, will denote the outer capacity
of order 2a, i. e, Yaa=7Yia=C,=¢i. Also ¥y (A) will be
called the 2a-capacity of A. The sets in ¥,, are the sets of
2a-capacity 0.

RemaRrk 3. — Inaccordance with the results which have been
proved here for « > 0 and which were mentioned in the remark
at the end of the last section for a =0, vy, should denote the
Lebesgue measure, and (), should denote the class of measures
which are absolutely continuous with respect to vy, and have
a square integrable derivative. The results in the rest of
this section (except 18) which has no meaning for a = 0)
hold for « =>0. Many are rather trivial for « = 0, or are
standard results from measure theory. When this is so we
do not take account of the case « = 0 in the proof.

Using the capacitability (i.e. equality of inner and outer
capacities) of sets G; we can give another characterization
of the sets in As,.

17) A e Uy, if and only if A s a subset of a set Gy which

has v-measure 0 for every v e Qy,.

Proor. — If A € ,,, then by definition there exists g=0
in L? such that

AcC E [Geag(z) = + ].

The set on the right is a set G; which has v-measure 0 for every
ve(,,. If ACB and B is a set G5 which has v-measure 0 for
every v e (),,, then for every compact set C C B, v,,(C) =|pc|=0.
Therefore, B has inner capacity 0, and by Theorem 1, ¢;(B) =0,
from which it follows that B € %,, and hence that A e ,,.

The capacitability of Gys also gives an improvement of
proposition 1 on the infinities of the potential of an arbitrary
measure.

18) If i is a measure satisfying (6, 4) then Gyuu is finite
exc. Wsq.
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Proor. — The proof is easily reduced to the case in which
j#| <<oo. If Cis an arbitrary compact subset of
E [Gear(z) = + ],

&

then by 10)-(d) there i1s a constant ¢ such that uc < ¢ every-
where. Hence

[ Gaapdpo = [ ucdp. < clp| < o,

and since Gyt = + o everywhere on C it follows that
Y2a(C) = |pc| = 0. Thus, E[Geep(z) =+ o] is a set Gy with
inner capacity 0. ¢

We end this section with some results on the nature of the
capacities Ysq.

19) For fized A, Y54(A) ts an increasing function of «. If A
is open, Yzqo(A) ts continuous on the left; if A is compact Yso(A)
s continuous on the right.

Proor. — It is evident that if § < a, then |Ju|ls<||ull,.
Therefore P*C P8, Ay, CAygp, Qoa D Qo (*) and [|n]pa < |[|8/fep
If v,4(A) < oo, then there is a function u € P* such that u > 1
on A exc. Ay, and such that ||u|z = v5.(A). Since u>1 on
A exc. Ay we have v,5(A) < ||ullg < [|ullz = Y2a(A), Which proves
the first statement in the proposition.

If A is compact and ¢ >0 is given, let D DA be open and
bounded and such that y,g(D) < vep(A) + ¢, and let ue P
be such that u > 1 everywhere on D and such that ||ul[g=,(D).
(v = up has these properties.) By using Fourier transforms
we get that every regularization u, = uxe, belongs to P*
for all @, and that if p is fixed and a\(B, then |Jug|la \ ||ulls-
Let gy be small enough’ so that u,, > 1 everywhere on A
Then, as « \ B, by 3) § 5,

Taa(A) = [[egy/fa \utelfls = |l = v2p(D) = vas(A) + e

This proves the continuity on the right when A is compact.
If A is open and ¢ > 0 1s given, let CC A be compact and
such that v,,(A) < v:.4(C) + ¢, and let u be a measure with

support in C such that |u| =1 and such that %—= (|| e

Y2a(C)

() In the present case Q,, and Q,; are considered as sets of measures and compa-
red as such.
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Every regularization ., = 11+ ¢, belongs to Q,; for all § and has
total mass 1, and if p is fixed and § 7 a, then ||u.9||23 Nkl (2
Let g, be small enough so that a closed support of y,, is con-
tained in A. Since |V||,e = ||GsaY]| and Gyou, = (G“(L)P,{ by 3)
§5,asff o,

1 : 1 1
— i el el e e = —= < :
YZB(A) H\ 9“ @\”HF” HP'H Yza(C) Yza(A)"— P

The next result 1s an improvement of a proposition of Bre-
lot [4] on the relation between the capacity of a set A and the
capacity of T(A), when T 1s a Lipschitz transformation. Later
we shall use the result in cases when the Lispchitz constant
tends to 0 and in cases when it tends to oo. It is well known
that a Lipschitz transformation defined on an arbitrary subset
of R" with Lipschitz constant M can be extended to a Lips-
chitz transformation on R* with the same Lipschitz constant
(see [13]) so there is no loss in generality in assuming from the
beginning that the transformation is defined on R™.

20) Let T be a transformation of R into R" satisfying
|Tz — Ty| < Mz —y| IfA and B = T(A) both have diameter
< r, then

12(B) S M2y, (A) if 0<a< % and M < 1.

2n 22¢ F<n__2a>
Yu(B) < 2 Mt (A) if 0<a< B

r L K24 (r)
and M > 1.
1a(B) < A if M<1.
1+ — T jog v (4)
2n thn/‘ZP

1(B) < (1 +-1 log M) WA i M> 1.

1
Ko(r)

(%) pp is the measure with density hy(z) = f & —y) duly). Since p has
compact support, k, is of class C¥, and ||p,|l3, =f(1 + [§[2) 2| he|? dE.
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Proor. — Suppose first that A is compact, put B = T(A),
and let C(A) and €(B) denote the spaces of continuous func-
tions on A and B normed by the upper bound. Each function
¢C(B) defines a function T*¢eC(A) by the equation
T*¢(z) = ¢(Tz). Since ||T*¢|| = ||¢||, T* is one to one and the

range R(T*) is a closed subspace of C(A). If u= B is the
normalized capacitary distribution for B, then |2

UT*0) = [ ¢(z) du(z)

is a positive linear functional on R(T*). By a well known
theorem of Hahn-Banach type, [ has a positive linear exten-
sion to C(A), and by the representation theorem of Riesz,
this extension is given by a measure v on A. Thus, v is a
positive measure on A such that for every continuous
function ¢ on B, and hence for every non-negative lower
semi-continuous function ¢ on B.

[ 9(z) dp(z) = [ ¢(Ta) dv(a).

Taking ¢ = G,,, we have

1 :
(6,9) ;= llelfa = [ Gualz — w) ds(z) ds(w)
= f f Goo(Tz—Ty) dv(z) dv(y).

Put |zt —y|=p and |Tz — Ty| = p;. By our assumption

pr < Mp,p<r,and p, < r. Now, for 0 <a < %we evaluate
the quotient

204 —n n—2a
2

2
Goo(Tz—Ty) K"—?E(p‘)=<ﬂ>’““"‘°‘ Kozsalpl

G2a. — = 20—n
@—) P e ' Ki_ulp)

P Kisl(p)
By (3,3) and (3, 7) 2’K,(z) 1s a decreasing function of z.
From this and (3, 4) we get
(M2a—n f M1

n—2q

Gyo(Tz—Ty) >/ TTK%(r) -
Goa(z—y) = |M* " if M>1.

2 n—2a
2 [‘( - >
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Combining this with (6, 9) and the fact that |v] =1 we get
Mla—n

B =Mz for ML,
1 7‘_’ K"_—l"(r) 1
> : M= M> 1.
Wl p(ag) W for N>
2

Next, consider a = —;"— and M<1. Then p; < Mp <p and,
by (4,1) and (3,7) we have

G(Tz—Ty) —G(z —y)=———
2"—‘7t"”['<

1 ijﬂQdL

—ninll _n_
2 F<2>

By (3, 7) tK,(¢) is decreasing, hence K, () >
Therefore, since p; < Mp

G,(Tz — Ty) — Gy(z — y) = —alr)

—2L o
zwer(2)
2

and from (6, 9) and the fact that |[v]| = 1 we get

1 . rK,(r) 1
——— > || F+ —————log —
n(B) __“V“ + 2n-—l“n/2 P<_§_ Og M

> 1 + rK,(r) 1

log —.
__Yn(A) 2n—lnn/2[‘(%> g M

Finally, we show that for M > 1, we have
GATx——Ty)zz———%———
1472
K, ()
which, combined with (6,9) will give the required result.

G, (z—
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First if p; < p, this inequality certainly holds, since G, is

a decreasing function. Suppose, therefore, that p; > p. Then

Gu(z—y) — G, (Tz—Ty) — Ko (p) — Ko (p4) — 1 f"' (t) dt

G,(Tz—Ty) K,(p:) Ky(p)Je =07

By (3, 7), tK,(¢) 1s decreasing, so tK,;(t)<lm tK,() = 1.
t>0

Since K, is a decreasing function

Gulo—y)—Ca(To—Ty) = 1 50
Lm oy PSRt <g

logM

which gives the inequality at the beginning of the paragraph.

Now that we have proved the proposition when A is a
compact set, we see from proposition 8, § 5, that it holds when
A 1s an F;, and in particular when A is an open set; and having
the proposition when A is an open set, we deduce immediately
that it holds when A is arbitrary.

CororLLArRY. — If A has diameter < r, then

=1 1L
Ta(A) = Wr)lé(z—)) :

Proor. — Apply the last two inequalities in the proposition

to the homothetic transformations y — py and y—>—1—y with
any p<<1. P

The following result is used in the proof of a generalization
of the Frostman mean value theorem.

21) If p=1 we have: for a<—%
n—za( )

1‘(2>

and for e=_2,

2

YM(SO1)<E_<YM(501)

. 23
(SO =1(S(0, p)log = gy o5
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Proor. — Proposition 20) applied to the transformations

y— py of S(0,1) onto S(0, p) and y—>% of S(0, p) onto S(0,1)
gives the inequalities stated for a<C -;i and gives
1
y,,(S(O,l))(i + log—p—)

1 1
14+ ——log—
TR %,

= 7.(5(0, ¢))log —:

(S(0,1) )(1 + 1ogi>

< P
K@

2n—2 n/2[1< >

For 0 << p << 1 the left side varies monotonically between
1:(5(0,1)) and 1,(5(0,1)) K,(2) and the latter is the lower bound

since ezKo( )= 41... The right side varies monotonically

log— y,,(S 0,1))

2}!— n/2F< >
between 7,(S(0,1)) and ————I—{(2)—2— By the preceding

corollary and the fact that K¢(2) << 1, both of these are smaller
than the constant given in the proposition.

22) There is a constant ¢ > 0 (depending only on a, B3, and

n) such that if O§(5<a<7 and ACS(z, p) with p<1,
then

Yea(A) Y:8(A) .
'Yza(s(xy 9))g CY2@(S(1;7 P))

Proor. — Let ACS(0, p) and let B denote the image of A

under the transformation y—>—y—- Then by propositions 19)

and 20) we have for a<%

aalA) 22 07" 1aulB) Z ep =" xeg(B) Z o g 1 (A).

In view of 21) this is sufficient to prove our statement. For

o= 7” the proof is similar with p"—** replaced by <log §>_ .
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Next we consider subsets of a subspace R*CR" k< n,
and the relations between their capacities as subsets of R*
and their capacities as subsets of R®. Quantities associated
with R* will be primed : thus 2z’ denotes a point of R*, vy
denotes the capacity of order 2f in the Euclidean space R,
Az, is the class of subsets A’ C R* with y;,(A’) = 0.

23) If 2e > n—k, then for every measure v on R* and
every subset A of R*

n—k
Il = 2L e,
F(a— .
(6, 10 < 2
—5)
Y;a—(n—k)(A) Yza
2 [‘(
Proor. — It is easy to see from (4, 1) that
n—k
n—k, 2
6,10)  Glagonlz) =27 1 g )

I‘<a_”‘2"‘>

and from this the first formula in (6, 10) is obvious. For
compact sets A, the second formula in (6, 10) follows at once
from the first. The validity of the second formula for compact
‘sets implies the validity for sets F;, and then the validity
for sets F; implies the validity for all sets.

24) If 2 > n—k, then, as p - 0, v,[S(0, ) N R*] s of

. n n
order p"~** or of the order ,» according as a < — or o = —.

1
log 1/p 2 2

If 0 < 2a < n— k, then y,(R¥) = 0.

Proor. — The first part of 24) is obtained by applying 21)
10 Yaa—G—w (S5(0, p) N R*) and then using 23).

As for the second part of 24), if in the second equation in
(6, 10) we take A to be any compact subset of R* and let
2a \( n —k, we can conclude from 10) that y,—,(A) = 0, and
hence that y,_,(R*) = 0. Using 19) again, we see that if
20 < n— k, then y,,(R*) = 0.
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The next proposition, which we state without proof, shows
the relation between sets of capacity 0 and sets of Hausdorff
measure 0. It is due to Frostman [11].

If h(t) i1s a continuous non-decreasing function of ¢ =0
with A(0) = 0 and A(t) > O for ¢ > 0, the Hausdorff outer mea-
sure H corresponding to k 1s defined as follows :

H(A)=limH,(A)  where H,(A) = inf Zh(d(A,)),
F>0

where d(A,) is the diameter of A, and the infimum is taken
over all sequences A, satisfying ACUA, and d(A,) < p.

For « > 0, the Hausdorff «-dimensional measure is the
Hausdorff measure corresponding to A(t) = c(a)t*, c(a) a sui-
table constant; the 0-dimensional, or logarithmic Hausdorff

measure is the one corresponding to A(t) = 1 T
We say that H is weak relative to H if log——t—
“ h(t) dt < .

Jo th(t)

(Thus the B-dimensional measure is weak relative to the
a-dimensional measure if § > a.)

Frostman’s theorem is as follows.

25) If the (n-2a)-dimensional measure of A is 0, then
Ya(A) = 0. If vy(A) =0 then H(A) =0 for every Haus-
dorff measure which is weak relative to the (n-2a)-dimensional
measure.

Remark 4. — In the case a=n/2 Frostman proves a
slightly stronger statement: if y,(A) =0 then H(A)=0 for
every Hausdorff measure with fo *t1h(t) dt << o0. The first part
of 25) can be strengthened as follows : if the (n— 2a)-dimen-
stonal measure of A is finite then Y,o(A) =0. This result for
a=n/2 and n=2 is essentially due to P. Erdés and J. Gillis
[10a] (a simpler proof was given more recently by L. Carleson
[4a]). The proof was extended to arbitrary n and «= n/2
by W. F. Donoghue (as yet unpublished).

It is clear from proposition 20) that if A is a set of 2«-capa-
city 0, then the projection of A on any hyperplane has 2«-capa-
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city 0. To conclude the section we give a partial converse
of this which will be used in the next section.

26) If A is a set whose projection on some hyperplane of
dimension n-k, k<" a, has 2a-capacity 0, then y,,_,(A)=0(%%).

Proor. — It is sufficient to consider & = 1, in which case,
by virtue of proposition 20), the assertion is equivalent to the
following lemma.

Lemma 1. — If Ae,,, a =1, then the union of all lines

which meet A and are parallel to the x,-axis belongs to U,,_,.

Proor. — First we consider « = 1. In this case, by 20),
the projection of A on the hyperplane z, = 0 has 2-capacity 0,
and by 23) it has 1-capacity O relative to the hyperplane.
Therefore, i1t has (n-1)-dimensional Lebesgue measure 0.
By a standard theorem in measure theory, the union of
the lines which meet A and are parallel to the z,-axis
must have n-dimensional Lebesgue measure 0, that is, O-capa-
city 0.

Now assume that « > 1 and that ACE[Gag( ) =+ ],

0'< geL? and put
1 n+h ’
= Sl:pT‘/;: g(x , t) dt

According to an important inequality of Hardy and Laittle-
wood [12], geL?’. It will be shown that if z is any point
such that G,g(z), G,g(z), and G,_,g(x) are all finite, then the
line through z parallel to the z,-axis does not meet A. This
will prove the proposition, because the set of z such that
either G,g(z), G,g(z) or G,_,g(x) is = + oo has (2a-2)-capa-
city 0.

From 4 5) it is clear that if G,g(z) + G._.8(z) < o, then

fl by —y)dy<<oo. Thus, if Gug(r)<<oo, G.g(z) <<

(359) Added in proofs. A stronger result holds due to M. Ohtsuka [13d]: the
hypothesis k < a is replaced by k < 2a and the thesis ygs«—3x(A) = 0 is replaced by
Y2a—k(A) = 0. However the weaker result of the text is sufficient for our pur-
poses.
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and G,_,g(z) < o, we have for h=£0

Nl O

- h ﬁ f by,. &' —y', t—y.) dydt‘

_ z, +h bG L ) . ,

= h f fl;n— fl;, 03{:' (x Yy, Zn) dy dzn dtl,
=fgx__y Z, hfn bG )dtdz dy‘,

| [t — Sl S BRI

h
Gug(2', @, + h) — Gag(2) .
h

This shows that G,g(z’, z, + h) << o for all 2 and hence that
no point (z', z, + h) belongs to A.

§ 7. — Differentiability of functions in P*.

The purpose of this section is to characterize the functions
in P* by differentiability and continuity properties.

Taeorem 1. — Let ueP* and let |i|=m=<«. The deri-
vative D,u exists in the ordinary sense exc. sy—g, and Dy € P,
If u=Gog and m<a, then Du(z)— f ligfv—“-’ﬁ o(y) dy

exc. Uga—sm. If j ts a permutation of i, then Du(z) = Du(z)
exc. WUsg—om If mZa—1, Diu is absolutely continuous on
all lines in any given direction except those contained entirely
in a set €Wsg_sps (). Finally, the direct formulas (1, 5)
and (1, 10) for d,(w) and ||ulls respectively, are valid for all u « P*

and
- 2 da_n(Diw),
lil=m
(7? 1) dd
llfy = X3 (&) ) IDulf
ljl==

(®) A function is absolutely continuous on a straight line if it is absolutely conti-
nuous on each finite interval of the line.
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Proor. — By using Fourier transforms we deduce that
there are potentials u; e P*7V! such that @&; = iY%id and, when
replacing Dju, they satisfy (7. 1). Furthermore, we see
immediately (by passing to Fourier transforms) that the

difference quotient Z—[uj(x“ vey Tt hy oL, 7)) —u(2)]

converges in P* V171 t0 u; , (|[j]<a—1). An easy induction
shows then that the theorem reduces to the following two
statements : 1° the absolute continuity of u; (replacing Dju)
and the pointwise convergence of the difference quotients
exc. Wsa_syji—s and 2° Dju = (D;G,) » g exc. WAsa_s;.  We prove
first 19; 1t 1s clear that we can restrict ourselves to the

consideration of u(i.e. [j|=0), @=1 and the derivative .
n

We start with the case o =1 (which is treated sepa-
rately since there is no kernel G,). Let {u,} be a
sequence in CY(R") which converges in P! to the given func-
tion u. By (7,1), which obviously holds for functions in
C3(R™), the sequence %% converges in P* = L2 to some func-

n

tion ¢ e P°. By picking a subsequence if necessary, it can
be assumed that for fixed 2’ outside a set E'CR"~1 of (n-1)-
z""'k(m,, xn)
2z,
respect to the variable z,. By using Lemma 1 at the end of
the last section, and again picking a subsequence if necessary,
it can be assumed that if 2’ ¢ E’, then u,(z, 2,) - u(z’, =,).
Then if 2’ ¢« E' we have

u(@', b) — u(a’, a) = lim [u,(2', b) — u,(2’, a))
 Pou(, ) v
=hmf WY gy =f o(', 1)dt.

It follows that if 2’ « E’, then u(2’, x,) is absolutely continuousin
’ ’ y

dimensional measure 0, — ¢(2',z,) In L2 with

ou . .
z, so that S (z', z,) exists and 1s equal to ¢(z’, z,) for almost
x

n

ou . .
all z,, Hence = exists and 1s equal to ¢ almost everywhere.

Now suppose "that « > 1, and consider u= G,g, with
gel?2 If we put

h
B, @) =sup 4 [ 16, 3, + Ol

29
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then, by the Hardy-Littlewood inequality [12], ge L2 Let
3G, (z
A= ﬂ Blydy = + = |
Since

Go(z—y)| 1 ™ 3G, (z —y) =
~—Efﬁhj]mh%+mﬂék~ar—aw
it follows that if x ¢ A,, then

. h
(7,2) lim [ " gy, y, 4 o) dedy =2

h>0 bx,,

)

(),

and also that
bGa(.’D —_— y) i h ’
(1,3) [ (e v+ dedy

1 ’ ’ ’ ’
=—h*f§G¢(x —Y's &t h—y) —Ga(a' — ', 2. —y.) | 8(y) dy-

Now let u = G,g exc. Az, and let A, be the union of all
lines parallel to the z,-axis which contain some point of

E[u(x) # Gog(z)|U E [Gelg|(z) =+ ©]. Then if zeA;UA,,
(7,2) and (7, 3) give

, I u(z', z, + h) —u(z, z,) — bGa*
(73)  lim ) )

du (z)
0x,

By (4,5), A; € Asa—s, and by the lemma at the end of the
last section, A, € As,_,. Hence, for every u e P* the deri-

so that exists provided that z € A;UA,.

. ou . . . .
vative vy exists in the pointwise sense except on a set of
Zz

(22-2)-capacity O.

We prove now the statement about absolute continuity.
If [ is any line parallel to the z,-axis and not contained entirely
in A; U A;, then there is a point zel—(A; U A,), and, as A,
is a union of lines, all points (z', z, + h) el — A,. It follows
that the right hand side of (7, 3) can be written as

2 [, 7+ B) — u(e', 2]



THEORY OF BESSEL POTENTIALS 451

and hence u(z’, z, 4 k), as a function of A, is an integral, and
therefore absolutely continuous.

Finally, to prove that D;u = (D,G,) * g exc. W,,_y; We proceed
by induction with respect to the number of indices in the
system j. We use an argument completely similar to the one
which led to (7,2), (7,3) and (7,3'). The kernel G, is now replaced
by D,G, and we use the inequality

|D;Ga()| = ¢[Ga(2) + Ga_ ()],

with a constant ¢ depending only on «,|j|, and n. Thisi nequa-
lity is deduced in the same way as (4,5), from (3,7), (4,1), (4,2)
and (4,3).

As corollaries of Theorem 1 we can now prove.

CororrarY 1. — If a > 2m, where m is a positive integer,

and if ge L2
(1 —A)"Gag(z) = Ga-:ng(2).
We apply here formula (4, 11).

CoroLLARY 2. — If m is a positive integer and g e L2,

(1 — A)"G,ng(z) = g(z), almost everywhere.

Proor. — The formula for derivatives of a potential in
Theorem 1 is not valid for orders |i| = a (). Since we have
to prove equality of two functions in L2, the simplest 1s to
compare their Fourier transforms, both of which turn out
to be g.

Corollary 2 shows that G,,(x —y) 1s a fundamental solu-
tion corresponding to (1 —A)". As was already mentioned
in § 6 (see (6, 6)), Gy, 1s the pseudo-reproducing kernel of P
For « = m the reproducing property can be put in a form
avoiding the use of measures:

CoroLLARY 3. — For u e P™ we have
m k - k
ue) = N (1) Y, [l =N gy exc 9, (),
k=0 |i|=k oy oy

(37) The formula 2%[ Gaglz) = '/‘%‘z—‘———y)- gly) dy for |i| = « can be made
valid if we consider the integral as a singular integral.

(®) A similar direct formula for arbitrary « is more complicated; double integrals
must be used.
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k
Proor. — Since %—L—f for |ij=k<m is at least in L? and
o o* . . .
—gf—"‘= (— 1)¥ —bG—f!', each term in the sum is a potential
@

of order = m. Furthermore the Fourier transforms of both
sides are obviously equal. Hence the equation is true almost
everywhere and since both sides are in P* our statement
follows.

In proving a converse of Theorem 1 we shall use a genera-
lization of the Frostman mean value theorem, 1), § 4. It
will be recalled that a part of the Frostman theorem asserts
that for each positive measure © the value of a potential
Gy, at a point z, is the limit of the averages of Gy over
spheres with center z, and radius converging to 0. In the
generalization of this theorem the spheres are replaced by
much more general closed sets, the essential point being
that the closed sets can be quite thinly distributed.

1) Let z, be a given point, and for each positive integer k
let Ay be a closed set contained in S(zy, i), where p, — 0. If
for some 8 <X « there is a constant ¢ >0 such that

(7’ 4) Y2ﬁ(Ak) = CY28 [S(xo; Pk)]’

then each A, supports a measure v* of total mass 1 such that

Guaft(%) = lim [ Guapr(y) dv* (y)

k>

for every positive Borel measure p.. A suitable choice for v*
is the normalised capacitary distribution for A,.
A similar result holds for each function u in P* exc. U,,.
2) For each point x and each positive integer k let A,(z) be
a closed set contained in S(z, py(x)) where pi(x) = 0. If for
each x there is a B < a and a constant ¢ >0 (both may depend
on z) such that (7, 4) holds, then each A,(x) supports a mearure

v& of total mass 1 such that for every function u e P*
= hmf ) dvi(y) exc. Wsq.
k>

A suitable choice for vk is the normalized capacitary distribution
for Ay(z).
The proofs of 1) and 2) are given in [15] for the special case
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f = «. In view of proposition 22) of the last section, however,
if the hypothesis (7, 4) holds for some B < «, then it holds
also for § = a (*). Indications of how thinly the sets A,(z)
can be distributed are given by the results on the nature of
the capacity of a set near the end of thelast section. Additional
results related to 1) and 2) can be found in [15].

. RemMark 1. — It 1s not necessary to require the sets A, to
be closed, provided the outer capacity v,, is replaced by the
inner capacity. Of course, either the outer or the inner capa-
city can be used if the A, are capacitable, in particular, if
they are analytic. In this case v* cannot necessarily be taken
to be the normalized capacitary distribution for A,, but rather
can be taken to be the normalized capacitary distribution of
some closed subset of A,.

3) If ueP?, then for each € >0 there is a set B, such that
Y:(B:) << & and such that the restriction of u to R*—B, is
continuous. Conversely, if a function u has this continuity
property and s equal almost everywhere to a function in P?,
then ue P2

Proor. — The first part of the proposition is evident from
proposition 2), § 2, chapter 1. The second part is proved
by showing that if v € P* and if u = ¢ almost everywhere,
then u = ¢ except on a set of 2a-capacity 0.

To see this, let ¢ > 0 be given, and let B, be a set such
that v,,(B.) < ¢ and such that on R* — B, both u and ¢ are
continuous. We may obviously increase B, to be an open
set with the same properties; we may therefore assume that
B. is an open set. Choose g. =0 such that ||g[i: << e and such
that G,g.(z) = 1 everywhere on B, and let

. =[Gt > 5 |

Then clearly D.DB. and v,,(D.) <<4e. Moreover, if z, ¢ D,,
then G,g.(z,) is not the limit of mean values of G,g.(y) over
the sets S(z, p,) N B. for any sequence p, — 0. Therefore

(®®) The proof of 1) is rather simple, the proof of 2) rather delicate. In many
applications the special case B = 0 is sufficient, and this special case is an almost
immediate consequence of the Frostman theorem itself.
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it follows from 1) (with § = 0) and the Remark 1 above, that

S(as, p) 1 Bel _, o
|S(@, ) ’

so that in particular, |S(z,, p) — Be| # 0.
Since u= ¢ almost everywhere, we have

[uly) dy = [o(y) dy,
S(xe, p) —B:  S(z, p) — B«

and, as both u and ¢ are continuous on R*—B, and as
|S(ao, p) — B¢| 5= 0, we can divide both sides by |S(z,, p) — B|
and let p -0 and conclude that u(z,) = ¢(,). ThlS shows
that u = ¢ outside D,, and since y,,(D:) < 4¢, 1t follows that
u = ¢ except on a set of 2a-capacity 0.

We can now state the converse of Theorem 1.

THEOREM 2. — Let ue L? and m be an integer, 0 < m < a.
The function u belongs to P* if the following conditions are
satisfied :

a) u is defined except on a set of 2a-capacity 0 and for each
e >0 there exists a set B,C R" with v,,(B:) <<¢ such that u,
restricted to R*—B, is continuous.

b) All derivatives Dyu of orders |j| < m exist when determined
successively pointwise in the ordinary sense each one except
on a set of corresponding (2a-2|j|)-capacity 0; each derivative
of order |j| < m s absolutely continuous on all lines in the
directions of coordinate azes except a set of such lines forming
a union of (2a-2|j|-2)-capacity O.

¢) All derivatives of order |j| = m are in P*—™,

Proor. — One could give different proofs of this theorem
(for instance by using the theory of distributions and propo-
sition 3). The most direct, perhaps, is the one using regula-
rization. If u, = e;»u, then, by using partial integration
one gets successively for all |j|<m

Dju, = (Dje,) »u =e,+ Dju.
Hence, for |j| = m, since Dju e P*—"C L2,

ﬁ,zp (2m)"* (i) e, i = (2m)"e, D,u.
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It follows that Du= (i)"¥d and, DueP*" uel? gives

(since (14 [E[#)*<<2*[1 4 J&™(L + |&]*)*—™]
Sl (44 ()= dE < 20 [1aP[L+ (1 + [El) ] d
=2 JIar 1+ 3} @R+ )] <o

Therefore u is equal to some u’ e P* almost everywhere and
by proposition 3) and condition a), u € P%.

ReMark 2. — Our proof shows that condition b) can be
considerably weakened. In this condition it is enough to

. . 0 .
assume that for k=1, ..., n, the pure derivatives E’s., < m,
k
are equal a.e. to functions absolutely continuous on almost

all lines parallel to the z,- axis. Correspondingly, condition c)

can be (and should be) relaxed as follows: all derivatives

%::—l,:, k=1, ..., n are equal a.e. to functions in P*~™. In the
k

last formula of the proof the inequality would be

Jrura-igpr a2 flan] 14 3 e+ pnds | <.

Remark 3. — Theorems 1 and 2 and the preceding remark
allow a simple direct characterization of functions ueP*
without using the Fourier transforms. To this effect we take
m = the largest integer < «. The function u should be in L?
and satisfy condition a) of Theorem 2, the derivatives 21_;

k
1< k=< n,|j|< « —1 should exist pointwise and be equiva-
lent to absolutely continuous funtions except on a set of
lines of measure 0 and 2%: for each k must have a finite

k
Dirichlet integral of order a—m (if a=m it is just
f ’?’%’El‘dz> This integral, for « > m, 1s given by (1, 4).
k
The norm ||ul|, is given by (7, 1) where ||D;u|z—, are given
directly by any of the formulas (1, 10); (4, 9), or (4, 10).
The next proposition is obtained immediately by using
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Fourier transforms, proposition 5), § 2, and the corollary to
proposition 2) § 2.

4) If ueP**', then for every unit vector e and every real
number h,

u(z 4 h;) — u(z) Lé [e]a . +-

Conversely, if u e P* and if for each vector e in a basis for R*
there is a constant M such that for every real h

u(x + he) — u(x)
h

<M

(2

then u ts equal except on a set of 2a-capacity 0 to a function in P***,

§ 8. — Restrictions to subspaces.

The purpose of the section is to characterize the restrictions
of the functions in P* to a subspace R*C R”. In accordance
with conventions, quantities associated with R* are primed.
In addition, if u is a function defined on R*, u’ denotes its

restriction to R*.
n—k

Taeorem 1 a. — IfueP? 2a > n—k,thenu' e P’ (R¥)

and
I‘(a—"_k>
" 2 .
] ai = |Juel 2

n—k

2~k * [(a)

(8 1)
k—n
(ﬁ'(E’) = (2n) * ﬁn_k a(E’, £")dE" almost everywhere.

Proor. — For u € P%, let Tu denote the function on the right
side of the second formula in (8, 1). We shall show first that
Tu(t’) is defined almost everywhere and that if

ol = (4 + 5D 7 |wp
then

n—k
[(a—
(8,2) [T §<——2—>IIMHZ-

n—k

2"—kr * [(a)
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If we applythe Schwarz inequality to the product (L 4|Ep)—.
(1 + |EF)** G(5) we obtain (at first with @ replaced by |u|
in order to show the absolute integrability of the functions
involved)

Tu@)P < @ep= [ o [+ P0G

(2 i S
== jnn_k(i o f RG]

n—k
Multiplying by (1 + ]E'|’)aL * and integrating with respect
to &', we get (8, 2) and also the fact that the integral for
Tu(%’) is absolutely convergent for almost all &'.

Now, if u € C (R"), then, as is well known, Tu is simply #@’,
Let u be an arbitrary function in P* and let {u,}{ be a sequence
in C7(R*) which converges to u in P* and pointwise except
on a set of 2a-capacity 0. The inequality (8, 2) shows that

_n—k
T2

fum} is Cauchy in P’ (Ry), and the second formula in

6, 10) shows that u, — u’ pointwise in R, exc. Wiy, ts.
’ ’P n+k

_”—
2

This proves that u'e P’
n (3, 1).

From the fact that Tu,— Tu relative to the norm |||w/l|,
and therefore relative to the L2 norm, it follows that for some
subsequence {uy}, Tu,((') = Tu(f') pointwise almost every-

(R*) and also the inequality

where. On the other hand, since u,, >u'In P * | 4, >4
in L2 and hence some subsequence converges to @’ almost
everywhere. Therefore, since Tu, = i,, we have Tu=1a'
almost everywhere.

Tueorem 1 b. — If u' <P*” (R") 20> n—k, then the
restriction of the function ueP* whose Fourier transform is
given by

T ()T
5 2 (e) (A .
8, 3 = 5
( ) u(E) I‘<a__n_'k) (1 _|__ IEI )a u (E )
2

is u’, and for this function u equality holds in (8, 1).
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Proor. — Inspection shows that any function whose Fourier
transform 1is given by (8, 3) is equal almost everywhere to a
function u € P%. The second formula (in 8, 1) shows that the
Fourier transform of the restriction of u to R* is @', and hence
that the restriction of u to R*is equal to u’ almost everywhere,

a_B=k
and therefore, since both functions belong to P~ * (R¥)
except on a set of sy, ;. Computation shows that for these
u and u' equality holds in (8, 1).

Remark 1. — Formulas (6, 11) and (6, 10) show that if
U’ = Gig— i for some measure . € Q;,_,,, (* may even be
a signed measure, i.e. in Q;y_, ., — Q.. ,) then the function
u defined by (8, 3) is simply

n—k

2"k * [(a) Gous
n—Fk\ **

Next we give a generalization of Theorem 1 b to the case
in which not only the function but also certain of its normal
derivatives are given on a hyperplane R*~! (in the previous
notations we now put k = n—1). In the formula we make
use of a system of functions ¢,(t) biorthogonal to the powers
of t on (— o, + o) with respect to the weight function

(14 ¢)~* To be explicit, let r be an integer << a—--;— and
let ¢, be the polynomial of degree <X r which satisfies

&9 [ fE=3. 0<pos<r

TueoreMm 1c. — Let r be an integer <a——;~ and let

1
vaPa—p—’ (R*1) for p=0,1,...,r. If u is the function.
in P* whose Fourier transform is given by

(8, 5)

SN o NI
) Mhﬂkwg?* TENERE %Qq;ﬁﬁmm
then

8,6 T _ o) for p=0,14,...,r,

dxh
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and there is a constant ¢ (depending only on « and r) such that

8,7 lulls < e Z lloalle—p2-

Moreover, u is the function in P* with minimum norm satis-

fying (8, 6).

1
Proor. — From the fact that o, P" "~ * (R*~") 1t follows
that the product of each summand in (8,5) by (1 + |§[2)**
i1s square integrable over R" so that by proposition 5) § 2,
there does exist a function u € P* whose Fourier transform
is given by (8,5) and whose a-norm satisfies (8,7). The
constant ¢ can be taken to be 2n(r + 1) max f 2p(0f :it
P (14 )

Theorem 1 a (and Theorem 1 of the last section) the Fourier

transform of & %@, 0) is

bx"
(2m)1f2 f_ ()P 4(E) dE,

which, by (8 4) is easily shown to be ¢,(§'). Therefore

op"i—ub:p 2') almost everywhere, and since both are in
a—p— 0 O ’ ’
PP (Re-), —“g—;—)= 0p(@) exc. Waa_spse

In order to prove that wis the function with minimum «-norm
among all functions in P* which satisfy (8, 6), we have to
prove that wu is orthogonal to all ¢eP* which satisfy
g
oz,

transform, the problem is to show that
S+ ERraE)iEdE=0
for all ¢ which satisfy
[@EPSEE=0 for p=0,...r

This is immediate, since ¢, is a polynomial of degree < r.

2',0)=0 for p=0,...,7. In terms of the Fourier
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Remark 2. — It 1s easy to see by the same argument that
if r4 —21—< B < a, and u is determined by (8, 5), then

(8 8) lally < e Xy ledl, s

where ¢; depends on a, 3, and r. This shows (interchanging
the roles of « and () that Theorem 1 ¢ can be strengthened
in the following way:

Suppose that BZa>r—|——2— and that for p=0, r,

6, PP P (R1-). Then there exists e PP such that (8, 6)
and (8, 7) hold.

In the next propositions we will use the following notations :
as before 2’ denotes the first k coordinates of z as well as the
corresponding point of R¥; z” denotes the last (n—¥k) coor-
dinates of = as well as the corresponding point of R*~* —the
subspace where 2’ =0. If E is a subset of R", E, denotes
the set of all 2” such that (2, ") e E. If fis a function in R,
f,c is the function on R*~* defined by f.(2’) =f(', 2"). By

sas Yaas €tc., are denoted the classes, functions, etc., corres-
ponding to R"~

1) If ACR" and A ey, and if 0 B<a then, for all z'
exc. Wa_spy As € Wsg.

2) If ueP*(R") and 0B < a, then u,ePB(R*¥) for

all ' exc. sy _sp.
Proors. — We assume first that 0 < < a. Consider
*—8
ueP*(R?). The function A(f)= A+ * L+ a 8 i

is in L2 and. ||Af|e: < [|(1 + |E[*) * @]is, hence its inverse Fourier
transform h(z) satisfies

(8,9) [1A(@) e = |t a-

. a8 -8,
Since 4(8)=(1+%'1*) * (1+¥]*) *h(E), by using the kernels
Ga_p and Gg corresponding to spaces R" and R*~* we can
write

(8, 10)
u(z', 2') ﬁk no—i Ga—p(@" — ¥)Gg(z" — y")h(y’, y") dy’ dy".
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This equality 1s at first valid only almost everywhere. Howe-
ver, if we apply the above formulas to the regularized functions
U, = e,*u, the corresponding h, is obviously e,xh and the
equation

(8, 10")
(&, ") = [ froms Gompl@’ — ) Gh(e' —y) ely', y") dy dy”

is valid everywhere. We put now

hé?)(y") = [j;n—klhp (y’7 y”)l’dy”]

u,(2', &) = [oo_ Gh(a" — y")w(a’, y")dy',
lueerlly = o, ") dy”
= [roee Jue Ju Gompl@ =) Glmp@’ —2 Vo y Ve, y") dy’ dz’ dy’
<[ fu Gapla’ — y)bin(y) dy' |,
8,11)  lupallp < [, Gimpla’ — y")hin(y’) dy'.

Similarly, for u, — u,,, putting

o) = [ Jrusl ety ¥ — bl 9y’ ]

W(.G)(xl’ y') = RK G;—B(x’ —Y) hp(y,’ y")dy',s
l_
2

and get

we get
(8, 11")  Jtpe — e ollp = Joi Gamp(@” — y' )R, 0, (y") dy'.

Since h, ;, converges to 0 in L*(R*) when p and p, -0, we
can choose a sequence p, \ 0 such that the series

0(@) + Y Ko (@) = H(a')

converges strongly in L2(R*¥) and hence the sequence
{up, -} converges in PF(R*~*) for all 2’ R* except where
Ge_pH'(2') = + o i.e. except a set B’ € As,_,3. For each 2
outside of this set we can then choose a subsequence {u,, .}
converging pointwise in R*™* except on a set B e Asg.

To prove proposition 1) we replace u by v = G,g, g e L*(R"),
g =0, such that ¢(x) = 4+ o for zeA. Then ¢ (z) > ¢(x)
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everywhere in extended sense and now, denoting the above
sets B’ and B,y by A’ and A{,, we get A, CA{,, and hence
A, e Asg except for 2’ e A" e WAz

To prove proposition 2), denote by A the set where u,(z)
does not converge to u(z). Using proposition 1) we find a set
A’ e A;,_,p outside of which A, e Asz. Then, for 2’ ¢« A’UB’,
U, »(x") converges pointwise outside of A, to u,(z") and
hence u,(z") coincides with the limit of {u,, .} in

PE(R"—*) exc. Ag.

We still have to settle the extreme cases: 1) 0 = f§ = a,
2)0=08<a, and 3) 0 <P =a. The first is trivial. The
last two cases are treated like the general one : we must remem-

ber only that the operator Gy reduces to identity for 6 = 0.
For instance,
for 0=08<a (8,10) becomes
u(z’, ") =AkG;(x'—y')h(y', z") dy’

for 0<B=a (8, 11) becomes ||ux.ls =< hp(z).

As special cases or corollaries of proposition 2) we mention
the following:

2a) 0 < = a. Almost everywhere in R*, u, e« P*(R*~%).

2b) 0=8<a. Except on a set of 2xz-capacity 0 in R,
uy, € L2(R*—%),
20) I «>"7 k
in a set of 23-capacity 0 in R* for any § < a—

» Uy s continuous in R"~* except for 2’
n—k
2
It should be noticed, however, that if a_Z_—;i we obtain
_k
from 2) that u, e P’ (R*—*) except on a set of logarithmic
capacity 0 in R* whereas we know from Theorem 1 a that

a—k
uyeP  *(R**) for all 2’ € R~

§ 9. Functions locally in P* on an open set.

If D is an open set, P%, (D) denotes the class of all functions
on D which belong to P* locally, that is, the class of all func-
tions u defined on D exc. A, such that each point of D has
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a neighborhood on which u coincides with some function in P*,

Many results about functions in P2 (D) are immediate conse-

quences of results already proved about functions in P*. For

example, if u e P% (D) and if |{] < «, then D,u exists in the

ordinary sense exc. Ny,—5);; and belongs to Pg~1(D). Or, if

uePi (D) and if 2« > n—k, then the restriction of u to
e

k
DNR* belongs to P.. * (DNR¥). In this section we give a
few results about Pg (D) which are not so obviously covered
by the earlier theorems.
1) uePg (D) if and only if for each compact K D there
exists a function ux € P*(R") which coincides with u on the

set K.

Proor. — The first half follows directly from the definition
of P¢. To prove the second part we use the method of parti-
tion of unity.

We choose a locally finite covering §{U;} of D by open sets

such that U;cD and that each U; be sufficiently small so
that there exists a function u; € P*(R") coinciding with u
on U, We take then a partition of unity corresponding to
the covering {U,} i.e. functions ¢; € C5(R,) with values bet-
ween 0 and 1, such that each ¢; vanishes outside of U; and that
Yg,(z) = 1 for each zeD.

We take now those U, ..., U, which intersect the compact
K; there is only a finite number of them. The function

?iluil ¢ + ?iluil

is then the desired function ux. In fact, by proposition 6)
§ 2, each qu; e P*R,). Then for zeD, gu = qu; and for
zeK, g@)u@)+ .. + eu@)ua) = ulz)in() = ule).

As corollaries from 1) we get

1') If uePz,(D) and ¢ €« C** ) and has a compact support
in D then qu, when extended by 0 outside of D, belongs to P*(R").

Here again we use 6) § 2.
1") If u has a compact support in D and we extend u by 0
outside of D, then u e P¢,(D) if and only if u € P*(R").

As we already mentioned before, Theorem 1, § 7 on diffe-
rentiation has an obvious extension in a localized form to
Pgz(D). The extension, however, of the converse, Theo-
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rem 2, is not so immediate. We prove it here under the weak
hypotheses stated in Remark 2, section 7.

2) Let m be an integer 0 < m < a. The function u belongs
to P¢.(D) if

a) u is defined in D except a set of 2a-capacity 0 and for
each e >0 there exists BeC D with v,,(Be) < €, so that u res-
tricted to D-Be is continuous.

b) AUl pure derivatives :—i—;, k=1...,n 7j=0,1,..., m,
exist pointwise almost everyv:)here and all those of order | < m
are equivalent to absolutely continuous functions on almost
all lines parallel to the corresponding z,-axis (4°).

u

m
k

equal to functions in PZ™(D).

¢) The derivatives » k=1, ..., n, are almost everywhere

N Proor. — The first step is to prove that all the derivatives
u
2
] = mbyc). Toshowitforj < m we have to extend a lemma
by Nikodym [13 b]. We introduce the following notations :
Let Q be the closed cube 0 < 2, < a, k=1, ...,n, Q, the
face of Q lying in the coordinate hyperplane orthogonal to
the z,-axis, 20 a variable point in Q,. A point z in Q will
be written (z®, z;) for any k.

» J=1,...,m are locally L? in D. This is true for

Lemma. — Let u be defined almost everywhere in the n-dimen-
stonal cube Q. Suppose furthermore that for each k, 1 < k < n,
and for almost all 2™ e Q,, the derivativesy—u%(;;’—x"), ]j=0,1,
...,m—1, are equivalent to absolutely continuous functions
in 0< z,<a. Then, if each‘;:fj, k=1,2, ...,nis in L3Q),
all the derivatives bj—Lﬁ, k=1, 5, ..

are in L*(Q). O

sn J=01,...,m—1

Proor. — We use induction with respect to the dimension n.
For n = 1, the theorem is obviously true. Suppose that it
is true for dimension n—1 and fix an index k, 1 < kS n.

(%) The last condition means that for almost all such lines [ intersecting D the
derivatives are absolutely continuous on every closed segment contained in I n D.
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By our assumptions it is clear that we can find a function
pi(@®, z,) defined for almost all 2®eQ, and which is a
polynomial of order <m—1 in =z, such that if u,(z) is
defined by

(9,0)  u(a™, ) = pu(a®, z)+ fzkom u(z®, t) (z ((m —t)i..)_!, N

then

(9,0 Yua) _ b—j——-} almost everywhere in Q for j=0,1,.

M:f oz

Consider the (n — 1)-dimensional cubes obtained by inter-
secting Q with the hyperplanes z;, = const.,, 0 z, < a. It
is clear that by the hypotheses of our lemma, for almost
all z, in [0, a] the function u satisfies in these (n — 1)-cubes

the conditions of our lemma with respect to the n — 1 remai-
ning variables. Hence we can find m distinct values g,

0<a<...<ap< a such that

9,1) S‘ﬁh |ux(2®, a)|* da™ = Zﬂ)k |u(a®, @) dz® < co.

For almost all z® in Q,, pi(@®, t) can be determined by
its values at t=a,, ..., a, (we use the Lagrange interpolation
formula). Therefore, from (9. 0) we get

(9,2)  wla®, m) = f; k bmugf,":), t) (T:n:t):)—!l dt

N g@) u a;) — “ A" u(a®, ¢) (@ —t)" "
2 e e = ), g 4]

i=1

where ¢(t) is the polynomial | [ (¢ — a;) and ¢’ is its derivative.

By taking in (9, 2) the derivatives % for j=1,...,m—1
7

we derive without trouble an evaluation

03 3, [Pl an <
u(z®, mk)zd \ 2. a. z]
o| [P o 4 3wt a

30
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with constant ¢ > 0 depending only on the ais, a, m, and n.
Integration in (9, 3) with respect to a2® over Q, and (9, 1)
together with (9, 0’) gives then the lemma.

Going back to the proof of proposition 2), consider a compact
KCD and a bounded open set UD Ksuchthat UC D. Take
¢ € C3(R") such that ¢(z) =1 on K and ¢(z) =0 outside
of U. We write v = gu extending this function by 0 outside
of D. It is obvious that ¢ e L2(R") by the above lemma, that
condition a) of theorem 2, § 7 is satisfied and that condition b)
of this theorem in the weakened form of remark 2 is satisfied
also. However, condition ¢) of the theorem, even in the
weakened version of remark 2 presents still a problem. Let
us write

vy _Fqu __ ¥ 2w M
(9, 4) oy R ?bxz'+(1>bx,‘ bx”'+ +

The first term is equivalent to a function in P*~™ but the best
we know about the remaining terms, by the above lemma,

is that they are in L2 Hence%;m e L? = P’ and by theorem 2

(for « = m) v € P™ and so u e P2 (D).

Suppose that we know already that u e P§,(D) for some 8
with m < B < a. Then by (9, 4) and theorem 1, § 7 (applied
to %Jij with j = m — 1) we get that %—: is equivalent to a
function in P% with Bp =min (¢ —m, § —m + 1). Again,
by theorem 2, remark 2, it follows that ¢ is a potential of order
min(a, B + 1 and hence u is locally such a potential. This
procedure allows us to reach stepwise (in a number of steps
smaller than &« — m + 1) the stage where min(a, § 4+ 1) = &,
when the proof will be done.

For later use we record a similar proposition (with a similar
proof) which gives sufficient conditions in order that a function
on D be equal almost everywhere to a function in Pg (D).

2") If a measurable functwn u defined almost everywhere on D
satisfies conditions b) and c) of proposition 2, then u is equal
almost everywhere to a function in P (D).

A transformation is said to be of class C™ " on an open set
if each of its coordinate functions is of class C™ " on the open
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set. A transformation is a homeomorphism of class C™"
if both the transformation and its inverse are of class C™".

3) If T is a transformation of D* into D which is locally a
homeomorphism of class C®" then for each ueP%(D) the
function T*u(z) = u(Tz) belongs to P (D*). If a=>1, the
partial derivatives of T*u are calculated by the usual formulas
for the partial derivatives of composite functions.

Proor. — By a classical theorem of topology, T transforms
open sets on open sets (). Therefore, it can be assumed
(by restricting ourselves to a subdomain of D*) that T is a
homeomorphism of class C*"". Also, by multiplying u by
a function ¢ € C(D), it can be assumed that u has compact
support in D. Hence 1t 1s sufficient to prove the following
statement (which is a special case of the proposition).

4) Let T be a homeomorphism of class C*"" of D* onto D,
and let U be a relatively compact open subset of D. Then there
is a constant ¢ such that if u e P* and u vanishes outside U, then

T*u e P* and ||T*u|le < c||ufe.

Proor. — If u is of class C*"" then T*u is also of class
Ce»", so, by proposition 5) § 2, T'u e P*. In evaluating
the norm of T*u, formula (1, 5) is used. For integral values
of « the existence of the constant ¢ is obvious from the classical
formula for the transformation of multiple integrals. For
non-integral values of a the double integral over R" is domi-
nated by a sum of integrals

/Y R S LY B

The first of these is 0, since u vanishes outside U. The
second is easily seen to be dominated by |T*ul,. (the constant
depends on the distance from U to the boundary of D), and
hence by |ul,. Finally, the evaluations that were used in
the proof of proposition 6) §2, and the classical formula for
the transformation of integrals show that the third is also
dominated by |ule. Thus, the proposition is proved for u
of class C*" ", Itis proved for arbltrary u by using approxi-
mations of class C®""9. The approximating functions can

(%) If a* > 0, the implicit function theorem can be used. here, but if a* = 0 the
theorem of Brouwer is needed.
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be chosen to vanish outside an arbitrary neighborhood of U,
and the above results applied to this neighborhood.

Proposition 3) shows that Pg, (D) is defined not only when
D is an open subset of R", but actually when D is an open subset
of any differentiable manifold of class C*""». This fact will
be important in chapter 1v, part. 11.

To finish this section we prove that some general potentials
are locally in P%.

Consider a measure p. (in general a signed measure) for which
the potential G, has a meaning. Following (6, 4) this requires

——n—l

9,5) [f(t4lal) T elelldu(a) < .
In general G,(z) is defined and finite exc. Ay, (see 18), § 6).

However, more can be said under additional assumptions.
5) If sattsﬁes (9, 5) and in some domain D, di.(z) = g(x) dx
with g e Pﬁc ), then u = Ggu. restricted to D is in P;’.‘,;*p(D)

Proor. — Take any bounded open set U with UCD and
take ¢ € C7(R") and such that ¢(z) =1 on U and ¢ vanishes
outside of a compact lying in D. Then dp =9gdz+ (1 —¢)dp

and

(9,6) Guu(z fG (z—y)9(y) 8ly) dy
+fG z—y) (1—9(y)) dn(y)

Since pg e PE(R"), the first potential e P*+8(R"). In thesecond,
there are no masses in the open set U and hence the second
integral is an analytic regular function of the n variables

= (@, ..., 2) in U (). It follows from 2) that the second
lntegral belongs to all classes P}, (U) and thus u e Pg;E(U).
Since u is an arbitrary open bounded subset of D we get our
statement.

ReMARk. — A statement similar 5) can be proved concer-
ning more classical potentials such as newtonian or more
generally Riesz potentials R, corresponding to the kernel
Rq(r) = Cor*—" (8).

(%) To see this, in the integral replace the variables z; by complex variables z,

which is possible since G.(r) is an analytic function of r regular outside r = 0.
(#) For a > n, and @ — n an even integer, this definition of R, should be changed

by putting a factorlg 2 and adding similar terms of lower order in r.
r
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Since for @ < n, up to a constant coefficient, Rq(r) is the
principal term of the development of G,(r) around 0, both
kernels together with all their derivatives behave alike in
any fixed bounded set (**). It follows that when the measure
¢ (or density g) have compact support the potentials R,
and Ggp behave alike in every bounded domain as concerns
sets where they are defined, or differentiability or the transfer
of differentiation under the sign of integral. The essential
difference between the potentials R,y and G,u is in their
global behavior; R,u is much less manageable than G,p.. This
is'due to the fact that the kernel R,(r) is never in L? or in L1.
n
2
and L2 outside of the sphere, which allows the use of classical
theorems in Fourier transforms for the corresponding potentials
of functions in L2.

Coming back to the extension of 5) to R, we notice that
the condition (9, 5) should be replaced now by

9, 7) [ + lal)y—rdp(z) < oo ().

Replacing (9, 5) by (9, 7) in the statement of 5), and u = G,
by u = R,p, the proof proceeds in the same way (with G
replaced by R). The second integral in (9,6) is again analytic
in U. The first, however, causes more trouble, and we must
use proposition 2). To this effect we differentiate (which
we may do) m times under the integration sign, m being such
that 0<a—m<%-
D,R, are then in L in a sphere and in L? outside of a sphere
which allows the application of classical theorems to the Fou-
rier transform of D;R,(pg) and we obtain

D,R.(38) = (2m)"* DR, (3g) = (i)"|E|~* (98).

However, for « << —, the kernel is L! inside a sphere r < r,

The resulting differentiated kernels

Since qjgis an entire function and (1 4 |E|2)@’2§§ is in L? and
since |j|=m, |¥ ™ 1957 < |§|™* it follows that

(4) For a > n, these facts are true only for derivatives of orders > a — n but those
of lower orders are continuous at 0.
(%) Or the corresponding expression when « — n is an even non-negative integer.
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¢+Q—m/_
L+E2 ° DjRa,@) is in L2 hence D;R,(pg) e P*+E-—m
which makes it possible to apply 2).
This line of proof leaves out two exceptional cases: n = 2,
@ an integer and n = 1, « = k + «’ with k integer and

12< o' < 1.
Another way of proving that R,(¢g)ePP(U) which

loc

avoids the exceptional cases is to prove it first for small «,

I<a<< % We then wuse the composition formula
R, =R, *Rg*---*R,, with a=oa; + --- 4+ ap, 0<a,,<—;‘—.
We have successively R, (¢g) e Pir+8(U), R, _ *R.. (38)
Pgn-*on*B(U) and so on till R,(gg)eP2rB(U). Since the
composition formula i1s valid only for «a < n, for a >n
we have to replace it by an approximate composition formula
where the composition is taken not over the whole space but
over a sufficiently large sphere containing U. The result
of the composition differs then from R, by a function regular
in U and thus the proof can be achieved.

§10. — Relations between the classes P* and L.

In this section we establish the L? class to which a potential
G.f, fel?, p=1, belongs. When p = 2 we obtain the L?

class to which the functions in P* belong.
1) If fel?, p=>1, then Gof € L? for every q = p satisfying
1 o 1 o

1 .
_—=— ) >1 and ———0,
g f . f ’ 11) .

o . o
—_—>——— l =1 or ———=0,
q P n f P p n

and there is a constant M depending only on a, n, p, and q such that
|Gaf ll? < MI|f||e>.

Proor. — A classical theorem of W. H. Youne states that
if %+%21, 1<r< o0, 1< p<co, %=%+%_1
and if ue L’ (R"), ¢ e L(R") then

leax ol e < {]aal ol ] |-
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1

Since G, e L'(R") for every r =1 with —> 1—% we get
immediately for any ¢ = p satisfying 1 > —:7———%
GFlhs < Gl with =T —L 41,
This gives the statement (with M =||G,||r) except when
-;- _1 ——in >0and p>1. In this case, however, Soboleff’s
theorem, [15 b] or [14], states that
IRaflle = M|fllee.
%ma<%<nmdm@g&@JHwWMMt
|Gaflle < M[fllee,

which finishes the proof.

CororLLArRY. — P*C L7 for every q =2 satisfying

11 2 i ezl %>0 if  a=

n
q = 2 n 2

§ 11. — Comparison of the class P* with various other classes.

In the present section we are going to compare our potentials
of order « with other classes of functions introduced and used
previously by different authors. These are essentially the
classes of Riesz potentials of order « <for o< —%>, the (BL)-
classes and the classes H* = W* = W¢? for « a non-negative
integer. We will not give proofs in the remarks which follow;
most of these proofs rely on arguments similar to those used
in preceding sections.

1. The Ruesz potentials of order a. — These were introduced
by the present authors in [1] for @ << n/2 as the perfect func-
tional completion of the class C; with respect to the Dirichlet

norm of order a, \/d,(u). They were also introduced by
J. Deny [8] as potentials of magnetic distributions of order
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200 which form the completion of the class of signed measures
of finite 2a-energy with respect to the energy norm. For
a > nf2, C5 does not have a functional completion with respect
to the norm Vd,(u) (see 2), § 1).

By using the same kind of computations as those which
lead in § 1 to (1, 5) (or (1, 10)) we can give a direct formula
for d,(u) without using derivatives, for u e C;. To this effect
we introduce the k-th differences of u(z), A*u(z,z, ..., z)
as follows.

(11,1) A%u(z) = u(x),
A u(z; 2y ..y Zhy Zip) = AFu(z; 2, ..o, 2)
— Au(@ + zi415 21y -y Z)-
We then take any decomposmon a=oa, + -+ + a,
0 < o; < 1 and obtain

(11, 2) e |
381y« + + 93k Is 46
a (u HC n, ai ﬁn f;nlzlln-psa, Izkln_‘_%akdxdzl dz,,( ).

In this way d,(u) has a meaning for all measurable functions u.
We could be tempted to consider those u for which (11, 2)
is finite as Riesz potentials of order «. However, on the class
of all such functions \/d,(u) is a pseudo-norm; it is 0 if (and
only if) u is equivalent to a polynomial of order < k. It can
be proved that this class is independent of the decomposition
«a=a + ... + « except for the adjunction of additional
polynomials when we increase k.

Let us call the class of u with (11, 2) finite F**. Obviously
Au(z, zy, ...,2) is L2 for almost all systems (z, ..., z).
From this, by an inductive argument as in Nikodym’s lemma
(see § 9), we can prove that ue L}, (R").

If « < n/2 it can be proved that F** admits of a direct
decomposition,

(11,3) F** = [polynomials of order < k] + C7,

the second class being the functional completion of C{ under
the norm (11, 2) relative to the class of sets of measure 0,

() A similar formula, using higher differences instead of derivatives can be
obtained for ||u||Z. The reason such formulas are not given in the main text is that
they do not lead in a simple manner to norms in subdomains of R".
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i.e. the class of all functions equivalent to Riesz potentials
of order «. Such decomposition is no longer possible for
ag%-

Our space P* is a subclass of F** A function u in F**
which is equivalent to a function in P* is characterized by the
simple fact that u e L2. Each function in F** can be proved
to be equivalent to a function in P%(R"). We can consider

as the essential part of F** the subclass F** of P2 (R") with
finite (11, 2). If we add 'ﬁlur dz to (11, 2) for a fixed bounded

set of positive Lebesgue measure, we obtain a quadratic norm

which makes F** into a complete functional space. This
space is the perfect functional completion of C*(R") N F**
with respect to this new norm. For a > n/2 it will be a proper
functional space.

2. (BL)-classes of order a. — These classes were introduced
first for a=1 by O. Nikodym [13 4], for « a positive integer by
J. Deny [8], and for arbitrary a by J. Deny and J. L. Lions [8 a]
as a special case of much more general (BL)-classes which,
besides those which are akin to our spaces P* contain many
other important classes. They are divided into two cate-
gories : those « in large sense » and those in « precise sense ».

Those in large sense akin to our P* (which we will denote by
(BL),) were formed explicitly for « an integer by assuming
that the derivatives exist pointwise a.e. (original definition)
or that they are taken in the sense of distributions and that
the last derivatives (of order « when « integer, of order a*

when « is not an integer) have a finite vV dy—q, norm. These
classes are essentially the same as the above classes F**
except that the latter contain polynomials of higher order
and that in the original definition the exceptional class of
sets was somehow smaller than the sets of measure 0 (see [8 a]).
The classes in precise sense differ from those in large sense
only by the fact that their exceptional sets are taken smaller
than in the original, namely they are sets of 2-capacity 0.

Spaces H* = W™ = W2 m positive integer. — These spaces
are used by many authors working in partial differential equa-
tions (the notation depending on the author). A function u

31



474 N. ARONSZAJN AND K. T. SMITH

belongs to H™(R") if it 1s L? and has strong derivatives in L?
sense of all orders < m.

The space H™ is exactly the functional completion of C7
with respect to our norm |u|, or ||u||, relative to the class of
all sets of Lebesgue measure 0. It is therefore an « imperfect »
version of P™.

GeNERAL REMARK. — All functions in the above considered
spaces are equivalent to functions in the corresponding P*
or P¢. We can always replace the former by the latter
for which all our results concerning differentiability and res-
trictions to lower dimensional spaces, etc., are valid. This
replacement can be very easily achieved by considering as
the corrected value of the function u at a point z the mean
value limit

lim |1§| u(y) dy = u'(2)

for spheres S with center at z, with radius converging to 0.
The corrected function u’ is defined wherever the limit exists
(in any case a.e. if u is locally integrable), it is equivalent to u
(when u e L},) and belongs to P* or P, whenever u is equi-
valent to such a function.
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