HANSPETER KRAFT
CLAUDIO PROCESI

Graded morphisms of G-modules

<http://www.numdam.org/item?id=AIF_1987__37_4_161_0>

NUMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/
1. Introduction.

During the 1987 meeting in honor of J. K. Koszul, Steve Halperin explained to us the following conjecture (motivated by the study of the spectral sequence associated to a homogeneous space).

1.1. Conjecture. — If \(f_1, f_2, \ldots, f_n \) is a regular sequence in the polynomial ring \(\mathbb{C}[x_1, x_2, \ldots, x_n] \), the connected component of the automorphism group of the (finite dimensional) algebra \(\mathbb{C}[x_1, \ldots, x_n]/(f_1, \ldots, f_n) \) is solvable.

In this paper we prove a weak form of this (Corollary 4.3) which implies the conjecture at least when the \(f_i \)'s are homogeneous (Remark 4.4).

2. Preliminaries.

Our base field is \(\mathbb{C} \), the field of complex numbers, or any other algebraically closed field of characteristic zero.

2.1. Definition. — A morphism \(\varphi : V \to W \) between finite dimensional vector spaces \(V \) and \(W \) is called graded if there is a basis of \(W \) such that the components of \(\varphi \) are all homogeneous polynomials.

Let us denote by \(\mathcal{O}(V) \), \(\mathcal{O}(W) \) the ring of regular functions on \(V \) and \(W \). These \(\mathbb{C} \)-algebras are naturally graded by degree: \(\mathcal{O}(V) = \bigoplus \mathcal{O}(V)_i \). A subspace \(S \subset \mathcal{O}(V) \) is called graded if \(S = \bigoplus_i S \cap \mathcal{O}(V)_i \).

Key-words: Automorphism group of an algebra - G-module - Equivariant graded morphism - Regular sequence.
If \(\varphi : V \to W \) is a morphism and \(\varphi^* : \mathcal{O}(W) \to \mathcal{O}(V) \) the corresponding comorphism we have the following equivalence:

\[\varphi \text{ is graded } \iff \varphi^*(W^*) \text{ is a graded subspace of } \mathcal{O}(V). \]

2.2. **Lemma.** — For any graded morphism \(\varphi : V \to W \) there is a unique decomposition \(W = \bigoplus W_v \) and homogeneous morphisms \(\varphi_v : V \to W_v \) of degree \(v \) such that

\[\varphi = (\varphi_0, \varphi_1, \varphi_2, \ldots) : V \to W_0 \oplus W_1 \oplus W_2 \oplus \cdots. \]

(This is clear from the definitions.)

2.3. **Remark.** — Let \(G \) be an algebraic group. Assume that \(V \) and \(W \) are \(G \)-modules and that \(\varphi : V \to W \) is graded and \(G \)-equivariant. Then in the notations of lemma 2.2 all \(W_v \) are submodules and all components \(\varphi_v \) are \(G \)-equivariant.

2.4. **Remark.** — If \(\varphi : V \to W \) is graded and dominant with \(\varphi^{-1}(0) = \{0\} \), then \(\varphi \) is a finite surjective morphism. In fact given a finitely generated graded algebra \(A = \bigoplus A_i \) with \(A_0 = \mathbb{C} \) and a graded subspace \(S \subset A \) such that the radical \(\text{rad}(S) \) of the ideal generated by \(S \) is the homogeneous maximal ideal \(\bigoplus A_i \) of \(A \), then \(A \) is a finitely generated module over the subalgebra \(\mathbb{C}[S] \) generated by \(S \) (see [1, II.4.3 Satz 8]).

3. The Main Theorem.

3.1. **Theorem.** — Let \(G \) be a connected reductive algebraic group and let \(V, W \) be two \(G \)-modules. Assume that \(V \) and \(W \) do not contain 1-dimensional submodules. Then any graded \(G \)-equivariant dominant morphism with finite fibres is a linear isomorphism.

We first prove this for \(G = SL_2 \) and then reduce to this situation.

For any \(C^* \)-module \(V \) we have the weight decomposition

\[V = \bigoplus_j V_j, \quad V_j := \{ v \in V | t(v) = t^j \cdot v \}. \]

We say that \(V \) has only positive weights if \(V = \bigoplus_{j>0} V_j \).
3.2. Lemma. — Let V, W be two \mathbb{C}^*-modules with only positive weights, and let $\varphi : V \to W$ be a \mathbb{C}^*-equivariant graded morphism with finite fibres. For all $k \geq 0$ we have

$$\varphi^{-1} \left(\bigoplus_{j \leq k} W_j \right) \subseteq \bigoplus_{j \leq k} V_j,$$

and the inclusion is strict for at least one k in case φ is not linear.

Proof. — By lemma 2.2 and remark 2.3 we have $\varphi = \sum_{v \geq 1} \varphi_v$ where $\varphi_v : V \to W_v$ is homogeneous of degree v and \mathbb{C}^*-equivariant. Let $v = \sum_{j=1}^{\infty} v_j \in \bigoplus_{j>0} V_j = V$ with $v_k \neq 0$. Then

$$\lim_{\lambda \to 0} \lambda^k t_k^{-1}(v) = v_k.$$

(Here t_k denotes the action of \mathbb{C}^*.) Since φ_v is homogeneous of degree v and \mathbb{C}^*-equivariant we obtain

$$\lim_{\lambda \to 0} \lambda^{v_k} t_k^{-1}(\varphi_v(v)) = \varphi_v(v_k).$$

This implies that $\varphi_v(v) \in \bigoplus_{j \leq v_k} W_j$ for all v, proving the first claim.

If φ is not linear, i.e. $\varphi \neq \varphi_1$, then there is a $v > 1$, an index k and an element $v \in V_k$ such that $\varphi_v(v) \neq 0$. But $\varphi_v(v) \in W_{v_k}$ by (1) and so $v \notin \varphi^{-1} \left(\sum_{j \leq k} W_j \right)$.

3.3. Corollary. — Under the assumptions of lemma 3.2 suppose that φ is surjective. Put $\lambda_j := \dim V_j$ and $\mu_j := \dim W_j$. Then for all $k \geq 1$ we have

$$\lambda_1 + \lambda_2 + \cdots + \lambda_k \geq \mu_1 + \mu_2 + \cdots + \mu_k.$$

If φ is not linear the inequality is strict for at least one k.

(This is clear.)

3.4. Proposition. — Let V, W be two SL_2-modules containing no fixed lines. Let $\varphi : V \to W$ be a graded SL_2-equivariant morphism, which is dominant and has finite fibres. Then φ is a linear isomorphism.
Proof. — Consider the maximal unipotent subgroup
\[U := \left\{ \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \right\} \subseteq \text{SL}_2 \]
and the maximal torus
\[T := \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \mid \lambda \in \mathbb{C}^* \right\} \cong \mathbb{C}^*. \]
By assumption \(\varphi \) is finite and surjective (Remark 2.4), and \(\varphi^{-1}(W^U) = V^U \). Hence the induced morphism
\[\varphi|_{V^U} : V^U \to W^U \]
is graded, \(T \)-equivariant, finite and surjective too. Furthermore all weights \(\lambda_j \) of \(V^U \) and \(\mu_j \) of \(W^U \) are positive. It follows from (2) that
\[\lambda_k + \lambda_{k+1} + \cdots \leq \mu_k + \mu_{k+1} + \cdots \]
for all \(k \), because \(\sum_j \lambda_j = \dim V^U = \dim W^U = \sum_j \mu_j \). From this we get
\[\dim V = 2\lambda_1 + 3\lambda_2 + \cdots + (n+1)\lambda_n \leq 2\mu_1 + 3\mu_2 + \cdots + (n+1)\mu_n = \dim W \]
for all \(n \) which are big enough. (Remember that an irreducible \(\text{SL}_2 \)-module of highest weight \(j \) is of dimension \(j + 1 \)). If \(\varphi \) is not linear this inequality is strict (Corollary 3.3), contradicting the fact that \(\varphi \) is finite and surjective. \(\Box \)

3.5. Proof of the Theorem. — Assume that \(\varphi : V \to W \) is not linear, i.e. there is a \(v_0 > 1 \) such that the component \(\varphi_{v_0} : V \to V_{v_0} \) is non-zero. Then there is a homomorphism \(\text{SL}_2 \to G \) and a non-trivial irreducible \(\text{SL}_2 \)-submodule \(M \subseteq V \) such that \(\varphi_j|_M \neq 0 \). (In fact the intersection of the fixed point sets \(V^{(\text{SL}_2)} \) for all homomorphisms \(\iota : \text{SL}_2 \to G \) is zero.) Now consider the \(G \)-stable decompositions \(V = V^{\text{SL}_2} \oplus V' \) and \(W = W^{\text{SL}_2} \oplus W' \) and the following morphism:
\[\varphi' : V' \hookrightarrow V \xrightarrow{\varphi} W \xrightarrow{\text{Pr}} W'. \]
Since \(V' \) and \(W' \) are sums of isotypic components the morphism \(\varphi' \) is again graded. Furthermore \(\varphi^{-1}(W^{\text{SL}_2}) = V^{\text{SL}_2} \), hence \(\varphi^{-1}(0) = V^{\text{SL}_2} \cap V' = \{0\} \). This implies that \(\varphi' : V' \to W' \) is dominant.
with finite fibres and satisfies therefore the assumptions of proposition 3.4. As a consequence \(\varphi' \) is linear. Since \(\varphi|_V : V' \to W \) is graded too we have \(\varphi|_V = 0 \) for all \(v > 1 \). This contradicts the facts that \(M \subseteq V' \) and \(\varphi_{v_0}|_M \neq 0 \) (see the construction above).

4. Some Consequences.

We add some corollaries of the theorem. Let \(G \) be a connected reductive group. For every \(G \)-module \(V \) we have the canonical \(G \)-stable decomposition \(V = V^0 \oplus V' \) where \(V^0 \) is the sum of all 1-dimensional representations (i.e. \(V^0 = V^{(G,G)} \)) and \(V' \) the sum of all others. The proof of the theorem above easily generalizes to obtain the following result:

4.1. Theorem. Let \(\varphi : V \to W \) be a graded \(G \)-equivariant dominant morphism with finite fibres. Then \(\varphi \) induces a linear isomorphism \(\varphi|_V : V' \cong W'. \)

4.2. Corollary. Let \(\mathcal{O}(V) \) be the ring of regular functions on a \(G \)-module \(V \), and let \(f_1, \ldots, f_n \) be a regular sequence of homogenous elements of \(\mathcal{O}(V) \) such that the linear span \(\langle f_1, \ldots, f_n \rangle \) is \(G \)-stable. Then \(\langle f_1, \ldots, f_n \rangle \) contains all non-trivial representations of \((G,G)\) in \(\mathcal{O}(V)_1 \), the linear part of \(\mathcal{O}(V) \).

Proof. The regular sequence \(f_1, \ldots, f_n \) defines a \(G \)-equivariant finite morphism \(\varphi : V \to W, W := \langle f_1, \ldots, f_n \rangle^* \). By the theorem above the restriction \(\varphi'|_V : V' \to W' \) is a linear isomorphism which means that every non-trivial \((G,G)\)-submodule of \(\langle f_1, \ldots, f_n \rangle \) is contained in the linear part \(\mathcal{O}(V_1) \) of \(\mathcal{O}(V) \). \(\square \)

4.3. Recall that a finite dimensional \(C \)-algebra is called a complete intersection if it is of the form \(C[x_1, \ldots, x_n]/(f_1, \ldots, f_n) \) with a regular sequence \(f_1, \ldots, f_n \).

Corollary. Let \(A \) be a finite dimensional local \(C \)-algebra with maximal ideal \(m \) and let \(\text{gr}_mA \) be the associated graded algebra (with respect to the \(m \)-adic filtration). If \(\text{gr}_mA \) is a complete intersection then the connected component of the automorphism group of \(A \) is solvable.
Proof. — Let G and \overline{G} be the connected components of the automorphism groups of A and of $\text{gr}_m A$ respectively. Since the m-adic filtration of A is G-stable we have a canonical homomorphism $\rho : G \rightarrow \overline{G}$. It is easy to see that $\ker \rho$ is unipotent, so it remains to show that G is solvable.

Assume that G is not solvable. Then G contains a (non-trivial) semisimple subgroup H. By assumption we have an isomorphism

$$\text{gr}_m A \cong C[x_1, \ldots, x_n]/(f_1, \ldots, f_n)$$

with a regular sequence f_1, \ldots, f_n where all f_i are homogeneous of degree ≥ 2. Clearly the action of G on $\text{gr}_m A$ is induced from a (faithful) linear representation on $C[x_1, \ldots, x_n]$. Hence it follows from corollary 4.2 that $\langle f_1, \ldots, f_n \rangle$ contains all non-trivial H-submodules of $C[x_1, \ldots, x_n]_1$, contradicting the fact that all f_i have degree ≥ 2. □

4.4. Remark. — The corollary above implies that conjecture 1.1 is true in case all f_i are homogeneous, i.e. if the algebra

$$A = C[x_1, \ldots, x_n]/(f_1, \ldots, f_n)$$

is finite dimensional and graded with all x_i of degree 1.

4.5. Remark. — Another formulation of our result is the following: Let V be a representation of a connected algebraic group G and $Z \subseteq V$ a G-stable graded subscheme, which is a complete intersection supported in $\{0\}$. Then (G, G) acts trivially on Z.

BIBLIOGRAPHY

H. Kraft,
Mathematisches Institut
Universität Basel
Rheinsprung 21
CH-4051 Basel.

C. Procesi,
Istituto Matematico
Guido Castelnuovo
Università di Roma
1-00100 Roma.