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ON CONTINUOUS FUNCTIONS WITH
NO UNILATERAL DERIVATIVES

by Masayoshi HATA

1. Introduction.

It is known that A. S. Besicovitch in 1925 gave the first example of
a continuous function B(x) which has nowhere a unilateral derivative
finite or infinite by geometrical process. E. D. Pepper[9] has examined
this same function B(x), giving a different exposition. The graph of his
function is illustrated in Figure 1. Later, A. N. Singh [12, 13] gave the
arithmetical definition of B(x) and constructed an infinite class of such
non-differentiable functions. On the other hand, A. P. Morse [8] gave
an example of a continuous function f(x) satisfying

- t{(S)~f(x) ORLE)
S—X S—X

< lim sup

S—xE s—xt

respectively, for every x € (0,1), by arithmetical process.

It seems, however, that their methods are somewhat complicated
and inappropriate to the study concerning further properties of such
functions. In the present paper we shall develop a simple but powerful
method to construct and analyze such singular functions by using
certain one-dimensional dynamical systems.

The difficulties of finding such functions may be explained by the
fact that the set of functions which have nowhere a unilateral derivative
finite or infinite is of only the first category in the space of continuous
functions (S. Saks [11]), while the set of functions which have nowhere
a finite unilateral derivative is of the second category (S.Banach [1],
S. Mazurkiewicz [7] and V. Jarnik [5]).

Key-words : Non-differentiable functions - Knot points - Functional equations.
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Fig. 1.

2. Main Result.

To state our main theorem, we need some definitions and notations.
We denote, as usual, the upper and lower derivatives at x of a real-
valued function f(x) on the right by D*f(x), D.f(x) respectively.
Similarly the upper and lower derivatives, on the left, are denoted by
D~f(x), D_f(x) respectively. A point x is said to be a knot point of
f(x) provided that

D*f(x) = D f(x) = and D,f(x) =D_f(x)= — .

The set of knot points of f(x) is denoted by Knot (f). For a measurable
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set £, we denote by |E| the Lebesgue measure of E. Our theorem can
now be stated as follows :

THEOREM 2.1. — For any a€(0,1) and €€(0,1), there exists a
continuous function , .(x) defined on the unit interval I sayisfying the
following properties :

(1) Vo c(x) has nowhere a unilateral derivative finite or infinite ;
(@) IKnot (Yy,0)| = a;
(3) Vyc(x) satisfies Holder’s condition of order 1 — €.

Remark. — K. M. Garg [3] has shown that the set of knot points
of Besicovitch’s function is of measure zero. He also showed that, for
every continuous function defined on I which has nowhere a unilateral
derivative finite or infinite, the set of points at which the upper
derivative on one side is + oo, the lower derivative on the other side
is — oo, and the other two derivatives are finite and equal has a
positive measure in every subinterval of [; therefore the constant « in
our theorem can not be taken to be 1. Note that the set Knot (f) is
of the second category if f(x) is a continuous function which has
nowhere a finite or infinite derivative (W. H. Young [14]).

As a corollary, we have immediately

CoroLLARY 2.2. — For any a€[0,2n) and €€ (0,1), there exists an
absolutely convergent cosine Fourier series

[ce]

Woo(X) = Y aq.,c08 nx

n=0

satisfying the following properties :
(1) W,(x) has nowhere a unilateral derivative finite or infinite;
(2) [Knot (\Pa,e][O,Zn])l =a,

0

() Y lageqn? < .

n=1

For the proof of Theorem 2.1, we shall introduce a symbol space
in section 3 and certain functional equations in section 4. The fundamental
properties of the solution are investigated in sections 5 and 6. We then
prove Theorem 2.1 in section 7 using Cantor sets of positive measure.
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3. Preliminaries.
We first divide the unit interval I into m subintervals

11 = [c03c1]3 12 = [cl’c2]5 ey Im = [cm—19cm]

where 0 = ¢y < ¢; < ¢, < +++ < ¢, =1, m > 2 and define the address
A(x) of a point x € I by setting A(x) = jforc;_; <K x<¢;,1<j<m
and A(c,) = m. Let g;(x) be a strictly monotone, either increasing or
decreasing, continuous function defined on the subinterval I; such that
gi(I) = Ifor 1 <j < m. Define the sign ¢; to be either + 1 or — 1
according as g; is monotone increasing or monotone decreasing on I;.
We assume, in addition, that g,(x) and g, (x) are monotone increasing ;
so g =¢g, = *+ 1. '

Let £ = {1,2,...,m}N be the one-sided symbol space endowed with
the metric
dw,z) = 27" w,—z,| for w=(Ww,), z=(,)eX.
=1

It is known that X is a totally disconnected compact metric space. Let
G(x) = g4mm(x) for brevity. Note that the function G:I — I is not
necessarily continuous. We then define the itinerary v(x) of a point
x € I by setting

v(x) = (Ap(x),A1(X), ..., 4,(x),...)

where 4,(x) = A(G"(x)) for n > 0. Put e, = {0,1} and define the set

e,+; inductively by setting e,.; = {0<x<1;G(x)€e,} for n>0.

Obviously # e, = m" '(m—1) for n>1. Let e = () e,. Then it is
n=0

easily verified that the set of discontinuity points of v is precisely equal
to the set e — ¢,.

Put Ag = {v(x);x €ey}. For N > 1, let Ay be the set of words
w = (w,) € X such that either w, =1 for n > N, wy# 1 or w, = m
for n > N, wy # m. Let A= () A,. Then it is easily seen that for

n=0

Xx € e — e, there exist the limits

lim v(x+¢g) = (4dy(x£),4,(x%),...)

e-0=x
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in A — A, respectively. Note that v(x) is equal to either v(x+) or
v(x—). Thus the set A, consists of the following 2m"~!(m—1) distinct
words :

{vixt+);x € e} +{v(x—);x € e,}
for n =2 1. Therefore we have A = Ay + £, + X_, where
T, ={v(xt+)x€ee—ey} and Z_ = {v(x—~);x € e—eq}.

We assume further that each function h; = g;':I—>1I, is a
contraction ; namely the Lipschitz constant

hj(x)_hj(y)

Lip (h;) = sup =y

x#yel

satisfies Lip (h;) < 1. Let vy = max Lip (h;) € [1/m,1). We then define

1<jsm

the mapping p: X — I by setting

p(w) = lim h, oh,, o0 ---oh, () for w= (w,)eZx
Clearly p is continuous. Then it follows that X = p(X) is a compact
subset of I and satisfies the following equality :

X=h@X)vhX) v - Uh,(X).

It is known that the above equation possesses a unique non-empty
compact solution [4, p.384]; thus we have u(X) = X = I, since
hi() = I; for 1 <j < m. It also follows that the set e is a dense
subset of I; therefore the mapping v is one to one.

Let S,= |J) e;for n>1 and let
o<j<n

H,.() = hAo(x) © hAl(x) 0---0 hA,,_l(x)(y)

for n>=1 and x, yel. Obviously H,, is a contraction satisfying
Lip (H,,) < 7y". We first consider an arbitrary point x e/ — e. Put
K .= H,,,x(i) for n > 1. Since K,, is the connected component of
I — S, containing x and |K, | < y", we have

lim K, , = x;

n—aoo

that is, pov(x) = x. Thus v maps I — e homeomorphically onto
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v(I—e). We next consider an arbitrary point xeey, N> 1. Put

K:, = H,,.(I) for n> N, respectively. Since KZ, are the two

consecutive connected components of I — S, such that the left end

point of K, . is x and the right end point of K, is also x, we have
lim K, = lim K, , = x;

n—o n—o0

sO pov(x) =pov(xx) = x. Similarly we can define K,, and K, ,
for n>1; thus pov(0) = 0 and pov(l) = 1. Then we have

Lemma 3.1. — v(I—e) =X — A; namely, w = (w,) e v(I—e) if and
only if

#{nzliw,#1} = 0 = # {n=>L;w,#m}.

Proof. — Suppose that w = v(x) e A for some x € — e. Since v
is one to one, we have v(I—e) nv(e) = ¢ ; thus we X, + X_. Hence
there exists yee — ¢, such that either w = v(y+) or w = v(y—).
Therefore x = pov(x) = p(w) = pov(yzx) = y. This contradiction im-
plies that A nv(I—e) = ¢ ; that is, v(I—e) =« £ — A. Thus it suffices
to show that X — A < v(I—e).

Suppose now that there exists a word w = (w,) e £ — A such that
wé¢v(l—e). Put z = (z,) = vou(w). Then it follows that w # z. For
otherwise, we have p(w) € e ; thus, we v(e) = A, contrary to we X — A.
Let N > 1 be the smallest integer such that wy # zy. Since
u(w) = povopw) = u(z), it follows that

h,. oh o--+-=h, oh o-.--,say p.

WN WN+1 %N ZN+1

Then we have pee; and w, ze Ay, contrary to weX — A. This
completes the proof. O

4. Functional Equations.

Let f;: I > I be a contraction for 1 <j < m. We assume that
¢o = 0 and ¢,, = 1 are unique fixed points of f; (x) and f,,(x) respectively.
The following lemma is a special case of the general theorem obtained
by the author [4, p. 397], but we include the proof for completeness.
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LeMMA 4.1. — The functional equations

@) Vv = (V) for xelj,1<j<m

possess a unique continuous solution \Y(x) if and only if

42 4??§=ﬁHC’%“) fr 1<j<m-1

2
Remark. — This is a generalization of the theorem obtained by
G. de Rham [10]; indeed he has shown that the equations
x 1+x
M<§> = Fo(M(x)), M(T) = F,(M(x)) for xel

possess a unique continuous solution M(x) if and only if F,(py) = Fo(p,)
where p,, p; are unique fixed points of the contractions F,, F,
respectively. Lebesgue’s singular functions and Polya’s space-filling curves
satisfy the above equations for certain affine contractions F, and F, .

Proof. — The conditions (4.2) are obviously necessary; thus it
suffices to show the sufficiency. Let # be the set of continuous functions
u(x) defined on I satisfying u(0) = 0 and u(l) = 1; obviously & is a
closed subset of the Banach space C([0,1]) with the usual uniform
norm. We now consider the following operator :

Tu(x) = fa@(G(x))-

Then it is easily seen that the conditions (4.2) imply that T(¥) « & ;
moreover T is a contraction, since

|Tu—Tvll < A max [u(G(x))—v(G(x))| < Allu—vll,
x€el
where A = max Lip (f) €[1/m,1), for any u, ve # . Hence T has a
1<j<m

unique fixed point ¥ in & ; namely

YO) = )  for ¢ <x<e 1<j<m.

Obviously this equality holds also true for x = c;. This completes the
proof. O

For n > 1 and x, y € I, we define

F.x(y) = on(x) ° fAl(x) -0 fA,,_l(x)(}’)-
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The function F,, is a contraction satisfying Lip (F,,) <A". Put
B = max Lip (g;) € [m,c0]. Then we have

1<jsm

Lemma 4.2. — Suppose that {f;} satisfy the conditions (4.2). If

B < oo, then the continuous solution \s(x) satisfies Holder’s condition of
order log (1/))/log B.

Proof. — Consider arbitrary two points x < y in 1. Let N > 0 be
the smallest integer satisfying # {Sy+1n(x,y)} = 2. We now distinguish
two cases: (@) Sy n (x,y) =¢¢; (b)) Sy (x,y) consists of a single
point, say p. In case (a), it follows that

W)=Vl = 1::;1 W(x+e)—VY(y—e)l
= 1}{)11 | Fy,x+ (WG (x +€))) = Fy 2+ (W(GN(y—2))| < AV,

Similarly we have [y (x)—Vy(y)| < 2AY in case (b), since
x,p) N Sy = (p,y) 0 Sy = ¢. Now let s <t be any two consecutive
points of ey,,; contained in (x,y). Then it follows that
|x=y| > [s—t| = B~¥!; thus

2 2
WG = W) < 207 = 2BV < 2k

where & = log (1/\)/log B, which obviously completes the proof. O

5. Some Properties.

The continuous solution Y(x) of the equations (4.1) is not necessarily
singular in general ; for example, if we take ’

. x j—1

gix)=mx —j+1 and f,-(x)=;+—m——

for 1 < j < m, then obviously y(x) = x is a smooth solution of (4.1).
In this paper, to discuss the singularities of Y(x), we shall restrict
ourselves to the following case :

_ P ot
.1) e,—1+2[4] 2[4]
and
509 = 5 {(— 12 +B] - [ﬁ] + [L;_‘]}
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for 1 <j < m = 4k, where k is a positive integer ; so A = 1/2k. Then
it is easily seen that the functions {f;} satisfy the conditions (4.2);
therefore the equations (4.1) possess a unique continuous solution Y(x),
which depends only on the functions {g;} satisfying the conditions (5.1).
Let n; be the sign of the function f;; namely n; = (—1)U?, for
1 <j < 4k. For brevity, put

n—1 n—1

Sn,x = l—l €4 i(x) and nn,x = l—[ nA~(x)
. 0 " : 0 "
= =

for n 21, xel.
Consider now an arbitrary point x € I — e. We define

Pinx = H, .(c)) for n>1, 0<j<4k.

Obviously p;, . # x. Since p;,, € G "(cj)) < e,4; for 1 <j <4k -1,
we have

G"(Pjny) = ¢ for 1<j<4k—1.

The points py ,. and pg . are two end points of K, . and do not
satisfy the above equality in general ; however,

lim G"(y) = ¢; for j=0, 4k.
Y=Pj,n,x
yeK,,‘x

Note that 0 < [x—pj ..l <7y" for any n > 1. Then we have

LEmMMA 5.1. — Suppose that x € I — e. Then the points {p; , .} satisfy
the following properties :

(1) Sign (x_'pj,n,x) = &ux Slgn {A"(x) _j—%},

1-(=1y 1

— —_ nn,x n —_ N 7 1
@) V) = V(Bin) = {\u(G ) [ ]}

forn>1and 0 <j < 4k.

Proof. — Since p;, . = H,.(c;), we have

Sigl’l (x_pj,n.x) = Sign {Hn,x(Gn(x))_ Hn,x(cj)} = 8n.x Sign {G"(X)_Cj};
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thus the property (1) follows immediately. Since K, , N S, = ¢,

‘,’(pj,n,x) = _}lm \I’(J’) = _}lm Fn,x(\'/(Gn(y))) = Fn,x(‘l’(cj))
S

for 0 <j < 4k; hence

V(x) = (@) = Fux(W(G" (X)) — F, (W(cy) (g';;;,, WG (X))~ V(cp},

which obviously completes the proof. |

We now consider an arbitrary point x € ey, N > 1. Then it is
easily seen that, for 1 <j < 4k — 1, each of the sets K, contains
exactly one point of G™"(c)) < e€,.+1, say respectively. Obviously
Qinx # x. Similarly we can define {q;,,} and {qj,,} for n >0,
1 <j < 4k — 1. Note that 0 < [x—g}, .| < y" for any n > N. It also

follows that

lim G"(x+¢g) = %(Wen,xi)

e-0%

for every n > N, respectively. We, of course, adopt the rule:
= No,0+

€9,0+ = €o,1- = Mo,1- = 1. Then we have

LemMA 5.2. — Suppose that xeey, N > 0. Then the points
{g},.x) satisfy the following :

\I/(x) _ \l’(qji,n.x) = ?—21\",‘—;;?-{—;-(1$8Nyx1)—.1.ﬂ_1|:1:|}

for n > N and 1 < j < 4k — 1, respectively.
Proof. — Since K;, n S, = ¢, we have

V() = V(gjnx) = eligi (Vx+e)=V(gjn)} =

B {Fy (GG D)= Frs WD)} = 2 {%(me}v,xi)—wcp}

for every n > N, respectively. This completes the proof. _ |
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6. Singularities.

For any x # y e I, we define Ay (x,y) = (Y (x) — V¥ (»)/(x—y). Let
W be the set of points x € I at which 4,(x) =2 or 3 (mod4) for
infinitely many n ’s. Obviously W < I — e. First of all, we have

THEOREM 6.1. — Suppose that v < 1/2k. Then we have
D*Y(x) 20 > D.¥(x) and  D*Y(x) — D.Y(x) > 1/4k
respectively, for every x e W. )

Proof. — We distinguish two cases (not exclusive) as follows :
Case A. A,(x) = 3 (mod 4) for infinitely many n’s.

Let 0 < n, < n, < ... be the subsequence of integers such that
A, (x) = 4N; + 3, where 0 < N; < k. From the functional equations
(4.1), we have
2N, + 1

k

b

B v @ <

therefore {Y(x)—VY(P; )HY(X)—Y(P;,)} <0 by (2) of LemmaS5.1,
where p;; = Pan;+jnx for 0 <j<4. On the order hand, we have
sign (x— P; ;) = sign (x— P, ;) = &, , by (1) of LemmaS5.1. Since &, ,
changes the sign infinitely many times as i increases, it follows that
D*y(x) = 0= D,y(x). It also follows that

.—n.—l
¢ s 1
@ Lo

[AVGaP )T+ 1AV Pl 2 15— > o 2k

therefore D*Y(x) — D, \(x) = 1/4k respectively, as required.

Case B. A,(x) = 2 (mod 4) for infinitely many n’s.
Let 0 <n; < n, < --- be the subsequence of integers such that
A4,(x) = 4N; + 2_, where 0 < N; < k. Since

2N, + 1

B <vem <2

it is easily seen that {y(x) — V(P; o)} {V(x) — ¥(P; )} <0 and
W(x) = V(P 3 {V(x) — Y(P;3)} <0. On the other hand, we have
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sign (x— P; o) = sign (x—P; ;) = sign (P; ,—x) = sign (P; 3—x) ; there-
fore D*Y(x) = 0 > D, V¥(x). Moreover,

k™1 1
—_— JR— 1 > _—
x— P,y 2k D >

[AV (x, P; o)l + |AV(x, P; 1)l >
The same estimate holds true if we replace P;,, P;; by P;,, P;,,
respectively ; thus D*\y(x) — D .\V(x) > 1/4k respectively. This completes
the proof. O

Let W, <« W be the set of points x € I at which A,(x) =2 or 3
(mod 4) and A,.,(x) =2 or 3 (mod4) for infinitely many n’s. Then
we have

THEOREM 6.2. — Suppose that v < 1/2k. Then W, is contained in the
set Knot (\f) except for a set of measure zero.

Proof. — We consider an arbitrary point x of W,. Let
0<n <n,<-..-- be the subsequence of integers such that
4,(x) = 4N; + §; and 4,,,,(x) = 4L; + ®;, where 0 < N;, L; < k and
2 < 9;, ®; <3. Then it is easily seen that

N+ 1 2L+ 1
2k (2k)?

2N, +1 L

k 2%’

< Y(G"(x) <

therefore by (2) of Lemma 5.1,
1 2L+ 1

L] — = L — & - -
MoK ) W (Puol) = W(G™09) = 7 > 3 = =0 > G2
Similarly we have

" N, +1 n 1 L _ 1
Moy x(2K)" W (Pia) =V O} = —— = V(G )25+ 55250

Therefore, since sign (x—P; o) = sign (P; 4 —x), it follows that
sign (A (x, P; o)) = sign (AV(x, P; 4))
and

lwmhﬂ>mw,|wmmm>i

Hence the set [D,Y(x), D Y (x)] N [D_VY(x), D~ (x)] contains an interval
of length (2k)~2 by Theorem 6.1. Thus it follows from Denjoy’s theorem
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[2, p. 105] that except for a set of measure zero, every point of W, is
a knot point of Y(x). This completes the proof. d

For N > 0, let Yy be the set of points x € I at which 4,(x) =0
or 1 (mod4) for all n > N and Ay_,(x) = 2 or 3 (mod 4). Obviously
I— W= ) 7Y,. For brevity, put Y¥ = Y, n (I—e) for n > 0. Then

n20
the unit interval I is decomposed as follows :

I=W+e+ |J Y.

nz20

For n > 1, let 5, be the set of finite words (w,...w,) of length n
such that 1 < w; < 4k and w; = 0 or 1 (mod4) for 1 <j < n. Then
we have

THEOREM 6.3. — Suppose that there exists a positive constant C,,
independent of n, satisfying

min _ |h, o...oh, (DI = Co(2k)™"

(wy...wp) €E,

for all n > 1. Suppose further that B < co. Then we have

1
D* -D > —
respectively, for every xe I — W.
Proof. — We distinguish two cases as follows :

Case A. x € Y} for some N = 0.

By Lemma 3.1, we have A4,(x) # 1 for infinitely many n’s. Let
N < ny < ny < .- be the subsequence of integers such that 4, (x) > 4.
Put Q; ; = pjn.x for 0 <j < 2. Since

VG > o
and sign (x—Q; ;) = sign (x—Q; ;) = sign (Q; , —Q;,1) = &y,x, We have

[AY(x, Qi 1) — AY(x, 02l =

w(G"*(x»{ L ! } L. @™ 1

@k x—‘Qi,z_x_Qi,l +2k(f’,c—Qi,1)| g 1x—Q; 11 g 2k
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On the other hand, it follows that

x—=Qiol > 10i1—Qiol =B

-N
By © - - ohA"i_l(x)ohl([)l >

CoB™¥(2k)™* M1
therefore
\I/(G"‘(x))

a k)
— Qo 2k

Since sign (x—Q; ) = &y, wWe conclude that either [D.\(x), D*{(x)]
or [D_V(x), D™Y(x)] contains an interval of length 1/2k according as
ey = —lor +1.

|AY(x, Qi,0)l = (2k) ™™

It also follows from Lemma 3.1 that A4,(x) # 4k for infinitely many
n’s. Let N < n; < n, < ... be the subsequence of integers such that
An(x) < 4k — 3. Put R, ; = pgy—jn.x for 0 <j < 3. Since

2k — 1
2k

V(@"(x) <

and sign (x—R; ;) = sign (x—R; ;) = sign (R; 3 — R, ;) = — &y, We have

[AY(x, R; ;) — AV(X, R; 3)| =

il f2k=1 1 1 1|
1 1 p— + >
) { Ve ))}{ —R;; X"Ri,z} 2k(x_-Ri,2)|
(2k)—ni_1 > i
[x=R; ,| 2k
On the other hand, |x—R;o| > |R;;—R; ol > CoB~2k) ™" ™' thus

|AY(x, R; 0)| = (2K)

\v(G"'(x» 1| _2k/B\"
—Ri o Co 2k
Since sign (x—R; ) = — €y, it follows that either [D.,y(x),D "y (x)]

or [D_Y(x),D "{Y(x)] contains an interval of length 1/2k according as
enx = t 1 or — 1. Hence D*Y(x) — D.V(x) > 1/2k respectively.

Case B. x € ey for some N = 0.

For n > N’ let Q: = max {qr,n,x9 q;,n,x}9 Q; = mln {qi_,n,xy q3_,n,x}
and let R} = g3, . respectively. Then Q; < R, <x <R < Q..
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Since sign (x—QF) = sign (QF — R}) = £ 1 respectively, it follows
from Lemma 5.2 that

‘A\I!(X’Rni) - A\"(xaQ;t)! =

L@t

e Zix-0F1

1(l_a ) 1 __1 + !
20 TR T x—07 ] kG- 07)
respectively. On the other hand, we have

X = RE 1> 1K1, 2| 2B N hayay 00 hy ey (D= CoB ¥ (2k) N1

. @) _ 2% (B
AV R < T < <2k> .

therefore

Hence D*VY(x) — D.Y(x) > 1/2k respectively. This completes the
proof. O

Let Y* = () Y} for brevity. Then we have
n=0

THEOREM 6.4. — Knot () n Y* = ¢.

Proof. — We consider an arbitrary point x of Y% for some N > 0.
Let s, = pon for n > N. Since sign (x—s,) = ey, is independent of
n = N, the sequence {s,} is monotone, either increasing or decreasing,
and converges to x. Note that s, = s,,, if and only if 4,(x) = 1. Put
Jp = [85,8,+1] = K, , for n = N. Then it is easily seen that

(x5l = U -

n=N
Since the function G"(x) maps K, , homeomorphically onto (0,1), we
have A,(x) > A4,(y) for all y e J,. Therefore

V(G"(X) = f4,x0) = .g;af)llfjll 2 V(G"(»);
thus
N,z SigR {Y(X) =V (y)} = Ny, sign { F, . (W(G"(X)) — F, . (¥(G"M))} =
sign {Y(G"(x))—VW(G"(y)} = 0.

By the continuity of ¥, we conclude that
M, sign {Y(x)—Y(y)} 20  for every  yel[x,sy].

This means that x is not a knot point of Y(x). O
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7. Proof of Theorem 2.1.

First of all, for any integer k > 1 and positive numbers o, ©, p
satisfying

7.1 2k(c+1) <1 and cz=p,

we shall construct two Cantor sets E, = E,(k,0,7) and E;, = E,(k,0,p).
The set Ey(k,0,7) is obtained from the unit interval I by a sequence
of deletions of open intervals known as middle thirds, as follows : First
divide I into k equal parts, say

1 12 k—1
11,1 = [0,%], Il,z = [E,E:I, vy Il,k = [T’l]’

and remove from each closed interval I, ; the open interval U, ; centered
at (2j—1)/2k and of length 2o. We subdivide each of the 2k remaining
closed intervals into k equal parts, say I, ;, 1 < j < 2k?, ordered from
left to right, each of length (1—2kc)/(2k?). Then remove from each
closed interval I, ; the middle open interval U, ; of length 207, leaving
the 4k closed intervals, each of length (1—2kc—4k*ct)/(4k?). This
process is permitted to continue indefinitely. At the nth stage of
deletion, each length of the 2"~ 'k" open intervals U, ; is 201"~ ', and
therefore the measure of the union of the open intervals removed in
the entire sequence of removal operations is 2kc/(1—2kt). The set E,
is defined to be the closed set remaining ; thus

1 — 2k(c+1)

\Eol = o

We next define the set E,(k,o,p), which is slightly different from
E, defined above, as follows : First divide the unit interval 7 into k
equal parts, say

1 12 k—1
Jl,l =|:0,;€':|’ J1'2=|:E,E], ceey Jl’k=[T,lil~

Then remove from each closed interval J, ; the two intervals
yo o= j—1 2j—1-2ko yt o= 2j—1+2ko j
1,j k ’ 2% » V1, —_—Zk s X )

each of length (1—2ko)/2k. We subdivide each of the k remaining
closed intervals into 2k equal parts, say J,;, 1 <j < 2k*, ordered
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from left to right, each of length o/k. Then delete from each closed
interval J, ; the two intervals V5 ; of length p(1—2ko)/2k, leaving the
2k? middle closed intervals, each of length (c—p+2kop)/k. At the
nth stage of deletion, we have |V, ;| = p"~'(1—2ko)/2k ; therefore the
measure of the union of the removed intervals in the entire sequence
of removal operations is (1—2ko)/(1—2kp). The set E, is defined to
be the closed set remaining ; thus

2k(oc— p).

|Ey| = 1 - 2kp

. . 1-2k 1-2k
Note that the set E, is contained in [ 2 d ]

) 1 -
2k(1-p)  2k(1-p)
We now define the continuous function {,(x) = (,(k,0,1; x) by setting
Co(x) = Jl dy(s) ds for 0<x<1,
(4]
where dy(s) = 1/2k if s € Ey(k,0,7) and dy(s) = T otherwise. We also

define the continuous function {,(x) = {,(k,0,p;x) by setting

Cl(x)=_1"—0'+ d,(s) ds for 0<x<1,
2% ,

where d,(s) = 1/2k if s e E,(k,0,p) and d,(s) = p otherwise. Then it
is easily seen that (y(I) = [0,(1—2ko)/2k),{,(I) = [(1—2koc)/2k,1/2K]
and ((E) = EEng() for i=0,1.

We next define, for 0 <i < k,

i i 2i+1
Gai+1(X) = Cc;l(x“‘;;) for xely, = i, l2k —c],

i [2i+1 2i+1
8ai+2(x) = CII(X_E> for xely., = 7_0’7]’

_qfitl [2i+1 2i+1

g4i+3'(x) = Cl 1<T_x> for xe I4i+3 = i 2k ,_2E— },

i+1 [2i+1 i+ 1
8ai+al(x) = C.(;l(x_ 212k —0'> for xel 4= le G,l—k‘];

thus the unit interval 7 is divided into m = 4k subintervals I; = [c;_; c]].
We have [Iiql = [Lyival = (1-2ko)/2k and |ly.s] = |ly+s] = O.
Obviously the functions g;(x) satisfy the conditions (5.1) and we denote
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by V(k,o,7,p;x) the corresponding continuous solution of the equa-
tions (4.1).

It follows from Theorems 6.1 and 6.3 that y(k,o,,p; x) has nowhere
a unilateral derivative finite or infinite for any integer k and positive
numbers o, T, p satisfying (7.1), since we have

- L B = max Lo
¥ 2k p’r

1 __o6 ot _ 5 |Eol
@k @kt (2R (2k)"

for every finite word (w; ...w,) € E,.

and

|hw1 -0 hwn(1)| =

Since the Cantor set E, is a unique compact subset of I satisfying
Ey = hi(Eg) U hy(Eg) U hs(Ep) U - -+ U hu(Ey)

and since the mapping v maps Y¥ homeomorphically onto v(Y¥), it
follows that Y% = E,. On the other hand, for every xe W+ () Y¥,

n>1

there exist n = n(x) and j = j(x) such that xeU, ;; thus E, = Y§ + e.
Therefore |Y}| = | E,|, since e is countable. Let Q, be the set of finite
words (w; ...w,) of length n such that 1 < w; <4k for 1 <j < n.
Then for any n > 0, the set Y}, is decomposed as follows :

Y* , = U h, o ---oh, ohi(Y}).
Wy ) € Oy
jeQ-Eq

On each interval Vi ;, for any (w,...w,)eQ, and jeQ, — &,, the

function h,, o --- oh, oh;(x) is a linear contraction; more precisely
we have
d h h h — Ant1-r(w)r(w) fi I}i—.
a(wlou-owno D(x)| = p T or xeVi;

(1+lej)- Since Y§n U, ;= ¢ for

N -
™M=

where r(w) = r(wy, ...,w,) =

ji=1

all j, we have

\Yrel =2klYsl Y PO = 2kp | Eo| (2k(p+ )"

(Wy..-wp) €Qy
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Therefore it follows that

d hd 1 - 2k(c+1)
*| = *| = + + V= —"7.
[Y*] ngoiYnl | Eol 2kPlEo|”§0 (2k(p+1)) 1—2k(p+7)

For N >0, let Zy be the set of points x € I at which A4,(x) = 2
or 3 (mod4) for all n > N and Ay_,;(x) =0 or 1 (mod4). Put
Z=1|) Z,. Obviously Z « W, =« I —e. Then it is easily seen

n=0

that the set Z, is a compact subset of I satisfying
Zy = hy(Zo) © h3(Zo) U he(Zo) © -+ U hyy—1(Zo) ;

therefore Z, = E,. For any n > 0, the set Z,,, is decomposed as
follows :
Zpiy = U hy, 0 ---0oh, ohi(Z,).
wy...wp) €Q,
jeEy

On each open interval U, ;, for any (w,...w,)eQ, and jeZE,, the

function h, o ---oh, ohj(x) is a linear contraction such that
d h _ An—r(w)1+r(w)
E;(hwlo--‘ohwno D(x)| = p T for xeU;.

Since Z, N Vi ;= ¢ for all j, we have

| Z,yi 1] = 2k| Z,| Y prTrMIT ) = 2kt | E, | (2k(p+ 1)) ;
(wy...wp) €Q,
therefore !
\Z| =Y |Z,] = |E;| + 2kt|E,| Y, 2k(pt1)" =
n=0 n=0 —_
Mc 1 — ‘Y*‘.
1 — 2k(pt+1)

Then it follows from Theorems 6.2 and 6.4 that
1Z| < |W,| < [Knot(Y)| <1 —|Y*| =|Z];

hence we obtain
2k(c—p)

1 - 2k(p+1)

Thus if we take, for a fixed number a€[0,1),

|Knot ({)| =

1+a L1
8k~ ° 4k

Gy = and Po = =>
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then the function Yo(x) = Y(k,04, 7o, Po; X) satisfies |[Knot (y)| = o and
Holder’s condition of order log (2k)/log (8k) by Lemma 4.2, which
obviously converges to 1 as k tends to infinity. This completes the
proof of Theorem 2.1. O

Remark. — Besicovitch’s function B(x) illustrated in Figure 1 is
precisely equal to the function {(1,1/8,1/4,1/8;x); thus B(x) satisfies
Holder’s condition of order 1/3.
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