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ON CONTINUOUS FUNCTIONS WITH
NO UNILATERAL DERIVATIVES

by Masayoshi HATA

1. Introduction.

It is known that A. S. Besicovitch in 1925 gave the first example of
a continuous function B(x) which has nowhere a unilateral derivative
finite or infinite by geometrical process. E. D. Pepper [9] has examined
this same function B(x), giving a different exposition. The graph of his
function is illustrated in Figure 1. Later, A. N. Singh [12, 13] gave the
arithmetical definition of B(x) and constructed an infinite class of such
non-differentiable functions. On the other hand, A. P. Morse [8] gave
an example of a continuous function f(x) satisfying

liminf^-^
S-.X± S-X

< lim sup f(s)-f(x)
s-^x± S-X

= 00

respectively, for every x e (0,1), by arithmetical process.

It seems, however, that their methods are somewhat complicated
and inappropriate to the study concerning further properties of such
functions. In the present paper we shall develop a simple but powerful
method to construct and analyze such singular functions by using
certain one-dimensional dynamical systems.

The difficulties of finding such functions may be explained by the
fact that the set of functions which have nowhere a unilateral derivative
finite or infinite is of only the first category in the space of continuous
functions (S. Saks [11]), while the set of functions which have nowhere
a finite unilateral derivative is of the second category (S. Banach [I],
S. Mazurkiewicz [7] and V. Jarnik [5]).

Key-words : Non-differentiable functions - Knot points - Functional equations.
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Fig. 1.

2. Main Result.

To state our main theorem, we need some definitions and notations.
We denote, as usual, the upper and lower derivatives at x of a real-
valued function f(x) on the right by D^x), D+f(x) respectively.
Similarly the upper and lower derivatives, on the left, are denoted by
D~f(x)^ D-f(^) respectively. A point x is said to be a knot point of
f(x) provided that

D^f(x) = D-f{x) = oo and D^f(x) = D,f(x) = - oo .

The set of knot points of f(x} is denoted by Knot (/). For a measurable
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set E, we denote by \E\ the Lebesgue measure of E. Our theorem can
now be stated as follows :

THEOREM 2.1. — For any ae[0,l) and £€(0,1), there exists a
continuous function v|/o^e(x) defined on the unit interval I sayisfying the
following properties :

(1) ^eM has nowhere a unilateral derivative finite or infinite ;
(2) | Knot (vU I = o c ;
(3) vl^eM satisfies Holder's condition of order 1 — e.

Remark. — K. M. Garg [3] has shown that the set of knot points
of Besicovitch's function is of measure zero. He also showed that, for
every continuous function defined on I which has nowhere a unilateral
derivative finite or infinite, the set of points at which the upper
derivative on one side is + oo, the lower derivative on the other side
is - oo, and the other two derivatives are finite and equal has a
positive measure in every subinterval of I ; therefore the constant a in
our theorem can not be taken to be 1. Note that the set Knot (/) is
of the second category if f(x) is a continuous function which has
nowhere a finite ,or infinite derivative (W. H. Young [14]).

As a corollary, we have immediately

COROLLARY 2.2. — For any ae[0,27c) and ee(0,l), there exists an
absolutely convergent cosine Fourier series

00

^a,e00 = S ^a,e,n COS UX
n=0

satisfying the following properties :
(1) ^eOO ^as nowhere a unilateral derivative finite or infinite;
(2) IKnotC^J^])! = = a ;

(3) Z K^IV-^OD.
n=l

For the proof of Theorem 2.1, we shall introduce a symbol space
in section 3 and certain functional equations in section 4. The fundamental
properties of the solution are investigated in sections 5 and 6. We then
prove Theorem 2.1 in section 7 using Cantor sets of positive measure.
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3. Preliminaries.

We first divide the unit interval I into m subintervals

Ii = [Co,Ci], /a = [Ci,C2\, . . . ,4 = [^-i,cj

where 0 = Co < Ci < c^ < " • < c^ = 1, m ^ 2 and define the aAfr^?55
^4(x) of a point x e I by setting ^t(x) = 7 for c,-i ^ x < c,, 1 ̂  j < m
and ^4(c^) = m. Let ^(x) be a strictly monotone, either increasing or
decreasing, continuous function defined on the subinterval Ij such that
gj(Ij) = 7 for 1 ̂  j ^ m. Define the sf^n e, to be either + 1 or - 1
according as gj is monotone increasing or monotone decreasing on I j .
We assume, in addition, that g^(x) and gm(x) are monotone increasing;
so £1 = £„ = + 1.

Let S = {1,2, . . ..m}1^ be the one-sided symbol space endowed with
the metric

00

d(w,z) = ^ 2-n|w„-z„| for w = (w^), z = (^)eS.

It is known that E is a totally disconnected compact metric space. Let
^OO = §A(X)W for brevity. Note that the function G: I -^ I is not
necessarily continuous. We then define the itinerary v(x) of a point
x e 7 by setting

v(x) = (^o(^iW,...,^(x),...)

where A^{x) = ^(G^x)) for n ^ 0. Put eo = {0,1} and define the set
^,+1 inductively by setting e^i = {0<x< l;G'(x) e <?„} for n ^ 0.
Obviously # ^ = m""1^-!) for n ^ 1. Let ^ = (J ^. Then it is

n^O

easily verified that the set of discontinuity points of v is precisely equal
to the set e - CQ.

Put Ao = {v(x);xeeo}. For N ^ 1, let Ajy be the set of words
w = (^n)6^ such that either w^ = 1 for n > N , w^ + 1 or w^ = m
for n > N , \v^ ^ m. Let A = (J A^. Then it is easily seen that for

n^O
x e e - CQ there exist the limits

lim vQc+e) = (.4o(^Ui(x±),...)
e-^0±
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in A - Ao respectively. Note that v(x) is equal to either v(x+) or
v(x-). Thus the set An consists of the following 2m n ~ l (w—l) distinct
words:

{v(x+);x e ̂ } + {v(x-);x e ̂ }

for n ^ 1 . Therefore we have A = A o + S + + S - , where
Z+ = {v(x+);x € e-^o} and E- = {v(x-);x e e-^o}-

We assume further that each function hj = gj1 :1 -> Ij is a
contraction; namely the Lipschitz constant

Lip(^)= sup W-W
x^y e i x — y

satisfies Lip (hj) < 1. Let y = max Lip (hj) e [l/m,l). We then define
l^J'^W

the mapping [i: I -> / by setting

H(w) = lim ̂  o ̂  o • • • o h^(I) for w = (w^) e E.
n-»oo

Clearly H is continuous. Then it follows that X = (i(S) is a compact
subset of 7 and satisfies the following equality:

X = h,(X)uh^X)u ... uh^(X).

It is known that the above equation possesses a unique non-empty
compact solution [4, p. 384]; thus we have |LI(S) = X = /, since
hj(I) = 7j for 1 ̂  j ^ m. It also follows that the set e is a dense
subset of I , therefore the mapping v is one to one.

Let S^ = (J ej for n ^ 1 and let
O^j^n

Hn^(y) = ^AO(X) ° ^Ai(x) 0 • • • 0 /l^-i(x)(}0

for n ^ l and x , y e I . Obviously H^x is a contraction satisfying
Lip (H^x) ^ Y" • We first consider an arbitrary point x e I — e. Put
K^x = !fn,x(f) ^or n ^ 1 • Since ^,^ is the connected component of
/ - Sn containing x and \K^x\ ^ Y", we have

lim K^ = ^;
n-^oo

that is, nov(x) = x. Thus v maps I — e homeomorphically onto
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v(I-e). We next consider an arbitrary point x e e ^ , N ^ 1 . Put
K^ = !fn,x±(f) f01 n ̂  N , respectively. Since K^ are the two
consecutive connected components of / — Sn such that the left end
point of K^ is x and the right end point of K^ is also x, we have

lim Kn,x = I1111 K^x = x ?
n-*oo n-»oo

so [iov(x) = |AOV(X±) = x. Similarly we can define K^o and K^^
for n > 1; thus \JL o v(0) = 0 and p, o v(l) = 1. Then we have

LEMMA 3.1. — v(I—e) = £ — A; namely, w = (w^ev(7—^) if and
only if

# {n^l ;w^l} = oo = # {n>l;w^w}.

Proof. — Suppose that w = v(x)eA for some x € 7 — ^. Since v
is one to one, we have v(I-e) n v(e) = (|>; thus w e £ + + £-. Hence
there exists y e e — eo such that either w = v(^+) or w = v ( ^ — ) .
Therefore x = ^ov(x) = n(w) = |iov(^d:) = y. This contradiction im-
plies that A n v(I—e) = <|); that is, v(I—e) c £ — A. Thus it suffices
to show that £ — A c= v ( I — e ) .

Suppose now that there exists a word w = (w^) e E — A such that
w ^ v ( / — ^ ) . Put z = (z^) = von(w). Then it follows that w ^ z . For
otherwise, we have |i(w) € ^ ; thus, w e v(^) c: A, contrary to w e S — A.
Let N > 1 be the smallest integer such that Wjy ^ Zjy . Since
|i(w) = H o v o n(w) = [i(z), it follows that

^N ° ̂ ^i ° • • • = ̂ °^i o • • • . say p.

Then we have p e ^i and w, z e Ajy, contrary to w e S — A. This
completes the proof. D

4. Functional Equations.

Let fj: I -^ I be a contraction for 1 ̂  j ^ m. We assume that
Co = 0 and c^ = 1 are unique fixed points of/i(x) and/^(x) respectively.
The following lemma is a special case of the general theorem obtained
by the author [4, p. 397], but we include the proof for completeness.
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LEMMA 4.1. - The functional equations

(4.1) W = W(g,(x))) for x e /,, 1 < ;< m

possess a unique continuous solution \|/(x) if and only if

(4.2) /,(1^) = ̂ ^lz^1) for 1 < , < m - 1 .

Remark. - This is a generalization of the theorem obtained by
G. de Rham [10]; indeed he has shown that the equations

M f̂) = Fo(M(x)), M^} == F,(M(x)) for x e I

possess a unique continuous solution M(x) if and only if Fi(po) = ^o(Pi)
where po. Pi are unique fixed points of the contractions FQ, F^
respectively. Lebesgue's singular functions and Polya's space-filling curves
satisfy the above equations for certain affine contractions Fo and F ^ .

Proof. - The conditions (4.2) are obviously necessary; thus it
suffices to show the sufficiency. Let ^ be the set of continuous functions
u(x) defined on / satisfying u(0) = 0 and u(l) = 1 ; obviously ^ is a
closed subset of the Banach space C([0,l]) with the usual uniform
norm. We now consider the following operator:

Tu(x) = f^(u(G(x))).

Then it is easily seen that the conditions (4.2) imply that T(^) a ^ ;
moreover T is a contraction, since

\\Tu-Tv\\ ̂  ̂ maxli^GOO-i^x))! ^ Uu-v\\,
x e I

where K = max Lip(/;) e[l/m,l), for any u, ve ̂  . Hence T has a
l^J'^W

unique fixed point \|/ in ^ ; namely

^00 = /;-(^(^(x))) for c,-i ^ x < c,, 1 ^ j ^ m.

Obviously this equality holds also true for x = c,. This completes the
proof. Q

For n ^ 1 and x, ^ e 7, we define

UY) = /Aow o /AIOC) o ... o /^_^,)(3/).
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The function F^ is a contraction satisfying Lip (F^) ^ 5l". Put
P = max Lip ( g ) e [w, oo]. Then we have

l^j^m

LEMMA 4.2. - 5'Mppos^ ^ {fj} satisfy the conditions (4.2). If
P < oo, then the continuous solution \|/(x) satisfies Holder's condition of
order log(l/A,)/log P.

Proof. - Consider arbitrary two points x < y in /. Let N ^ 0 be
the smallest integer satisfying # {^-nn(x,^)} ^ 2. We now distinguish
two cases : (a) S^ n (x,y) = ^; (fc) ^ n (x,^) consists of a single
point, say p . In case (a), it follows that

|\|/(x)-\|/(^)| = lim |v|/(x+e)-\|/(^-e)|
E-»0+

= ̂  \Ffl.x^W(x+E)))-F^^(GN(y-K)))\ < ̂ .

Similarly we have I ^(x)-^.(y) | < 2^ in case (b), since
(x,p) r\ S^ = (p,y) n S/, = <)). Now let s < t be any two consecutive
points of Cjy+i contained in ( x , y ) . Then it follows that
\x-y\ > \s-t\ ^ ^~t!~l•, thus

|v|/(x)-v|/(^)| < 2^ = ^p-sw+i) ^ 2 x-j,|S
A, A

where ^ = log (l/^)/log P, which obviously completes the proof. D

5. Some Properties.

The continuous solution \|/(x) of the equations (4.1) is not necessarily
singular in general; for example, if we take

gj(x) = mx - j + 1 and fAx) = x + J——]-
m m

for 1 <7 ^ m, then obviously v|/(x) = x is a smooth solution of (4.1).
In this paper, to discuss the singularities of \|/(x), we shall restrict
ourselves to the following case:

and

,.,^]-^]
^-^-^HIH^]}
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for 1 ̂ 7 < m = 4fe, where fe is a positive integer; so ^ = l/2fe. Then
it is easily seen that the functions {fj} satisfy the conditions (4.2);
therefore the equations (4.1) possess a unique continuous solution \|/(x),
which depends only on the functions {g,} satisfying the conditions (5.1).
Let r{j be the sign of the function /,; namely r|j = (-1)17723, for
1 ^7 < 4fe. For brevity, put

n-l n-1^x = n s-^ and ^= n ̂ x)
J=0 j=0

for n ^1, x e J.

Consider now an arbitrary point x e I — e. We define

Pj,n,. = ^n,x(^» for n ^ 1, 0 < ; ̂  4fe.

Obviously .̂̂ ^ ^ x. Since p^ e G""^) c= ^+1 for 1 ̂ 7 ^ 4fe - 1,
we have

G\p^) = ^ for 1 ̂ 7 ^ 4 f e - 1.

The points po.n.x and P^n,x are two G^ points of K^x and do not
satisfy the above equality in general; however,

lim Gn(y) = Cj for 7 = 0, 4k.
V~'Pj,n,x
y 6 ^n,x

Note that 0 < \x—pj^,x\ < 7" fo1' B^ n ^ 1 • Then we have

LEMMA 5.1. — Suppose that x e I — e. Then the points {pj,n,x} satisfy
the following properties :

(1) sign (x-pj^) = e^sign^4.(x)-7-^

(2) *M - *(.„.,.) - ̂ , {*«;•(.))-l̂ -B'4 ]̂}

for n ^ 1 and 0 ^ 7 < 4fe.

Proo/. - Since pj^^ = H^x{Cj), we have

sign (x-p^) = sign {^^(^"(.x:))- H^(c^} = ensign {G^x)-^};
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thus the property (1) follows immediately. Since K^x ^ •S'n == <)>»

^n..)= lim v|/(}0= lim ^,,(W(}0)) = ^,(v|/(c,))
y~^Pj,n,x V^Pj,n,x
y e ^n,x v e Kn,x

for 0 ̂  j ^ 4k; hence

^M - ̂ J = F,,,(vKG"(x))) - F (̂xKc,)) ——{^(^"(x))-v|/(c,)},

which obviously completes the proof. D

We now consider an arbitrary point x e e^, N ^ 1. Then it is
easily seen that, for 1 < j < 4k — I , each of the sets A^ contains
exactly one point of G"~"(cy) c: ^+1, say ^^^ respectively. Obviously
^jtn.x ^ x- Similarly we can define {^,,0} and {q^n,i} f011 n ^ 0,
1 < 7 < 4k - 1. Note that 0 < \x-qf^\ < y" for any n ^ N . It also
follows that

lim (^(X+E)"^:^^)
e-»0± ^

for every n ^- N , respectively. We, of course, adopt the rule:
£o.o+ = ^.i- = 'no,o+ = 'Ho.i- = 1 - Then we faave

LEMMA 5.2. — Suppose that x e e ^ , N ^ 0. Then the points
{^.t^x} satisfy the following :

^-w...)-^ .̂-,..)-'̂ - !̂]}
for n ^ N and 1 ^ j ^ 4k — 1 , respectively.

Proof. — Since ^^ n 5,, = <(), we have

W - Wn,x) = I™ {vK^+£)-Wn,x)} =
E-»0±

lim {^^( '̂•(x+e)))-^,^,))} = ̂ —^^(i+e^^-vKc,)}
e-»0± ^ZIK) ^ )

for every n ^ N , respectively. This completes the proof. D
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6. Singularities.

For any x ^ y e I , we define A\|/(;x:,y) = (v|/(x) — v|/(y))/(x—y). Let
M^ be the set of points x e I at which A^(x) = 2 or 3 (mod 4) for
infinitely many n 's. Obviously W c: / — e. First of all, we have

THEOREM 6.1. - Suppose that y ^ I / 2 k . Then we have

D±^(x) ^ 0 ^ D^(x) and D^OO - D^(x) ̂  l/4fe

respectively, for every x e W.

Proof. — We distinguish two cases (not exclusive) as follows :

Case A. An(x) = 3 (mod 4) for infinitely many n 's.

Let 0 < Hi < n^ < - ' ' be the subsequence of integers such that
^n-OO === 4A^ + 3, where 0 ^ A^ < k. From the functional equations
(4.1), we have

^W.M)<2^;

therefore {v|/(x)-\K^.i)}{^00-^(^,2)} < 0 by (2) of Lemma 5.1,
where pij = p^N'+j,n-,x f01 0 ^7 ^ 4. On the order hand, we have
sign(x-P^) = sign(x-P^2) = ^n^x by (1) of Lemma 5.1. Since e^
changes the sign infinitely many times as i increases, it follows that
P^OO > 0 ^ Z)±v|/(x). It also follows that

Clk^"1'1 1 - 1
|Ail/(x,P,,)| + |AvK^,2)l ^ , _ ^ > 2fe(2^)-ni ^ ̂ ;

therefore D'^v)/^) - Z)±\|/(x) > l/4k respectively, as required.

Case B. An(x) = 2 (mod 4) ^br infinitely many n 's.

Let 0 < Hi < ^2 < • " be the subsequence of integers such that
A^(x) = 4 .̂ + 2, where 0 < M < k. Since

^<W(,))<2^-1,

it is easily seen that {\|/(x) - ^(Pi,o)}{^W ~ ^(Pi,i)} ^ 0 and
{v|/(x) - vKPi^)}^^) ~ ^(^1,3)} < °- 011 the other h^d, we have
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sign (x-P^o) = sign (x-P^) = sign (P^-x) = sign (P, 3-^) ; there-
fore D^CX) ^ 0 ^ Z)±v|/(x). Moreover,

O^""!"1 1 1

|A^Oc,P.,o)| + |A^(x,P,i)| > ^ ) > - (2kY)- ^ —
\X ^ i ^ Q \ 2.K, Zk

The same estimate holds true if we replace P^o, P^ by P,^, ^3,
respectively; thus .D^Oc) - D^(x) ̂  l/4k respectively. This completes
the proof. Q

Let WQ c: W be the set of points x e 7 at which A^(x) = 2 or 3
(mod 4) and ^+i(x) = 2 or 3 (mod 4) for infinitely many n's. Then
we have

THEOREM 6.2. - Suppose that y ^ l/2fe. TTî n ^o fs contained in the
set Knot (\|/) ^xc^pr /or a s^t of measure zero.

Proof. - We consider an arbitrary point x of WQ. Let
0 ^ Hi < n^ < . • . be the subsequence of integers such that
A^{x) = 4N, + 5, and ^+i(x) = 4L, + co,, where 0 ^ N,, L, < k and
2 < 5f, Of ^ 3. Then it is easily seen that

1N^ 1 - 2L. + 1 < ̂ (^ < 2M+ 1 A .
2k (2fc)2 ^ Y(c7 w) ^ "T" ~ 2k2 9

therefore by (2) of Lemma 5.1,

Ti^,(2fc)^(x)-^(P,o)} = WOc)) - f ^ ̂  - 2———1 > (2fc)-2.

Similarly we have

^WWP^-^x)} = A^-1 - ̂ (x))^^^.

Therefore, since sign(x-P^o) == sign(P^4-x), it follows that

sign(Av|/(x,P,,o)) = sign(A\|/(x,P^4))
and

|AvK^,o)l > (2fc)-2, |AvKx,P, 4)1 > 1 .
2k

Hence the sei[D^(x\D+^(x)] n [Z)-\|/(x),2)-v|/(x)] contains an interval
of length (2k) ~2 by Theorem 6.1. Thus it follows from Denjoy's theorem
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[2, p. 105] that except for a set of measure zero, every point of WQ is
a knot point of \|/(x). This completes the proof. D

For N > 0, let Y^ be the set of points x e I at which A^x) = 0
or 1 (mod 4) for all n ^ N and A^-^x) = 2 or 3 (mod 4). Obviously
I - w = J y^. For brevity, put V? = ^ n (/-^ for n ^ 0. Then

n^O

the unit interval / is decomposed as follows :

1 = W ^ e + [ j n.
n^O

For n ^ 1, let E^ be the set of finite words ( w i , . . . wj of length n
such that 1 < w, ^ 4fe and w, = 0 or 1 (mod 4) for 1 ̂  j < n. Then
we have

THEOREM 6.3. - Suppose that there exists a positive constant Co,
independent of n, satisfying

min | h o . . . oh (7)| ^ C^k)-"
( W l . . . W ^ 6 S ^

for all n ^ 1. Suppose further that P < oo . Then \ve have

D^(x) - D^(x) ̂  ̂

respectively, for every x e I - W.

Proof. - We distinguish two cases as follows :

Case A. x e Y^ for some N ^ 0.

By Lemma 3.1, we have A^(x) ̂  1 for infinitely many n ' s . Let
N ^ MI < n^ < • ' ' be the subsequence of integers such that A^{x) > 4.
Put Q^ = p .̂̂  for 0 ^7 ^ 2. Since

W(x)) ̂  ̂

and sign(x-^i) = sign(x-0^2) = sign (Q^-Qi, i) = e^.x, we have

|AvK^.i)-AiK^a,2)l =

(2fe)-n• ^(^(^J-J——- 1 l+___L__ >^)ZLl> 1"Ix-e,, x-e,j 2fc(x-e„)^ lx-^„ | > 2fe•
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On the other hand, it follows that

^a.ol > \Qi,i-Qi,o\ > P'^ h^o...oh^_^oh,(I)\ >>;-]

-ni+N-\cop-TO
therefore

N

lA^e,,.)!-^-'^))^^).x ^i.o °o w
Since sign(x—@^o) = s^? we conclude that either [2)+\|/(x), ^x^x)]
or [Z>-v|/(x), Z)~v|/(x)] contains an interval of length l/2k according as
e^x = - 1 or + 1.

It also follows from Lemma 3.1 that A^(x) ^ 4k for infinitely many
n 's. Let N < n^ < n^ < ' . . be the subsequence of integers such that
A^(x) < 4k - 3. Put R,j = P^k-j^x for 0 ^ j < 3. Since

W(x)) ̂
2k - 1

2k

and sign (x—^2) = sign (x— ^1,3) = sign^^—^^) = — e^, we have

|Ax|/(x,^2)-Avl/(x,^3)| =

f2k-l ._„../ . . H i 1 ) . 1
--vKG"1^))(2k)

[x-^,3 x-^^J 2k(x-R^)\

(2k)-ni-l ,

2k

|x-^,-i. 2 I 2k

On the other hand, \x-R^o\ > \R^-R^o\ > CoP-N(2k)'ni+iv-l; thus

lA^fx R ) 1 - (2k) ni VKGWf(x))"1 < 2fc f ̂ N
\^(X^Ki,o)\ ^ (zk) —~—^—— -T7"^/ 'X—A^o Co \^/C/

Since sign(x-^o) = - SN.X. H follows that either [D+vl/Oc),^^)]
or [Z)-v|/(x),Z)~\l/(x)] contains an interval of length l/2k according as
SN.X = + 1 or - 1. Hence D^OO ~ D±^W ^ l/2k respectively.

Case B. x e e^ for some N ^ 0.

For n > N , let g^ == max {^,, ̂ 3,^}, Q^ = min{^r.n^^3.n,x}
and let R^ = q^ respectively. Then Q,, < R^ < x < R^ < Q^ .
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Since sign^-g^) = sign (Q^ - R^) = ± 1 respectively, it follows
from Lemma 5.2 that

\^(x,R^)-A^x,Q^\=

(2.)-^(1T^){———————1.———^ ^^^^^ 1
\2^ ' ^{x-R! x-Q^ 2 /c(x-e ,± ) | - |x-e„± |2fe '

respectively. On the other hand, we have

x-R^>\K^^\^-N\hA^)0•••oh^^^(I)\^C^-{i(2kr'l^~l•,

therefore

^,^^W_^^\'
x-7^1 CoW '

Hence D±^(x) - D^(x) ^ I / 2 k respectively. This completes the
proof, n

Let V* = IJ Y^ for brevity. Then we have
n^O

THEOREM 6.4. - Knot (\|/) n F* = (().

Proof. — We consider an arbitrary point x of Y^ for some N ^ 0.
Let Sn = po,n,x f01" n ̂  N . Since sign(x-s^) = e^^ is independent of
n > N , the sequence {5^} is monotone, either increasing or decreasing,
and converges to x. Note that &„ = s^+i if and only if A^(x) = 1. Put
Jn = [s»,5^+i] c: K^x for n ^ JV. Then it is easily seen that

(^Sjv] = (J J^.
n^N

Since the function G"(x) maps K^ homeomorphically onto (0,1), we
have A^(x) > A^(y) for all y e /„. Therefore

W(x)) ^ /̂ (.)(0) ^ max ||/,|| ^ \|/((7"(^));
J<A^(x)

thus
Ti^,sign{v|/(x)-v|/(^)} = ̂ ^.^{^^(^(^"(x)))-^,^^"^)))} =

sign {vK^^-vK^OW^O.
By the continuity of ^f, we conclude that

TI^ sign {v|/(x) - v|/(^)} ^ 0 for every y e [x,s^].

This means that x is not a knot point of \Kx). D
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7. Proof of Theorem 2.1.

First of all, for any integer k ^ 1 and positive numbers a, T, p
satisfying

(7.1) 2fe((T+T) < 1 and a > p,

we shall construct two Cantor sets Eo = JE^(fe,<j,T) and £1 = £i(fe,a,p).
The set iS'o^^1) ls obtained from the unit interval 7 by a sequence
of deletions of open intervals known as middle thirds, as follows : First
divide I into k equal parts, say

/,,.-[o,], ..,-[H], .... /,,.-[v.,],
and remove from each closed interval I^j the open interval U^j centered
at (2/—l)/2fc and of length 2a. We subdivide each of the 2k remaining
closed intervals into k equal parts, say I^j, 1 < j ̂  2k2, ordered from
left to right, each of length (l-2ka)/(2k2). Then remove from each
closed interval I^j the middle open interval U^j of length 2crc, leaving
the 4k2 closed intervals, each of length (l-^ka-^k2^)/^2). This
process is permitted to continue indefinitely. At the n th stage of
deletion, each length of the 2n~lkn open intervals Unj is 2aT"~1, and
therefore the measure of the union of the open intervals removed in
the entire sequence of removal operations is 2ka/(l—2k^). The set £'0
is defined to be the closed set remaining; thus

1 - 2fe(a+T)
w ^ l - 2 k T •

We next define the set £\(fe, a, p), which is slightly different from
EQ defined above, as follows : First divide the unit interval / into k
equal parts, say

^..-N- ^-[^••••M^1-}
Then remove from each closed interval Jij the two intervals

p'-l 2/-l-2fca\ /2/-l+2fca H
VIJ = FT"—2ic—;'v^ [—ik—'kj'

each of length (l—2ka)/2k. We subdivide each of the k remaining
closed intervals into 2k equal parts, say J^j, 1 ̂ 7 ^ 2k2, ordered
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from left to right, each of length o/fe. Then delete from each closed
interval J^j the two intervals V^ of length p(l-2ko)/2fc, leaving the
2fe2 middle closed intervals, each of length (a-p+2fe<jp)/fe. At the
nth stage of deletion, we have \V^\ = pn~l(l-2kG)/2k, therefore the
measure of the union of the removed intervals in the entire sequence
of removal operations is (l-2fe<j)/(l-2fep), The set E^ is defined to
be the closed set remaining; thus

, . 2fe(a-p)
\EI 1 - 2fep

Note that the set E, is contained in f l-2fca , 1- l-2fea

2fe(l-p) 2fe(l-p)_

We now define the continuous function ^(x) = ̂ (k^^x) by setting

^) = do(s) ds for 0 < x ^ 1,

where do(s) = l/2fe if s e Eo(k,a,x) and do(s) = T otherwise. We also
define the continuous function ^(x) = ^i(k,<7,p;x) by setting

sl(x) = 2k ~ CT + dl(s) ds for 0 < x ^ 1 »

where d^(s) = I / 2 k if s e E^(k,a,p) and d^(s) = p otherwise. Then it
is easily seen that W = [0,(l-2fc(r)/2k],^(7) = [(l-2fecr)/2fe, l/2k]
and W) = E^^(I)for f = 0 , l .

We next define, for 0 < i < k.

g^i+iW = ^o1 P^-r,

g^iW == SF1 x--

for x e /4,+i =

for x e 74^2 =

^•+1
^4i+3<^) = ^1 for x e //4i+3

^ 2f+ l
F"^
2f+l

—CT,

-,j,
2i+r

2fe ' 2fe
2i+l 2i+l

2fe 2fe
-+CT »

^4f+4(^) = ^ o 1 ^ -
2f+ l
~2F — a for x e /4,+4 = 2i+l

2fe
-+o,-

(+1

thus the unit interval 7 is divided into m = 4k subintervals /, = [c,_ i c ].
We have l /^+i l = |74,+4| = (l-2fea)/2fe and \I^^\ = l^l = o.
Obviously the functions gj(x) satisfy the conditions (5.1) and we denote
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by \|/(k,a,T,p;x) the corresponding continuous solution of the equa-
tions (4.1).

It follows from Theorems 6.1 and 6.3 that \|/(fc,(j,T,p;x) has nowhere
a unilateral derivative finite or infinite for any integer k and positive
numbers CT, T, p satisfying (7.1), since we have

Y = ^r9 P = max \~9 r' 2k r [p TJ
and

1̂  o . . . o ̂ (/)| = ̂  - ̂  - ̂  - ..- or"-1 > ̂

for every finite word (w^ . . . Wn)e5^.

Since the Cantor set EQ is a unique compact subset of I satisfying

EQ = h^Eo) u h^(Eo) u h^Eo) u • ' • u h^(Eo)

and since the mapping v maps Y^ homeomorphically onto v(7g), it
follows that 7$= EQ. On the other hand, for every xeW+ (J 7^,

n^l

there exist n = n(x) and j =j(x) such that xeU^j, thus ^o c= yg -h ^.
Therefore | 7$ | = | £'01, since e is countable. Let Q^ be the set of finite
words (wi . . . Wn) of length n such that 1 ̂  w, ^ 4fe for 1 ̂  j ^ n.
Then for any n ^ 0, the set Yf+ ̂  is decomposed as follows :

Y^i = U ^o... 0^0^(7$).
( ^ l - - -Wn)e "n

J-eOi-Si

On each interval V^j, for any (wi . . . w ^ ) e Q ^ and j eQi - Si, the
function h^ o • ' ' oh^ o hj(x) is a linear contraction; more precisely
we have

^ (̂  0 . . . 0 ̂  0 A,)(X) = p^-^T^ for X 6 F -̂

1 n

where r(w) = r(wi, .. .,Wn) = ^ ^ (l+'H^.). Since 7$ n U^j = <() for
all 7, we have J-

17^1 = 2fe|7$| ^ pn.l-r(^r(w) ^ 2fep | EO I (2fe(P + T))" .
(Wl . . . W^) 6 ̂



FUNCTIONS WITH NO UNILATERAL DERIVATIVES 61

Therefore it follows that

ir*l = i ir?| = \E,\ + ikp\E,\ f; (2^(p+T))" = l~2fc(a+T).
n=0 n=0 l—Z/C(p-t-T;

For N ^ 0, let Zjy be the set of points x e / at which A^(x) = 2
or 3 (mod 4) for all n ^ N and ^-i(x) = 0 or 1 (mod 4). Put
Z = (J Z^. Obviously Z cz Wo cz I - e . Then it is easily seen

n^O

that the set ZQ is a compact subset of / satisfying

Zo = h^Zo) u /i3(Zo) u Ae(^o) u ... u ̂ -1(^0);

therefore Zo = £'1. For any n ^ 0, the set Z^+i is decomposed as
follows :

Zn+l = U î ° • • • ° ̂  ° hj(Zo) .
( w i . - . w ^ e f t ^

J6 3 !

On each open interval U^j, for any ( w i . . . w ^ ) e 0 ^ and 7'eSi, the
function A^ o • • • o ̂  o fo^(x) is a linear contraction such that

^ (/S o . . . o ̂  o ^.)(x) = p—^i^w for x e U^.

Since Zo n F^. = (() for all 7, we have

Z,,J = 2fe|Zo| S pn-r(v^l^) ^ 2feT |^| (2fe(p+!))";

therefore
(wi... w^) e n^

|Z| = ^ |ZJ = |^| + 2feT|^| ^ (2k(p+T)r =
n=o n=o 2fe(a-p)

1 - 2fe(p+r)

Then it follows from Theorems 6.2 and 6.4 that

|Z < WQ\ ^ |Knot(v|/)| ^ 1 - [V* = |Z|;

hence we obtain
|KnotW|= ^-^

' " 1 - 2fe(p+T)

Thus if we take, for a fixed number a€[0,l),

_ 1 + a 1 , 1'
^""^T' '^^ and p o s = 8 f c '

1 - | Y* |.
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then the function vl/oOO = ^(^^o^o^Po^) satisfies |Knot(v|/o)l = a and
Holder's condition of order log (2fe)/log (8fe) by Lemma 4.2, which
obviously converges to 1 as k tends to infinity. This completes the
proof of Theorem 2.1. D

Remark, — Besicovitch's function B(x) illustrated in Figure 1 is
precisely equal to the function v|/ (1,1/8,1/4,1/8; x); thus B(x) satisfies
Holder's condition of order 1/3.

BIBLIOGRAPHY

[I] S. BANACH, Uber die Baire'sche Ketegorie gewisser Funktionenmengen,
Studia Math., 3 (1931), 174-179.

[2] A. DENJOY, Memoire sur les nombres derives des fonctions continues, J.
Math. Pures Appl. (Ser. 7), 1 (1915), 105-240.

[3] K. M. GARG, On asymmetrical derivates of non-differentiable functions,
Canad. J. Math., 20 (1968), 135-143.

[4] M. HATA, On the structure of self-similar sets, Japan J. Appl. Math., 2
(1985), 381-414.

[5] V. JARNIK, Uber die Differenzierbarkeit stetiger Funktionen, Fund. Math.,
21 (1933), 48-58.

[6] R. L. JEFFERY, The Theory of Functions of a Real Variable, Toronto, 1951,
pp. 172-181.

[7] S. MAZURKIEWICZ, Sur les fonctions non derivables, Studia Math., 3 (1931),
92-94.

[8] A. P. MORSE, A continuous function with no unilateral derivatives, Trans.
Amer. Math. Soc., 44 (1938), 496-507.

[9] E. D. PEPPER, On continuous functions without a derivative, Fund. Math.,
12 (1928), 244-253.

[10] G. DE RHAM, Sur quelques courbes definies par des equations fonctionnelles,
Rend. Sem. Mat. Torino, 16 (1957), 101-113.

[II] S. SAKS, On the functions of Besicovitch in the space of continuous
functions. Fund. Math., 19 (1932), 211-219.

[12] A. N. SINGH, On functions without one-sided derivatives I, Proc. Benares
Math. Soc., 3 (1941), 55-69.

[13] A. N. SINGH, On functions without one-sided derivatives II, Proc. Benares
Math. Soc., 4 (1942), 95-108.

[14] W. H. YOUNG, On the derivates of non-differentiable functions. Messenger
of Math., 38 (1908), 65-69.

Manuscrit re^u Ie 28 novembre 1986.
Masayoshi HATA,

Department of Mathematics
Faculty of Science
Kyoto University

Kyoto 606 (Japan).


