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TWO PROBLEMS
OF CALDERON-ZYGMUND

THEORY ON PRODUCT-SPACES

par Jean-Lin JOURNE*

Robert Fefferman introduced in [1] the notion of a rectangle
atom on R" x R"1 and proved the following theorem.

THEOREM A. - Let T be a bounded linear operator on
L2^ x R^. Suppose that for any HP^ x R^O < p <, 1) rect-
angle atom a supported on the rectangle R we have

[ {Ta^dx^dx^ <: c^~~6

J^RY'^RV

for some fixed 6 > 0 and all 7^2 . Then T is a bounded operator
from HP^ x R771) to LP^ x R"1).

The definitions and tools involved in this theorem and its proof
have been generalized to product spaces with an arbitrary number of
factors [2], [3], but the question of whether Theorem A extends for
three or more factors or not, raised implicitely in [4] and explicitely
in [2] was open. Our purpose is to show that in the case p = 1, and of
the space R x R x R, Theorem A does not extend without any further
assumptions on the nature of T. If, however, one supposes that T is

* Supported by N.S.F.
Key-words : CaIderon-Zygmund operators - Product spaces - Bounded mean
oscillation.



112 J.-L. JOURNE

a convolution operator and if 6 > (1/8), then Theorem A extends.
As will be apparent from the proof 1/8 is probably not sharp and it
is reasonable to conjecture that 6 > 0 should suffice.

The second question which we shall answer has been raised by
Raphy Coifman and concerns the Z^-boundedness of the operator Ca
defined for a € ^(R2) and ||a[|oo < 1, by the kernel

Ca{x,y) = r y i ry2
(xz -yi)(x2 -2/2)4- / / a(ui,U2)<^i

r y i rv2
\+ j a(ui,u'z)duidu2

Ix^ J x-iJxi J x-i

The case ||a||oo < ^ was handled in [3] and was a consequence of the
estimate

ll^alkz^llall^

where Lk^a 1s ^he operator defined by the kernel

r rvi rv2 -i
/ / 0(^1,1/2)^1^2
r y i ry2 -i k

\ a(u^,u'i}du^
^i ^•i1 J x i Jxt

(a;i - iAi)(a;2 - yi) (^i -- 2/i)(^2 - 2/2)

Here we improve this estimate and obtain ||Z^o||2,2 <. ̂ (l + fc)24"6

for all 6 > 0, which yields the general case ||a||oo < 1-

In Section 1 we recall some facts about bounded mean oscilla-
tion over rectangles, and state Theorem A, restricted to p = 1, in
this dual setting. In Section 2 we present the counterexample to the
extension of Theorem A for R x R x R and p = 1. In Section 3 we show
how the positive result for convolution operators can be reduced to a
problem on finite families of convolution operators, which is handled
in Section 4. In Section 5 we treat the operators L^^a- This section
essentially combines ideas already contained elsewhere, and for this
reason, is rather sketchy.

I wish to thank Robert Fefferman and Jill Pipher whose papers
brought the first question treated here to my attention, Elias Stein
for encouraging me to clarify it and Michael Christ for discouraging
me from clarifying it further.
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1. Bounded mean oscillation over rectangles.

The space B(R x R), introduced in [5], is the dual space of
the atomic H1 -space, constructed from rectangle atoms. In other
words, let b E L^(H2). For every rectangle R = I x J in R2

let0sc^= inf ( — — — f \b(x,,x^ - b,(x,) - b^x^dx.dxX \
^^ \ | R | J R )

where the infis taken over all &i, 63 respectively in L2^!) and ^(J).
Then b G B if and only if

1.1 sup Oscpb < +00.
R

The left hand side of 1.1 is denoted \\b\\B.

An equivalent definition can be given in terms of Carleson
measures over rectangles. Let ^ be a real even C^R) function
such that f^dx = 0. For t > 0 and i E {1,2}, let Qt, be the
convolution operator on R2 of symbol ^(^,). We normalize ^ so

/•+00 . dti
that / Q^ — == J. For each rectangle R, the set S(R) denotes

Jo ti
the subset of R^ x R^. of those (^1,^1,3:2,^2) = (x,t) such that
]a;i -^,3:1 +<l [x ]a ;2 -<2^2 +^2[ C jR.

LEMMA 1. - A function b £ Î ^2) 25 in B if and only if for
some constant 05

1.2 / IQt^rfAri^d^^2- ̂  C6|A|.
^W ti t^

Moreover if Cb is optimal, c^ w ||&||^.
Notice that 1.1 =^ 1.2 is clear since ^ has compact support.

We shall prove the converse in the non-product setting but the proof
we give extends easily.

It is enough to show that if b C B(R) == BMO(R), and for all
interval J C R

1-3 / Wdx^ ^ |J|
J(x,t),]x-t,x+tlCI t
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then \\b\\B = IHiBMO <: c where c depends only on ^. For all

t > 0, let Pt be the operator I - / Q^ -s-. Then for all t > 0,
Jo s

Ptb is C00 and ||(W||oo ^ c||&||B^1. It follows that if I is an
interval of center Xo and ti = A"|jr| for K fixed large enough,

( t \1/2 1
^-j^ \P^b(x) - P^x^dx} ^ ^\\b\\B. Therefore

/ i f V72
—/|^)-P,^o)!2^)\| 1 1 ̂  /

^ fi4r /'l^)-^^)!2^)12+llHlB.\ j •I I JJ / ^

By taking the sup over I, we see that \\b\\a <: 2 sup ( ——
I \\I\

t \1/2
f \b(x) — Pt^b^x^dx ) . To estimate the right hand side we let

g be in L2^!^ with \\g\\2 = 1 and dominate < g , b — P^6 > by

1.5 / |0^)| |Q,6(a;)|^d.r.
Js<,tf S

The conditions Qa^ 7^ 0, 5 ^ ^/, and ^7 6 ^(-O, iniply a; Jiir'Z for some
K1 fixed. Using Cauchy-Schwarz, 1.3 and \\g\\2 = 1, we can dominate
1.5 by an absolute constant, which proves the lemma.

In the following lemma the notations and definitions are those
of [3].

LEMMA 2. - Let T be a translation invariant 6 — CZO on RxR.
Then T is bounded on D.

This lemma is an easy consequence of lemma 1. For simplicity
we shall consider the non-product situation, but give a proof which
extends trivially.
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Let T be a translation invariant 6 - CZO on R. The kernel
(Qt TQti)(x - y) of T is easily seen to satisfy

1.6 \{QiTQ^{x - y)\ ̂  c w,.^\x - y ) (t^-}
{ t ^ t ' j

t61
for some 6' < 6, where w^^z) = - ^ — — ^ . For (x,t) £ R^.

- ~^~ pl

and 6 e B \QtTb{x)\ = | / (0,TQ<,) (.r,y) (0(,6) (y) rfy ^
l./ll^. <'

By Cauchy-Schwarz and because of 1.6 this is less than

^1/2\ r . . ft^tf\ o ^/
c L ̂ .^^-^ r:-7 I^WI^-T-^K4. \t V t / t

It follows that if |0^6(z/)|2 dy16— is a Carleson measure, then

{QtTb^x^dx y is a Carleson measure. The same proof using
Carleson measures over rectangles yields the result in the product
case. Lemma 2 is proved, by Lemma 1.

We conclude this section by stating Theorem A, restricted to
p = 1, in dual form [4].

THEOREM A'. - Let T be a linear operator bounded on
^(RxR). Suppose that for any rectangle R, and any L^-function
a supported out of ̂ R,

1.7 Osc^ Ta <, c^6

for some 6 > 0 and all 7 > 2. Then T maps L°° to BMO(R x R).

2. A Counterexample.

Any counterexample in this kind of question has to be related
to the counterexample of Carleson [6] showing that rectangular
Carleson measures are not, on the bidisc, a good substitute for
classical Carleson-measures. As shown by R. Fcfferman in [5], this
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counterexample implies that there can be no a priori estimate
II^UBMO <: ^HIa on ^he bidisc. We shall denote for each k ^ 0 by
bk a function on RxR such that ||&A;HBMO = 1 ̂ d \\b\\n ^ 2"'^.
Using 6fc we form a 6 - CZO on Tk on RxR by letting Tkf =
J7 ^^{(^^^)W^<J)} ̂ ^{orfeWR^C^W.
The fact that TA; is a 6— CZO is clear, and proved in [3]. Let also Sk be
defined on R as the operator of convolution by {~<f>(x)~}- (^(2~fca;)},
where (/> is a C^°(H) function equal to 1 near 0, followed by the
multiplication by e1^. Finally let Uk = Tk ® S k '

We claim that Uk satisfies uniformly the assumptions of The-
orem A\ adapted to the case of three factors. Clearly ||U^||2,2 <: c-
To check 1.7, only the oscillation of bk over rectangles is used,
introducting a gain of 2'^. On the other hand the kernel S k ( x ^ y )
of Sk satisfies | V-c ^(^^l ^ |—^—T? ^u^ ^ice on the support\x — y\

^k
of 5fc(.,.), |.z: - y\ <_ C2", one also has | V.c ^k(x,y)\ ^ , __ .2 , and1*^ y\
|Vy^(^2/)l ̂  |—C—I' Therefore, writing^ = (2^^) ® (2-^^),[a; — y|
we see that Uk satisfies 1.7 as any tensor product of a 6— CZO on RxR
with a 1 — CZO on R. The contradiction comes from the fact that
the functions v.k = ^fc(l 0 sgn x) = bk ®5^ sgn a;, are not a bounded
sequence in BMO(RxRxR). Indeed H^UBMO w \\Sk sgn (:r)||BMO ^
JL

3, Extension of Theorem A in the convolution case.

We wish to prove the following.

THEOREM 1. - Let T be a bounded convolution operator on
^(R3). Suppose that for any rectangle R, and any L°°-function
supported out of^R,

3.1 OSCR Ta <, c 7"^

for some 6 > 1/8 and all 7 > 2. Then T maps L°°(R3) to
BMO (R x R x R).
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In [3] the .L°°—BMO boundedness of operators bounded on £2,
whose kernels satisfy some assumptions of Calderon- Zygmund type,
is proved using the characterization of BMO in terms of Carleson
measures [7] and some geometrical lemmas. Assumption 3.1 can be
thought of as a very weak Calderon-Zygmund type of assumption
and is reminiscent of the weak vector-valued standard estimates
satisfied by the kernel of the square function operator of J.-L. Rubio
dc Francia [8]. It turns out that the technique used in [3] to extend
Rubio de Francia's theorem in several parameters also applies here.
Indeed this technique can be summarized in the following lemma.

LEMMA 3. - Let T be a bounded operator on ^(R^. Let
i C { 1,2,...,n} and let (^i,...,^.) € 21. Let (.n,... ,a:.) € R1.
Let b C ^(R") be supported in {(^i,...,^)
€ R^ ^ \Zk - Xk\ ^ 2^ for 1 ̂  k ̂  z}, such that for all
(^•••^»),

3.2 / |̂ i,. ..^n)!2^!,...,^^!.
./-?»+!,...,Zn

Suppose that for (<i, ...,^-) such (ha( ^ <, 2tk~l for 1 <, k <, t,
3.3

/ |^...0t,^^l,...,^)|2d.^.4-l,...,^n^c TT ( t k }
J^.^n i^A2^

for some e> 0 and that all of this remains true if the set {1,.... i} is
replaced by any other non-empty subset of {1,..., n}.

Then T maps I^R") (o BMO(R x ... x R).

Of course when i = n, then 3.2 and 3.3 simply mean that when

IHIoo^iJO<..,...,Ot,r 6(0:1, ...,:r,)|<c n f-^) .
l^iXn v2 /

which follows trivially from 3.1.

Now we are going to see how to reduce the proof of Theorem
1 to a problem on finite families of convolution operators. In this
reduction we shall suppose that n = 2 and i = 1. We want to prove
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that if T satisfies the assumptions of Theorem 1, then it satisfies the
assumptions of Lemma 3.

We shall assume that the function ip defining Q<,, i 6 {1,2} is
of the form ̂ *^, where ̂  is real even C00, supported in f-4, ^]

and with mean-value 0. Then if \xi - ̂ | ^ 2ti we can define an
operator (0<i'T);^_^ acting on functions of the second variable by
letting, for

f,g € CS°(R) < g,(Qt,T)^J >=< ̂  <9g,T^ ®/ >

where ̂ (u) is defined as ^- ̂  (u^£l-) and similarly for ̂ (u).

Let (xi,ti) 6 R .̂; î € Z such that 2/t ^ 2<i and 6 € L^(R2)
such that supp b C {(^,^) 6 R2, 2^ ^ |a;i - ̂ j ̂  2^+1} and for
all̂  € Rjl^i,^)!2^ ̂ l.Then^r6(.ci,.)=/(^r)^-,,

&(2-i,-) rf2i. In order to prove that \\Q^T 6(a;i,-)|J2 <: c (-^-Y for
some e > 0, it suffices to prove that for all finite sequence (zi,k)i<k<N
such that \zi,k - ̂ ,t+i| = 2ti and 2^ ^ |a;i - 2-1 J ̂  2<l+l for'all
1 ^ A; ̂  ̂ ,

3-4 ||z(^^_^6(^,.)[| ^-^f^-y.
ll̂ i llz <i \2<l/

On the other hand we are going to see that if [|6|[oo ^ 1, 3.1
implies

5

3.5 ||E(^^-^^i^-)|| ^^(^
"Jk=l llB(ltt) ^1
Z^A-^^-) ^^f^r).
t=l ll5(ll) <1 \ 2 1 /

Indeed, using the factorization of Q^ as Q^, we can rewrite the sum

as

N
^((?t,r),,-^ 6(^,A.,.)
t=i

(.Qt^-y. \'EMyi-^,k)b(z^-)] dyi.
J L k J
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As afunctionof(t/i,-), ^^<i(i/i -~^i,ji«)&(^i,ji-,-) is bounded of norm
'k

f- and supported in a strip {(z/i, •) C R2; [.TI - z/i | « 2^ }. It follows
that 3.1 implies 3.5.

Observe that now we just have to show that 3.5 for 6 > 1/8
implies 3.4 for some e > 0. Since N <: s— it will be a consequence
of the following.

PROPOSITION 1. - Let N be an integer and (T^i^j^N be a
family of convolution operators on Z^R). Suppose that if(&y)i^j<N
is a sequence of bounded functions

3.6 | |E ̂ -IL^ sup Halloo.
3

Then if(fj)i<^j^N is a sequence of L2-functions

3-7 llE^^l2^CJVi+''SUPl?
3

for all 77 > 0.

Of course to prove Theorem 1 we need an analogue of Proposi-
tion 1 in a higher number of parameters. The extension of the proof
of Proposition 1 which we shall give in the next section relies only
on Lemma 2, and on the characterization of BMO in terms of L°°
and partial Hilbert transforms [7]. Therefore we shall leave it to the
reader. We shall however use in our proof the symbols || • HB and
I I • 11 BMO? even though the norms they denote coincide in the one-
parameter case, in order to indicate which one should be used in
several parameters, at which place.

4. Proof of Proposition 1.

LEMMA 4. - Let (^m)i^m^M be a finite collection of distinct
real numbers and let (cm)i<m^M be a Suite collection of complex
numbers. The function b = Yc^e1^""^ its in B with a norm at
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least (E M'r.
^mssi /xm=l

To see this, it suffices to test the oscillation of b on intervals
whose length tends to oo. We omit the details.

From this lemma it follows that, under the assumption 3.6
applied when the b^s are characters,

4.1 E l i^ l lL^ i -
i<.j<,N

Let us prove that 4.1 allows us to make the assumption
that ||r,||2,2 <. -7— for allj [1,N], without loss of generality. Indeed

let c(7V) be the best constant for which 3.7 holds with c(7V) instead

of cNs^, and similarly for c ' ( N ) but assuming ||T,||2,2 <. -^saas for

j G [1, N}. Let a > 0. Let (r,)i^^ be a collection of operators sat-

isfying to 3.6. By 4.1, the number of/s for which ||T,||2,2 >: ?'2
is less than [^V1^20], where [ ] denotes the integer part. It follows, by

considering the set of j's for which ||r^||2,2 <: -^V0^, and those for

which | \Tj | [2,2 ^^""^that

4.2 c(N) ̂  c\N)N01 +c{[Nl'2a]^

Hence if c\N) grows at most like JVs"^ for all i] > 0, so does c(N).

We now suppose that for all 1 <, j <, N , \\Tj\\2 2 <: -4!aaBt. Since
' v^the Hilbert transfonn is bounded on B and any BMO function b

can be written as a\ + Ha^^ where a\ and 02 are in L00 and satisfy
l^illoo + ll^lloo <: C||&HBMO? ̂  see that 3.6 implies

4.3 HE r^||^csup ||&,||BMO.
3

We can also assume that the symbol of each Tj vanishes on

Ujkez P1 ',^] U R-. We let Aj^ be the multiplier of symbol
x^ 2^1 and let T^ be ^y•A^

1.4 f J
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LEMMA 5. - For all k C 2, Y^ ||T^||2,2 <. c.

In order to prove this lemma it suffices to show that if
(5j)i^j^;v is a family of convolution operators whose symbols aj
are supported in {1 <, ^ <, 1 + /3] for some /3 > 0 and if for all
sequences (^)i^j^jv of real numbers and all sequence (c,)i^-<7v of
complex numbers

4.4 IIE5^^^!^811? l^-l
" j ' B 3

then

4-5 E 11^112 .2 =E iMoo^-
J J

To prove 4.5 it suffices to show that for any sequence (6,)i<,<jv,

4.6 ^ |< ,̂)| < c.
J

We may assume that the ^/s take their values in [1,1 + /?] and that
the o'j($j)'s are valued in [0,1]. Then we just have to show that

t E^^'^'^-^iifE^^)6'^^^ , \, / i
4-7 ^(E^-))2-i
Equivalently it suffices to prove for all j

4.8 / [e'<^'-> -m(o,i]e'<^'->|2 dx^c
Jo

and for j , €, j ^ £,
4.9

Re / (e'<^--> - mto^je^^-^) (e'«*--> - m[o,i]e'<^-->) da; ̂  c.
»/o

This is clear if /? is small enough, which proves Lemma 5. We may
therefore assume that ̂  HT^Ha^ ^ 1 for all k € 2.
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The last lemma we shall need is classical.

LEMMA 6. - Let (cjQ^Z € ^c(Z) and {^k)kei be a se-
quence of reaJ numbers such that ^k € [^2^, 2^<"H1 for ail

k € Z. Then V^e'^^ is in BMO and [ly^e^^ll <
^ ll2-^ HBMO ~~.(EM'r-

Let us now indicate the strategy to go from 3.6 to 3.7, assuming
that ||T^||2,2 ^ -2-' and Tj = T^Ak, for all j, and that

v Ji-ez
^ I |T^||2,2^1 for all f e e 2.

Suppose there exists for each k a number ^ in ^2^, 2fc+l |,
such that for all j,

4.10 ll^||2,2^c|m^)|.

For all j C [1,^], let (c^)jb be such that ̂  |c^jk|2 ^ 1. Then by

Lemmas 4 and 6 and by 4.3 we obtain Y^ V^ ̂ (^O Cj,^ ^ c and
^ jeven

24-11 EfEK^i i^O^^
fc v j /

Now if (fj)i<^j^N are £2-functions with norm 1, by 4.10 and 4.11,

||Z |̂|:=Z||E .̂/,||:
fc j

^EfEn^i^iiA^ib)2
fc v j /

^^fEK^III^/ylb)2^^
t v j /

since for all j , Ell^-lli^1-
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Unfortunately the existence of these miraculous ^'s is not
guaranteed in general and matters are slightly more complicated.
The point will be to select a small number of^j^'s for each Jc, in such

a way that sup ( — — i J"12^z >. i ) be not too large, and then apply
jjY^P I ^-(^M) \)

essentially the previous argument. We are now going to describe how
to select these $&,^s.

Let k be fixed p be a large fixed integer, and fi = T2-. Let r
and s be two integers such that O ^ s ^ r ^ p — 1. We pick up a $,
denoted $^ such that

4.12 ^ |m,(0|2 ^ 4^
3 p

where the sum runs over those j's such that

4.13 N-^ ^ ||r,,t||2,2 < N-^^

and

4.14 N^9 ^ |m,(0| ̂  N^^.

We take off all the j's satisfying 4.13 and 4.14 and select another
^, denoted ^'^, in the same fashion. When we cannot go on for a
fixed r,5, we choose another couple r\ s\ and obtain a collection of
(^ ̂  )^. Finally when the process stops we can conclude that for all

^sm^^^1],

4.15 EKW^"^
3

where the sum is restricted to those j's which have not been taken
off during the selection process. We call this set Ek. So we have a
decomposition of [1,N] as Ek U (J E^ where E^ is the set ofj's

r,s,t
which have been taken off after selecting ^'^. Notice that all these

sets are pairwise disjoints. We define Tj19 = r^ (^^Afc) , where the
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sum is extended to those k^s such that j belongs to U^ E^. Notice
that for each (r,^), the collection (Tj'^i^j^N satisfy 4.3 uniformly.

LEMMA 7. - Let (fj)i<^j^N be a sequence of L2-functions of

norm less than 1. Then [[^ T^f^ <. c p N^^\
j

To prove this lemma we first observe that for each ^, the set
E^\ has at least p^N ^<21^9+1) elements because of 4.12 and 4.14.
On the other hand, since ̂  ||r^||2,2 <: 1, the set Uf E^ has at

j

most N^^ elements by 4.13. Hence there is at most p2^^(2a+2-r)
distinct values of ^'^, for r,s and k fixed. For each j we consider a

sequence (cj^)kev. m ^ (z) ̂ ^ ^at V^ \^j,k\2 <: 1, and cj^ = 0 if
k

T^9 Ajk = 0. Let bj be the BMO function ̂  c^e^^, where ̂ '̂
^

is the element of {^, 1 ̂  ^ ^ ^2^^(23+2-r)j ̂  ̂ y^ j ^ ̂
By Lemmas 4 and 6 and by 4.3 and 4.14

4.16 Efel^-l)2^^1"2".
k,t v J /

where the sum in j runs over E^'i. If (/j)i<i<yv are L^functions of

norms less than 1, ̂ T^f, \ <, ̂ fe lir^lMIA,/^)2,0||, - ^\^\\-3
3 k ^ j» A; N » '

( \2
which is, by 4.13, dominated by ̂  ^\\^kfj\\2] ^~24-2^(r+l\

fc i /fc v ^

the sum in j running over M E^. Hence, for each A',
€

( E llA^l^^p^^^-^EfE llA^-lb)2.
^e ;̂;; / < S-e^ /

Sununing over Jc and using 4.16 we obtain 5 . T^fj
i
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<. c p^N^^ and Lemma 7 is proved.

By the assumption \\Tj 1)2,2 < -3— for all j, we see that

^(^+1) <: ^. We then deduce from Lemma 7 that |[y V T^/jH

1 1 r1s j

< c p3N2^8 sup | \fj [ (2. Since p. can be made arbitrarily small,
j

we just have to estimate the remainder term ||yr//, - Y^
j f^

(y^ ̂ 'Vj} • Using 4.15, Planchercl and Cauchy-Schwarz we eas-
3

ily obtain a domination by c N 8 . This concludes the proof of Propo-
sition 1.

5. Tensor-products of multilinear
singular integral operators.

We wish to prove the following.

THEOREM 2. - For all 6 > 0, there exists c^ > 0, such that for
all a € £^(R2) and k e N

ll^alb^^c^l+^^llall^.

This theorem will essentially follow from a general result on multi-
linear singular integral operators.

Let TI and T^ be two bounded operators on -L^R). Then it
is a simple consequence of Fubini's Theorem that Ti ® T-z, defined
on L2(R x R), extends boundedly to all of ^(R x R). If however
one considers two bilinear operators bounded from L°°(R) x L2(R)
to 2^(R), then their tensor-product, defined on [L°°(R) ® L°°(R)] x
[^(R)®!^)], is not in general bounded from Z°°(R2) x £2(R2) to
-^(R2) [9]. It is a surprising fact that it is bounded when the bilinear
operators are of Coifman-Meyer type.

We shall see that this is also true for multilinear singular
operators.
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As in [10] we shall deal with multilinear singular integral forms
instead of multilinear operators. We refer to [10] for the precise
definition of a multilinear singular integral form, 6 - nSIF, and for
a boundedness criterion concerning them. We shall denote by 17 a
6 - nSIF on R and refer to [10] for the notations (7.1, i e [l,n],
l^l^ \U\w, \\U\\i,j and |£/,^. We recall that U is bounded if for
1 <: i <^ J ^ n,

5.1 ?1^2,..., An)! ^i/II ll^lloo)l|^||2 ||M2
\^i,j ^

for all hf, 1 <, £ ̂  n, in C^R).

If 17 and 17' are two bounded 8 - nSIF's, then their tensor-
product U ® U1 is well defined on [^(R) (g) Go^R)]". We then say
that 17 is bounded if for 1 <, i <, j <^ n,

5.2 |^®^(/^,...,M ^c,/n ll^lloo)ll^||2 ll^-lb
^•j /

for all hf, l<,t<.n, C§°(R), and we denote by [||;7 ® U'^ supc'^-,

where c'̂  is the best constant in 5.2.

THEOREM 3. - If U and U' are two bounded 6 - nSW's, then
U ® U ' is bounded and

\\\U0 ̂ ||| ^ ^^IIC/.l l lBMO+^d^+IC/l^)}

5.3
{(Ell^llBMO+n^l^l.+l^l^l.

Notice that the constant c appearing in 5.3 is independent of n.

An application of Theorem 3 in the case where U = U ' is the
form determined by the (n - 2) - nd Calderon-commutator (see [10]
section 4) yields ||2^a||2,2 ^ c^(l + n)4-^ for all n G N and 6 > 0.
As in [10] the antisymmetry of the kernel ——— permits to improve
this estimate and to obtain Theorem 2. Since this will be clear from
the proof of Theorem 3 which we shall now outline, we omit the
details.
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The proof of Theorem 3 is along the same lines as the proof of
Theorem 2 in [10], which we shall assume familiar to the reader. Let
us recall however that the main ingredients of this proof are Carleson
measures, quadratic estimates that have been developed in [5], [7],
and [11] in the context of product-spaces. Another important element
is the equivalence between H1 —> L1 and L°° —» BMO boundedness
for a singular integral operator. The proof of this equivalence given
in [12, p. 49] relies on the atomic decomposition of H1 in H1100

-atoms. Such a decomposition does not seem to exist on product-
spaces where the atoms are only in L2. However this equivalence is
still true on product spaces.

PROPOSITION 2. - Let T be a 6 - SIO on R x R. Then T is
bounded on L2 if and only if T maps L°° to BMO.

We refer to [3] for the definition of a 6—SIO on R x R. Notice
that by applying Proposition 2 simultaneously to T and T* we see
that a 6-SIO maps L°° to BMO if and only if it maps H1 to L1.

The fact that the L2-boundedness of T implies its L°°-BMO
boundedness is already known [3]. The converse is then an easy
consequence. Suppose that T is a 6— SIO bounded from L°° to
BMO, and let us also assume that ||T||2,2 < +00. Then, by the
direct part of Proposition 2 applied to T* we obtain HTHH^L1 <:
c||r||2,2 + ^C^)? where c(r) depends only on the constants for
the standard estimates of the kernel of T. By interpolation [13]
||r||2,2 ^ caiTll^BMoimiHi.Li)172. It follows that, ||r||2,2 ^

cdlTllL^BMO + ^T))^ which easily implies Proposition 2.

The connection between <5—SIO^s on RxR and tensor products
of 6 — yzSIF^s on R is provided by the following lemma.

LEMMA 8. - Let U and U ' be two bounded 6 — nSIF's on R.
For a l l l ^ i ^ j ^ n and all hk 6 (^(R^) ^.C^R^), k ^ ij, the
operator T = ((7®^ r7'),j(/^l,..., hk , . . . . hn) defined by < h^.Thj >
= (U ® U1) ( / i i , . . . , hn), is a 6—SIO on R x R, of norm less than

c[(ni.j + \Ui,W[^ + (ll^n.,, + \u[,Wi,\^ n IIMIoo.
kytij
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The proof is routine and we omit it.

We turn to the proof of Theorem 3. Let <f) be a non-negative
function in C^°(R) such that f <f>dx = 1. For all t > 0, we denote
by Pt the convolution operator on R2 of symbol a^,^) = ^(^).
Similarly P[, is the operator of symbol </»(^). Finally Qt = —t-ff.Pt

and^,=-^|^.

As in [10] we choose hi,..., hn in C^R^C^R^) and express
U ® U\h^^..., /i^) as the sum of n2 double integrals of two different
types:

I ffu®U\Q,Q^h^ W,/^...,W^n)^ ̂

II ffu®U\Q,P[.^ W^2, W,/Z3,...,P<P^)^ ̂ .

It is clear that the estimates of the n integrals of type I can be
reduced to Carleson measure estimates. To see that this is also true
for the n2 — n integrals of type II we need the following.

LEMMA 9. - Let T be a 6 - SIO on R x R. If Tl and T*l vanish
(or are in BMO), and the partial adjoints of T are bounded on L2,
then T is a <?-CZO.

This lemma follows immediately from the Tl-Theorem and
Theorem 3 of [3].

Let V1 be the 6 — nSIF obtained from U ' by letting
^(/ij2,...,/n) = U ' (/2,/i,/3, ...,/n). By lemmas 8 and 9 we
see that

// ^®v'(WA W^,...)^ ̂
t i

^ciiMAibnii^-iic
k>3

implies

U®U\QtP[,l^ W^,...)^^
L L
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^ii/ziibii^ibnii^ioo-•2||2 J[J[ Halloo.
Jk>3

Since V1 has the same properties as U ' , we are reduced to estimating
integrals of type I.

//
We are going to prove the following estimate :

u^u'w^Wh,,...)^^
L L

5.4 ^c\\U,l\\BMO+n{\U\,+\U\w))

( l l^ l l lBMO+^l^ l^+l^ l^ fn i l^ l l^ l l^ l l^ l l^ lb .
^3 /

It is easy to see from the previous remarks that 5.4 implies
Theorem 3. In turn 5.4 is itself an immediate consequence, after re-
duction to a Carleson-measure estimate, of an extension of Theorem
1 of [10] to the setting of product spaces, which we now describe. We
first need to recall the notion of an 6-family introduced in [10].

DEFINITION 1. - A family S = (.S()oo of operators given by
kernels satisfying

5.5 K^)l^c^^_^,

5.6 i^)-^)i^c ,^^_^ (̂ rn )̂ -
for all x, y , and z such that \y - z\ <, .(t + \x - y\), is an e-family.

It is bounded if for all f 6 L2,

r y+oo ^l1/2

5.7 / IkJII^- ^c||/|b.
Uo i J

Following the procedure of [3], to extend this notion to product
spaces, we first put a norm on the space of e -families by letting
11^1 \e = l l^ lb + \S\e-> where ||<?||2 is the best constant in 5.7 and
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\S\e in 5.5 and 5.6. An e-family on R x R will then be a two-
parameter family Cr(,(')(,('>o of operators given by integrable kernels
'^('(^.•^y)!/')- For t,x,y fixed, we shall denote by (r(,(.[a;,y,])(->o,
the one-parameter family of operators acting on the second variable,
and of kernels (T(,(- [a;, y]) (a;', y') = Tt,f(x, x1, y, y'), and similarly for
(T(,c[a;',i/']')oo. Then (T^t.t^o is an e-family if

5.8 ll(^[.,^>o||^c^_^^^

||(r,,,-[;c,y]-r^[;r,4,>o||e
5-9 <c f '̂ 1 V

- \(+|;E-y|/ <i+'+ ja; - y|i+»

when |y - 2;) ^ ^(( + ja; - y|) and similarly for Cr(,('[a;',y'])(->o.
We denote by |T^(>|e the best constant in 5.8 and 5.9. The family
('^(,i')(,c>o is bounded if for all f L2

5.10 [//r^iij^F^cii/ii^
We also introduce a "Carleson norm" on functions w from

R^ x R^. into C, by letting

l l f 1 1 ff \ f i . ̂ .2, , . fA dt1}1'2Hc= sup ——— / / ^{x.x'.t^dxdx1 \——\ ,
ncop L| ̂  |J JJsw [ t t ' \

where H is an arbitrary bounded open subset of R2, and 5(^) consists
of these (x.x^t.t') such that }x-t, x + t[x] x ' - t ' , x'+t^CQ..

THEOREM 4. - Let (Tt^)t,i'>o be an e-family. It is bounded if
and only if|(r,.l)(.,. )|c < +00. In this case for all a C L°°(R2)

5.11 |(T.a)(.,.)|^|H|oo |(T,1) ( . , . ) ] + c,||a||, |T |̂,.

By the same argument as for Theorem 1 for [10], we need
to consider only the case where Tt^l = 0 for all t,t' > 0.
We then decompose T^as Xi^ + Y^ where Xf^f(x,x1) =
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fST^^x.x^y.y1) {P[,f} { y , x ' ) dydy1\ Notice that (A'^)^>o is
itself an e-family, as well as (^^(^x). Furthermore if / does not
depend on the first variable Xt^f = 0, while if it depends only on
the first variable Y^^f = 0. Therefore we are reduced to the case
where not only T^l = 0 but also Tf^f = 0 for all functions f of
the first variable. To show that (T^)^>o is bounded in this case it
suffices to show that

Z - HT- T dt dtlz- JJT(•('Ttltl 7 T
is bounded on L2. But Z is an SIO on R x R, to which it is easy
to see that the Tl-Theorem of [3] applies. To deduce 5.11 from the
boundedness of (Tt^)t^^Q one proceeds exactly as in the proof of
Theorem 3 on [3]. This proves Theorem 4. Routine arguments, which
we shall omit, now yield 5.4 and then Theorem 3.
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