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FINAL FORMS
FOR A THREE-DIMENSIONAL VECTOR
FIELD UNDER BLOWING-UP

par Felipe CANO (*)

0. Introduction.

A plane vector field D = ad/0x + bd/dy, with g.c.d (a,b) = 1, defines
a unidimensional saturated foliation & having singularities at the zeroes
of D. It is well known that after a finite number of quadratic blowing-
ups of the ambient space, we can obtain a foliation & which is given
locally at each singular point by a vector field D having a linear part
with eigenvalues 1 and A, where A ¢ Q, (= strictly positive rational
numbers). (See [2] and [12]). The above singularities may be thought
of as final forms in the sense that they are preserved under new
quadratic blowing-ups.

This paper is mainly devoted to identifying final forms in the above
sense for a three-dimensional vector field.

This «stable » situation is described in paragraph 3. There it is
proved that the situation is preserved under permissible blowing-ups.
The main result is stated in paragraph 4 : there is a global sequence of
permissible blowing-ups such that each sequence of infinitely near
singular points stabilizes in final forms (if one begins with order zero).

In paragraph 5 the two-dimensional situation is revisited in order
to study, in paragraph 6, the restriction of the vector field to the
exceptional divisor. There it is shown that we can obtain the additional

Key-words : Vector fields - Singularities - Desingularization.

(*) Partially supported by the CAICYT.
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property that the restriction to each « non-dicritical » component of the
exceptional divisor has non-nilpotent linear part. It is also shown that
we cannot expect to obtain eigenvalues 1 and A with A ¢Q, .

Paragraph 7 is devoted to the study of the structure of the integral
branches, which is closely related to the singular points contained in
only one component of the exceptional divisor once they are in a final
form.

Previously ([6],[7]) a procedure for reducing the order of a three-
dimensional vector field was given. Here we shall restrict ourselves to
the case of order zero (see paragraph 1 for more details). We shall end
with an Appendix in which a more general case is studied.

1. Preliminaries.

Most of the concepts and results in this paragraph may be found
in ([6),[7]) and we shall omit the proofs.

1.1. The ambient space will be a regular variety X, i.e. a regular
integral separated scheme of finite type over an algebraically closed
field k, and we shall assume that k is a field of characteristic zero
(e.g. k=C). The tangent sheaf Zy is a locally free Ox-module of
rank n = dim X.

Any invertible Ox-submodule 2 of Ey will be called a « unidimensional
distribution over X ». Locally at each closed point P, & is generated
by a germ of a vector field D. The unidimensional foliation %, given
locally by D does not depend on the generator D of Z,. In this way
we obtain a global foliation &#,. Let us denote by a(2) the double
orthogonal of 2 with respect to the natural pairing between Zy and
its dual sheaf (which may be identified with the cotangent sheaf Q).
«(2) is also a unidimensional distribution over X. If sat (%) is the
saturated foliation of &, (see [10]), we have &, = sat (¥,). Let
PeX be a closed point and let P = (x,,...,x,) be a regular system
of parameters of the local ring Oy p. If 9 is generated by D = Xa,0/0x;,
then o(2), is generated by D/b, where b = g.cd. (a;). We shall say
that 2 is multiplicatively irreducible iff 2 = a(2).

1.2. A closed subscheme E < X is a «normal crossings divisor of
X » iff for each closed point P of X, there is a regular system of
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parameters p = (x;,...,x,) of Oxp and a subset A < {l,...,n} such
that the ideal I(E), of E is generated by II; . ,x;. Such a regular system
of parameters is called «suited for E at P» We shall denote
e(E,P)= #A.

Let us denote by Ey[E] the sheaf of the «germs of vector fields
tangent to E », which is given by

(1.2.1) Exp[E] = {D € Ex p; D((E)p) = I(E)}

for each closed point P. (The sheaf E4[E] may be identified in a natural
way with the dual sheaf of the sheaf Qy [log E] of the forms with poles
logarithmic along E. The sheaf Ex[E] is a locally free Oy-submodule
of Ex of rank n and a base of Zyp[E] is given by

(1.2.2) (x99/x}i=1,...,n

where t(i))= 1 if ieA and () =0 if i¢ A, for a suited regular
system of parameters p = (x,,...,x,) for E at P.

A unidimensional distribution 2 over X will be called « adapted to
E» iff 2 < Ex[E]. The «adaptation» (Z,E) = 2 nEx[E] of a
unidimensional distribution is also a unidimensional distribution. Let us
assume that 2 is adapted to E and let us denote by az(2) the double
orthogonal of 2 with respect to the natural pairing between E4[E] and
its dual sheaf. Let us remark that if E = ¢, then E4[J] = Ex and
o = ag. If E; is another normal crossings divisor with E; > E, then

(1.2.3) ag, (Z2,E,) = (0(2,E),E,)
for each unidimensional distribution 2. Finally, 2 is said to be
« multiplicatively irreducible and adapted to E» iff 2 = ax(2,E).
Assume that 9 is adapted to E, then 2 = og(2) iff for each closed
point P, 2, is generated by

(1.2.4) D= Y ax/ox; + ) a0/0x;

ieA i¢A

(for a suited regular system of parameters) in such a way that
gcd. () = 1.

If EcE,, we have ((2,E,),E)=(2,E,), but it is not
true in general that ag(2,E,) = ag,(2,E,). For instance, take
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n=2, D=xdox + xd/dy, E,=(x=0) and E = ¢, then
0, (2) = D # 0x(2) = D/x.

1.3. Let us fix a normal crossings divisor E of X. A closed subscheme
Y of X is said to have « normal crossings with E » iff for each closed
point P of Y there is a regular system of parameters p = (x;,...,X,)
suited for E at P and sets B; = {1,...,n}, j = 1, ....] (j runs over the
irreducible components of Y) such that

(1.3.1) IYVe= [ (Z x,.@x_,,).
]

ji=1,..., l'éBj

Such a regular system of parameters will be called « suited for the pair
(E,Y) at P». Note that Y must have a reduced structure.

Let Y be a regular subscheme of X having normal crossings with
E and let n: X' - X be the blowing-up of X with center Y. Then
E' = i }(EUY) is also a normal crossings divisor. Let 2 be a
unidimensional distribution, multiplicatively irreducible and adapted to
E over X. Then there is a unique unidimensional distribution 2’
multiplicatively irreducible and adapted to E’ over X' such that
D' |i-1x-v) = P|x-y via the induced isomorphism between the tangent
sheaves of 17 !(X—Y) and X — Y. We shall say that (X’,2",E’) is the
strict transform of (X,2,E) by n.

There is a slight difference between the above procedure and the
usual blowing-up of a foliation (for instance, if m is quadratic, i.e.
centered at a closed point). Assume that E = ¢, then the strict
transform of the foliation %, is not in general the foliation &, , but
it is the foliation & ,q4,. Moreover, if {(X(i),2(1),E())}izo, .., n is @
sequence of blowing-ups, (i.e. (X (i),2(i),E(i)) is the strict transform of
X@GE—-1),2@G—1),E(i— 1)) by the blowing-up n(i) : X(i) = X(i—1) centered
at Y(i—1), i = 1,...,N) we deduce easily that if (X(N),2'(N),E’'(N))
is the strict transform of (X(N — 1), o(2(N — 1)),&F) by n(N), then
a(2(N)) = a(2'(N)). Hence we have to consider only the last 2(N) in
order to compute the strict transform of %, under n(1)o...on(N).

Let PeY be a closed point, let p = (x,...,X,) be a regular system
of parameters suited for (E,Y) at P and let us assume that I(E),

= (H xl). Oxp and that I(Y)p = Y x,0xp. Let P’ be a closed point

ieA ieB
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of X' such that n(P") = P. The morphism = induces an inclusion
Oxp = Ox p.. Under this inclusion, we can find a regular system of
parameters p’ = (x},...,x;) of Ox p such that there is an index i, € B
and scalars {;ek, i e B — {i;} such that

(132) X =X, i¢B—{i}

x;p = (Xi+C)xiq i€eB — {ig}.

The exceptional divisor n~!(Y) is given locally by xi, =0 and E' is
given by [] x; =0, where A’ = (A—B) U {ip} U {i e AnB;{;=0}. If

ica
Dy is generated by D = Y ax; 0/0x; + Y. a,0/0x;, then Dy, is generated

ieA i¢A

by

(133) D = (1/x;0)v( Y axd/ox, + Y d a/ax;>

ieA’ i¢ A

for some peZ, where

(1.34) a=a,, if iyeA;a =ay/x;, if i(¢A

a, = (al.—aéo) if ieA"nB — {iy}

a = (a—ap)(x; +5) if ie(A-A) nB — {io}

a; = afxiy — (x;+8)a;, if ieB — A — {ip}

a; a; ifi¢B.
The integer p may be negative and it is the maximum power of Xio
which divides a,i = 1, ... n.

1.4. Let 2 be a unidimensional distribution adapted to a normal
crossings divisor E. For each closed point P of X, the adapted order
v(2,E,P) is the maximum integer m such that 9, c n"Ey p[E] where
n is the maximal ideal of O p. The adapted order is the minimum of
the orders of the coefficients of a generator of 2.

If E;, « E, we have

(1.4.1) v(2,E,P) < V(2,E,,P) < (2,EP) + 1.
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If (X,E’,2") is the strict transform of (X,E,2), then for each closed
point P’ of X’

(1.4.2) v(2',E,P") < V(2,En(P)).

This result motivates considering the adapted situation in order to study
the desingularization of a unidimensional distribution rather than the
non-adapted case (see [5], [6], [7]).

1.5. [6] is devoted to the proof that if n = 3 we can obtain, at
least punctually, that v(2,E,P) < 1 for all P, after a finite sequence of
blowing-ups. [9] partially globalizes this result. The transition v =1 to
v = 0 has a special behaviour (see [5] for the case n = 2) and we shall
treat it in the Appendix.

From now on, we shall assume that n = 3, that E is a normal
crossings divisor of X and that 2 is a unidimensional distribution,
multiplicatively irreducible and adapted to E, such that for each closed
point P of X we have

(1.5.1) v(2,E,P) = 0.

We can think of (X,E,2) as a final situation after a procedure of
reduction of the order by means of blowing-ups. In this way, E may
be looked at as the exceptional divisor of the composition of all these
blowing-ups.

2. Normal crossings for Sing (2,).

2.1. Let (X,E,2) satisfy the assumptions of (1.5). Then
Sing (2 ,) = Sing'(2,) is a Zariski closed subset of X. Let us
assume that

(2.1.1) Sing (2,) = S,(2) U S1(2) U So(2)

where S;(2) is the union of the irreducible components of Sing (2,J)
of dimensioni, i = 0,1,2. Note that we can have S,(2) # & since
2 is not necessarily multiplicatively irreducible with respect to &J. On
the other hand, we always have

(2.1.2) Sing (2,) < E

and hence the irreducible components of S,(2) are also irreducible
components of E. Let us call them « dicritical components of (X,E,2) ».
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In this paragraph we shall prove that after a finite sequence of
quadratic blowing-ups we can assume that Sing (2,) and E have
normal crossings at the points P with e(E,P) < 2 and this property is
stable under « permissible » blowing-ups at the points P with e¢(E,P) = 1.

2.2. LEMMA. — Let Z,Y be closed subschemes of X of pure dimension 1
and let PeZ n'Y be a closed point such that both Z and Y have normal
crossings with E at P and assume that there exists a normal crossings
divisor E' = E such that no component of Z passing through P is contained
in E' and each component of Y passing through P is contained in E'.
Then Z Y has normal crossings with E at P.

Proof. — A fixed suited regular system of parameters for the pair
(E,Z) at P may be easily modified in order to obtain a regular system
of parameters suited for (E,Z) and (E,Y) at P, hence suited for (E,ZUY)
atP.

2.3. PropOSITION. — Let Pbe a closed point of X and let (X',E',2")
be the strict transform of (X,E,2) by the quadratic blowing-up n: X' — X
centered at P. Let us denote by S (2) the strict transform of S,(2)
by n. Then we have

(2.3.1) $,(2) = S$,(2) uY

where Y < n~1(P) is empty or there are some irreducible components E,,
iel, of E at P and a projective line L in n~'(P) such that

(2.3.2) Y = Lu (J Proj(T,E)

iel

(hence Y has normal crossings with E' at each closed point P'en~!(P)
such that e(E',P’) < 2).

Remark. — L may coincide with one of the projective lines
Proj (Tp(E)).

Proof. — Necessarily Y = U {l-dimensional irreducible components
of S$,(2') nn~Y(P)}. Thus, let us look at Sing (2',&) N n~1(P).

If e(E,P) =0, then we can take a regular system of parameters
(x,y,z2) of Oxp (formal completion of Oxp) such that 9, is generated
by 0/0x. Now, by (1.3.4), Sing (2',&) n n~'(P) consists in exactly one
closed point, hence Y = ¢J. Assume now that e¢(E,P) = 1 and let (x,y,2)
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be a regular system of parameters of Oy, suited for (E,P), such that
I(E)p = x.0xp. If v(2,,P) =0 then (x,y,2) Oﬂx,; may be chosen,
in addition to the above properties, to be such that 9, is generated
by 0/0y. Now, we can reason as above and hence Y = . Assume
now that v(2,0,P) = 1 and that 9, is generated by

(2.3.3) D = xd/dox + D(y)d/dy + D(z)d/0z

with
234y CODO)=oax+Py+yz, apy.devek
e cd'(D(z)) = 8x + ey + Yz

where cl’ denotes the image in m'/m'*', m = maximal ideal of Oy,
and x, Yy, z are the initial forms of x, y, z, respectively. Let us identify
n Y(P) = Proj(TpX) and let P’ = [(1,(,E)]en~*(P). Now, a regular
system of parameters (x',y’,z") of Oy p is given by the equations

235) TALE): x=Xx", y=0+Dx", z= (" +&Ex".
By (1.3.4), v(D'.&#,P’) = 1iff
236) a+PB-DL+y.E=80+el+W-DE=0

(otherwise v(2',,P') = 0). If (2.3.6) does not define a 1-dimensional
linear variety L, then we are done, since then Y must be contained in
Proj (TpE). Otherwise, let L be the projective line given by L. We
deduce easily that

2.3.7) L <Y < Ly Proj(TeE).

If e(E,P)= 2 or 3, we can reason as above by replacing in (2.3.7)
Proj (TpE) by Proj (TpE;), where E; are the components of E through P.

2.4. CoroLLARY. — There is a finite sequence of quadratic blowing-
ups

241 X=X0 2 x1) « ... " xN)
such that if (X(@),E@(),2(), i=1,...,N is the strict transform of
X@E—1),E@-1)),2(@(~-1)) and (X(0),E(0),2(0)) = (X.E,2), then :

1° n(i) is centered at a closed point P(i—1) of X(i—1) such that

e(EG—1),P(i—1)) <2 and S,(2D(i—1)) does not have normal crossings
with E(i—1) at P(i—1).
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2° S, (2(N)) has normal crossings with E(N) at each closed point Q
with e(E(N),Q) < 2.

Proof. — Let Z(0) = S,(2), YO) = & and for each i > 1 let
Z (i) = strict transform of Z(i—1) by n(i) and let Y (i) = strict transform
of Y(i—1) union the corresponding Y of (2.3.1). One sees inductively
that Z(i) does not have normal crossings at P(i), i < N. Now, by
standard results about desingularization of varieties (see e.g. [11]) in a
finite number of steps Z(N) has normal crossings with E(N). Now one
can apply Lemma (2.2) to Z(N), Y(N), E(N).

2.5. Since Sing (2,) has normal crossings with E iff S,(2) has
normal crossings with E (see (2.1.2)), then, after a finite number of
quadratic blowing-ups we can assume that Sing (2,%) has normal
crossings with E at each point with e(E,P) < 2. We shall prove in
Paragraph 4 that we can obtain that Sing (2,J) and E have normal
crossings after a finite number of quadratic blowing-ups, even if
e(E,P)= 3.

2.6. DEerFINITION. — A closed subscheme Y of X is said to be permissible
for X,E,D) iff Y is a closed point of Sing (2,5) or Y is an irreducible
component of S,;(9) having normal crossings with E. (Note that this
definition is more restrictive than the one in [6] 1. (3.4.4)).

2.7. Let P be a closed point of Sing (2,) and let Y be {P} or an
irreducible component of S;(2) such that PeY and such that Y has
normal crossings with E at P. (This implies that Y is nonsingular at
P). Let us fix a generator D of %2,. Since Pe Sing (2,), for each
heI(Y)p, cl*(D(h)) depends only of cl'(h) and thus one can write
cl*(D(h)) = cl*(D(cl'(h))). Let us denote by In(I(Y)p); the k-vector
space of the homogeneous elements of degree one of the initial ideal
In(I(Y)p) = Gr (Oxp) of I(Y)p. One has a well defined k-linear map

LD;Y;P): In(I(Y)p); — In(I(Y)e),

O — cl'(D®)).
If D, is another generator of 2,, one has that D, = u.D, where
u(P) # 0, and L(D;Y;P) = u(P).L(D;Y;P).

Note that L(D;Y;P) can also be defined as above if one has the
following condition (which corresponds to the fact that Y is an integral
variety of 92):

2.7.2) vy(DI(Y)p) = 1.

2.7.1)
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Some properties of the eigenvalues of L(D;Y;P) will serve us to
define the final situations in the next paragraph. But first, let us study
the effect of a permissible blowing-up over the normal crossings property
of Sing (2,J) with E.

2.8. PrOPOSITION. — Let P be a closed point of Sing(2,) and
assume that Sing (2,) has normal crossings with E at P. Let Y3 P
be a permissible center for (X,E,2). Let n:X' — X be the blowing-up
centered at Y and let (X',E’',2") be the strict transform of (X,E,9). Then
we have :

a) v(2',E',Q") = 0 for each closed point Q' eX'.

b) Sing (2',F) has normal crossings with E' at each closed point
P'e X’ such that n(P') = P and ¢(E',P")= 1.

¢) If the eigenvalues of L(D;Y;P) are distinct, then Sing (2',) has
normal crossings with E' at each closed point P'€ X' such that n(P') = P.

Proof. — If m is quadratic, then a) follows from (1.4.2) and b)
follows from 2.2 and 2.3. If e(E',P’) < 2, then c) also follows from
2.3. Now, assume that e(E’,P’) = 3. Taking the notations of the proof
of 2.3, we have to pfove that P'¢ L, but if P'el, then y — 1 =0,
hence ¥ = 1 and we contradict the assumption of c).

Let us assume that w is monoidal. In order to prove a), let
Q = n(Q) and assume first that e(E,Q) = 1. Let us fix a regular
system of parameters (x,y,z) suited for (E,Y) at Q such that I(E)q = (x)
and I(Y)q = (x,2) (recall that Y < E). Let us use the notation of
(2.3.3) and (2.3.4) for a generator D of 9. Since Y = S,(Z) we have
p =¢=0. Moreover, the eigenvalues of L(D;Y;Q) are 1 and V.
Assume first that Q' = [(1,0)] € Proj (ToX/ToY) = n7'(Q). Then a
regular system of parameters (x',)’,z") of O o is given by the coordinate
transformation (2.8.1) which we shall denote by TM((1,%); (x,2)).

2.8.1) TM((1,0); (x,2)):x = x', y =y, z = (£ +0)x".
By (1.3.4), 9’y is generated by
(2.8.2) D' = x'd/dx' + D'(y')d/dy’ + D'(z')d/oz'

where
(2.8.3) x' divides D'(y)
D'(z) =8+ (—DE+0 + y"®(,2) + x"V(x',y',2)
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where r > 1 and either ® =0 or ®(0,0) # 0 or cl'(®) = Ay’ + pz’
with u # 0. Now, a) follows immediately from (2.8.2).

Assume now that Q' = [(0,1)] e x~*(Q), then we have the equations
2.8.4) TM((O,1);(x,2)):x = x'z', y=y,z =12
and 2’y is generated by

(28.5) D' = [D'(x)/x)x'0/ox" + D'(y)d/dy’ + (D'(z')/z')z' 8]0z’
(here I(E")q = (x'z)), where

D'(x)/x" = (1={) — &' + y"®(x",y") + ¥ (x',y',2")
(2.8.6.) z' divides D'(y")
D'(z')/z' = y + terms of order > 1

where r > 1 and either ® = 0 or ®(0,0) # 0 or c/*(®) = Ax' + py’
with A # 0. Since ¥ and 1 — { are not both zero, a) follows from
(2.8.6). (Note that in this case v(2',,Q") = 1).

Similar computations show a) in the cases e(E,Q) = 2.3.

Let us prove b) in the case e(E,P) = 1 (we can proceed in a similar
way for the cases e(E,P) = 2,3). In view of 2.2 and since

(2.8.7) Sing (2',¥) = {strict transform of Sing (2,J)—Y}
v [Sing (2',&) n ™1 (Y)],

it is enough to show that Sing (2',&) n n~'(Y) has normal crossings
with E’ at P’. Since e(E’,P’) = 1, by (2.8.3) one has that P’ e Sing (2',)
in the following cases :

I°y—1#0,{=—8/(W—1). Then Sing (2',&F) n n~ 1 (Y) is given
locally at P’ by x' = (Y —1)z' + y"®(y',z") = 0, which defines a regular
curve having normal crossings with E' at P’.

2° ¢y — 1 =8 = 0 (no restriction on {). Then Sing (2',&) Nn ™1 (Y)
is given locally at P’ by x' = y"®(y',z,pr) = 0. If ® =0, then
n~1(Y) < Sing (2',&) locally at P’ (hence globally). If ®(0,0) # 0, then
one has the « vertical » curve x" = y' = 0. If ®(0,0) = 0, one has two
1-dimensional components x" = y’ = 0 and x’ = ®(y’,z’) = 0 each one
is regular and Sing (2',&) N n~'(Y) has normal crossings with E’ since
c'(®) = Ay’ + pz', p#0. In this last case, one can say something
more : there is at most one value of { for which this case can occur,
since ® = puz’' + y'(...).
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Now, let us prove c) in the case e(E,P) = 1 (one can proceed in a
similar way for the cases e(E,P) = 2,3). In view of b), it is enough to
look at P’ with e(E',P)=2. If yy — 1 # 0, by (2.8.6) one has that
Sing (2',&) n n~'(Y) is given locally at P’ by 2/ = x’ = 0 and hence
‘has normal crossings with E’ at P’.

2.9. Remark. — In the case ¥ = 1, we can show that all the
components of Sing(2',&) nn~'(Y) are nonsingular, but they may
not have normal crossings with E’. For instance, if 9, is generated by

(2.9.1) D = xd/0x + (z—x+y?*z) 0/0z
one has that for P’ = [(0,1)], 2'p is generated by
(29.2) D' = (x—y})xd/dx + (1—x+y?)z d/0z

and Sing (2',) nn~ 1 (Y) = (x=2z=0) U (x—y?*=z= 0) which are two
nonsingular components, tangent one to another.

3. Final forms.

3.1. Let PeX be a closed point such that e(E,P)=1 and
v(92,0,P) =1 (recall the assumptions of 1.5). Let us consider the
k-linear map

(3.1.1) L(D;{P};P): In (I(P)p), — In (I(P)y),

given in 2.7. Since P is a closed point, In (I(P)p),; is exactly the
k-vector space of the linear homogeneous forms in Gr (Op). Since
e(E,P) =1, E is regular at P and we have In (I(E)p); < In (I(P)p),.
Moreover, since 2 c E4[E], In (I(E)p), is invariant under L(D;{P};P)
and the corresponding eigenvalue A, (D) is nonzero. Indeed, if A,(D) = 0
then v(2,,P) = 0 (recall that v(2,E,P) = 0). Let A,(D), A;(D) be
the remaining eigenvalues of L(D;{P};P). The set

(3.1.2) A(Z;E;P) = {A,(D)/A,(D),A3(D)/, (D)}
is well-defined and does not depend on the generator D of 2.

3.2. DerINITION. — Let Pe X be a closed point such that e(E,P) = 1
and v(2,,P) =1 (we always assume A(2,E,P) = 0). The point P is
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said to be « simple » for (X,E,2) iff
3.2.1) AMZEP) N Q. =

where Q. < k denotes the strictly positive rational numbers.

3.3. DerINITION. — Let Pe X be a closed point such that e(E,P) > 2
and v(2,3,P) = 1. The point P is said to be a « simple corner » for
X,E,?) iff there are two components E, and E, of E passing through
P such that if Y = E; n E,, then the k-linear map L(D;Y;P) (see (2.7.1)
and (2.7.2)) has two distinct eigenvalues A, and A\, ; with A, # 0 and

Ay/Ay ¢ Q.. (Note that this property does not depend on the choice of
the generator D of 9).

3.4. DerFiniTiON. — (X,E,9) is said to be in the « first final situation »
at a closed point PeX iff Sing (2,J) has normal crossings with E at
P in the case e(E,P) = 1 and one of the following properties holds :

a) v(2,0,P) =0, i.e. P is a regular point of 2.
b) P is a simple point for (X,E,2).
¢) P is a simple corner for (X,E,2).

3.5. Remark. — 1. (Dicritical situation). If E, is a component of E
such that E; < Sing (2,), then each closed point of E; is a simple
point or a simple corner (in both cases there is only one eigenvalue
different from zero).

2. If e(E,P) =0 (hence v(2,,P) = V(2,E,P)=0) and n: X' - X
is the quadratic blowing-up centered at P, then exactly one point of
n~!(P) is a simple point of (X',E’,2’), the other ones being regular
points of 9’

3. We shall see later (paragraph 5) that the above «first final
situation » generalizes the known final situation for dim X = 2 (see [12],

[10)).

4. In paragraph 4 we shall see that the above first final situation
may be reached punctually by blowing-ups, but it is not possible to
reach it for all the points Pe X at the same time.

3.6. THEOREM. — Let Y be a permissible center for (X,E,2) and let
n:X' — X be the blowing-up centered at Y. Then :
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a) If PeY is a simple point, then there is exactly one point P'e n~1(P)
with e(E',P)=1 and v(2,,P) = 1. Moreover, P' is also a simple
point.

b) If PeY is a simple point, P'en '(P), e(E',P)>2 and
v(2',5,P") = 1, then P’ is a simple corner for (X',E',2").

¢) If PeY is a simple corner and P'e n~*(P), then v(2',&,P) =0
or P' is a simple corner for (X',E',2").

Proof. — Let us assume first that Y = {P}, hence & is a quadratic
blowing-up.

1. a) Since P is a simple point, one can take a regular system of
parameters (x,y,z) of Oyp suited for (E,P), such that I(E), = (x) and
such that there is a generator D of 2, having one of the following
properties :

(3.6.1) A) D(x)/x =1, '(Dy)) = B.y, cI'(D() = V.z,
where B,V ¢ Q..

(3.6.2) B) D(x)/x =1, cI'(D(y)) = B.y, cI'(D(2)) =y + Bz,
where B¢ Q.

(see [4] and [9]). Let P'en!(P) be such that e(E’,P’)=1. Then
P'=[(1,(,£)] and we have the equations T(1,;,£). (See (2.3.5)). A
generator D' of 2'p. satisfies

D'(x)/x' =1
(3.6.3) D'(y) = B-DO'+0 + x'(...)
D'(Z) = (W—D(E+E&) + x'(...)

in the case A, and

D'(x)/x" =1
(3.64) D'(y) = B-DO+0 + x'(...)
D'@) =+ + B-DE"+E + x'(...)

in the case B. Now, if ({,E) # (0,0), then v(2',3,P") = 0. If ({,£) = (0,0),
then P’ is a simple point of the same type (A or B) as P. Note that
in general one has to make a coordinate change y; = y' + Ax/,
z; = z' + pux’ in order to obtain property A or B.
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1. b) With the notation of 1. a), let us assume now that e(E’,P’) > 2
(hence e(E’,P’) = 2). Then P’ = [(0,1,§)] or P’ = [(0,0,1)]. In the first
case we have the equations

(3.6.5) TO,LE): x=x"y, y=y, z=(@Z+Ey.

A generator D' of 2. satisfies

D'x)/x =1-B+y(..)
(3.6.6) D'G)/y =B+y(..)
D'(Z) = W—P)E+E) + y'(...)

in case A, and
D'x)/x=1—-B+y(..)

(3.6.7) D'G)y =B+y(..)
D) =1+y(..)

in case B. Assume that v(2',J,P) = 1 (this occurs iff (W —B)E = 0 in
case A and never in case B), then the eigenvalues of L(D’;Z';P’), where
1(Z)p = (x',y’), are 1 — B and B. Since B/(1—P)¢Q., we have a
simple corner.

Assume now that P’ = [(0,0,1)]. Then we have the equations :
(3.6.8) T(0,0,1): x = x'z, y =yz, z=17z.
A generator D’ of ;. satisfies
D'x)/x=1—-Vy+2(..)

(3.6.9) D'(y) = B-V).y + 2(...)
D'(z))z =V + 2'(...)

in case A, and

D)/ x =1—-p—y + 2(..)
(3.6.10) D'(Gy)=—y2+72(..)
D'(z)/z =B+ y +z(...)

in case B. We always have {(2',,P’)= 1. The eigenvalues of
L(D';(x'=2z"=0);P") are 1 —y and { in case A (resp. 1 — B, B in
case B) and we can reason as above.
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1.c) P is a simple corner iff there is a regular system of parameters
(x,y,z) of Oxp suited for (E,P) and a generator D of 2, having the
following properties :

1° (xy) > I(E)p
(3.6.11) 2° D(x)/x = 1
3° D(y)/y = B + terms of order > 1, where B¢ Q..
Now, let P’ = [(1,(,E)] € n~*(P), in the coordinates obtained from (x,y,z).
Applying T(1,(,£), a generator D’ of 2’ satisfies
D'(x)/x" =1
D'G) = B-1+x(. N0 +0.
If v(2,,P')=1, then { = 0 and D’ satisfies (3.6.11), hence P’ is a

simple corner. Let P’ = [(0,1,{)] e =~ *(P). Applying T(0,1,{), a generator
D’ of 2'p. satisfies

(3.6.12)

Dx)/x'=1-B+y(..)

D'y =B+ y(..).

Assume that v(2',J,P) = 1. Since B/(1—B) ¢ Q. , dividing by D'(x")/x’
we obtain (3.6.11), hence P’ is a simple corner. Let P’ = [(0,0,1)]e n~ ! (P).
Applying T(0,0,1), a generator D’ of 2’y satisfies

(3.6.13)

D(x)/x =1 -y +2(..)
(3.6.14) DY)y =B—V+2(..)
D)2 =V +2(...)

for some Yyek. If ¥y = 1, dividing D’ by D’(z")/z’ and interchanging
x' and z', we obtain (3.6.11). If ¥ # 1, then either (B—V)/(1—V) or
Y/(1—1) is not in Q. . Now, dividing D’ by D’(x’)/x’ and interchanging
z' and y' if y/(1—V¥) ¢ Q., we obtain (3.6.11) and hence P’ is a simple
corner.

Let us assume now that Y is a permissible curve passing through P.

2. a), b). Let us assume first that P is a simple point. Since Y < E,
we can take a regular system of parameters (x,y,z) suited for (E,Y) at
P such that I(E), = (x), I(Y)p = (x,y) and a generator D of 2,
satisfying

¢) DXx)/x =1
(3.6.15) '(D(y) = By, B¢ Q.
cd' (D)) = &y
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(note that Y < S;(D) and that, possibly, B8 =0, € =1). Let
P’ = [(1,{)] e n~(P) = Proj(TpX/TpY). Then we have the following
equations for m at P’':

(3.6.16) TM((1L:;(xy): x = X', y = (Y +Ox', z = 2.

A generator D’ of 9, satisfies

D'(x)/x = 1

D'(y) = B-DO+0) + 2.0(y'+L.2)
(3.6.17) W L)
X'Y(x',y' +8,2)

where ¥(0,0,0) = 0. If { # 0, then v(2',&,P') = 0. If { = 0, making
the coordinate change

I

D'(z")

yi =y + (@0,00)/B-1)z + (¥(0,0,0)/(B—-2)x’

(note that p — 1 # 0 and  — 2 # O since B¢ Q,) we see that P’ is a
simple point with A(2E;P) = {f—1,0}. Now, let P’ = [(0,1)]
en~! (P). We have the equations

3.6.18) TM(O,1);(x,y): x =Xy, y = y,z = 2.

A generator D’ of 9y satisfies

D'(x)/x" = 1= B - 20((x,2) — y'¥(x",y'z)
(3.6.19) D)y = B+ 70(x2) + y¥(x.y.z2)
D'#) = y'(...)

and we have a simple corner since B/(1—P) ¢ Q..

2. ¢) Let us assume that P is a simple corner. We can take a
regular system of parameters (x,y,z) suited for (E,Y) at P, satisfying
(3.6.11) and such that I(Y), = (x,y), (x,2) or (y,2). If I(Y)p = (x,y),
then we can apply the above computations (of 2 a), b)) and we obtain
simple corners or regular points for (X',E’,2’). Let I(Y), = (x,z) (this
implies B = 0). After TM((L,{); (x,z)) (see (2.8.1)), we have a generator
D’ of 9} satisfying

D'(x")/x’

(36200 5,

[l
x®
<
—~_~
N
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and if v(2',,P') = 1, then P’ is a simple corner. After TM((0,1); (x,z))
we have a generator D' of 2} satisfying

D'(x)/x" = 1 — { + terms of order > 1
(3.6.21) D'(Y)/y' = Z'(...)
D'(z')/z = { + terms of order > 1

for some Y ek. If ¢ # 1, dividing by D’(x")/x" we obtain the conditions
of (3.6.11), hence P’ is a simple corner. If ¥ = 1, dividing by D’(z")/Z’
and interchanging x’ and z’, we obtain (3.6.11). Finally, I(Y), = (,2)
is not possible since D(x)/x = 1. This ends the proof of the theorem.

3.7. CoroLLARY. — If (X,E,9D) is in the first final situation at Pe X
and n: X' — X is a blowing-up with a permissible center, then the strict
transform (X',E',9") is also in the first final situation for each P'e X’
such that n(P") = P.

4. Reduction to the final situation.

4.1. In this paragraph we shall construct a local invariant Inv (2,E,P)
which decreases strictly each time a permissible center containing P is
blown-up. It also decreases strictly after finitely many steps of a global
process. The property Inv(2,E,P) = 0 means «first final situation »
and it will be reached « punctually » after a finite number of steps.

4.2. Let (X,E,2) be as in 1.5 and let P be a closed point such that
Pe Sing (2,). Let us fix a component E, of E, Pe E,, such that the
order Y(2(I(E,)p)) is 1. Then, there is a generator D of 2, such that
if I(Ey)p = f.0Oxp, then

4.2.1) d°D(NH/f) = lek

(this property does not depend of the choice of f). Let ®(T) e k[T] be
the characteristic polynomial of the k-linear map L(D;{P};P) of (2.7.1).
Let {o;};=1,,,3 be the roots of ®(T) = 0, counted with multiplicities,
and let us assume that o, = 1 (this is always possible in view of
(4.2.1)). Let J = {i;0;,€Q.} and let us define the invariant ¢(2,E,E;P)
by

4.2.2) ¢, EE;P)=#TJ -1

where # = number of elements. The above invariant does not depend
on the choice of D with property (4.2.1). Note that ¢(2,E.E;;P) > 0
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and P is a simple point iff e(E,P) = 1 and ¢(2,E,E;P) = 0. Moreover,
if e(E,P)> 2 and ¢(2,E.E{;P) = 0 for some E, (having the property
v(D(I(E,)p)) = 1, then P is a simple corner. Let us define the invariant
¢(2,E,P) by

4.2.3) ¢(2.E,P) = min {c(Z,E,E,;P);E, is an irreducible component
of E,PeE, and V(2(I(E,)p)) = 1}.

4.3. Assume now that e(E,P) = 1. Let us define

4.3.1) h=min{peZ,; pi,eZ, for all ie]J)

with the above notation). In this case, the invariant n(2,E,P) is defined
to be

4.3.2) n2EP)=h ) a.
i€l

Assume that e(E,P) > 2 and Y = NnE;, where E; runs over the
irreducible components of E passing through P. Y is a curve or
Y = {P}. Let E;, be a component of E passing through P such that
v(D(I(E,)p)) = 1 and let us fix a generator D of 2, satisfying (4.2.1).
Let {Bi}i=1,... xp be the roots of the characteristic polynomial of
L(D;Y;P) counted with multiplicities. Assume B, = 1. Let
J =J(2,EE,Y;P) = {i;B,€Q,}. As in (4.2.2), let us define

(4.3.3) ¢(2,EE,.,Y;P)=#J -1
and

4.3.4) c(2.E,Y;P) = min {c(2,E,E,,Y;P);E, is an irreducible
component of E at P with v(2(I1(E,)p)) = 1}.

We always have c¢(2,E,Y;P) < e(E,P) — 1 and the point P is a simple
corner iff ¢(2,E,Y;P) < e(E,P) — 1. (Note also that if
¢(E,P) = 3 = dim X, then ¢(2,E,Y;P) = ¢(2,E,P)). As in (4.3.1), let
us define

435 h=h2EE,Y;P)=min{peZ,; pB;eZ, for all ieJ},
and

(4.3.6) n(@.EE,Y;P)=h Y B,

ie)
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If e(E,P)>2 and P is not a simple corner, then for any two
components E; and E, of E such that v(2(I(E,)p)) = (2((E,))) = 1,
we have

437 C@EELY:P)= c(2EE, Y;P) = e(EP) - I

n(@aE’ElnY; P) = n(@’E7E2 aY 9P)

and in this case we shall define

(4.3.8) n(2,E,P) = n(2,E,E,,Y ;P).

4.4. DerINITION. — Let P be a closed point of Sing(2,). The
invariant Inv (2,E,P) is defined to be

(4.4.1) Inv(2,E,P) = (c(2.E,P), 3 — e(E,P), n(2,E,P))e N3,
if P is neither a simple point nor a simple corner. Otherwise
4.4.2) Inv (2,E,P) = (0,0,0) e N3.

Two such an invariants will always be compared in the lexicographic
order of N3,

4.5. THEOREM. — Let Y be a permissible center for (X,E,2), let
n: X' — X be the blowing-up centered at Y and let PeY be a closed
point of Sing (2,5) which is neither a simple point nor a simple corner.
Then for each closed point P’ e Sing (2',) nn~'(P)

(4.5.1) Inv (2',E',P’) < Inv (2,E,P) (strictly).

Proof. — a) Case e(E,P) = 1. Then there is a regular system of
parameters (x,y,z) of Oy p suited for (E,Y) and a generator D of %,
satisfying

4.5.2) I(E) = (x); I(Y)p = (x,y) or (x,y,2)

D(x)/x =1
(45.3) D(y) = ax + By + terms of order > 2
D(z) = 6x + gy + Yz + terms of order > 2.

With the notation of 4.2 and 4.3, we have (a,a,,a3) = (1,8,¥) and
either ¢ = ¢(2,E,P) =1 (iff fe Q, 3V or B¢ Q. 3V), or ¢(D,E,P) = 2
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(ff Be Q. 3V). Moreover, if ¢c = 1 and B = p/qe Q, (resp. ¥ = r/s)
with g.c.d. (p,q) = 1 (resp. g.cd. (r,s) = 1), thenn = n(2,EP)=p + ¢
(resp. r+s). If ¢=2 and PB=p/q, VY =r/s, where
gcd. (p,q) = gecd.(r,s) =1, let m = gcd. (q,5), q = mq,, s = ms,.
Then

4.5.4) n=m.gq,.s; +4qs, +rq,.

Let us assume first that m is quadratic. Let P’ = [(1,{,E)]e n~ ! (P).
Applying T(1,(,E), a generator D’ of Dy satisfies

D'(x)/x" =1
@455 D'@)=a+ax + B-1@G +{) + terms of order > 2
D'(z') = & + &'x’
+e(y+0) + (Yy—1)(zZ’+E) + terms of order > 2.

Since P'eSing (D',), we have a + B—1){ =6 + e + (Y—1)€ = 0.
The new roots of the characteristic polynomial are (1,B—1,y—1). We
have ¢' = ¢(2',E',P") < c and if ¢' = c, then

1

n=n2EP)<p+t(p-q9 <n if ¢
n 2

(4.5.6) "< mqus, + ps, +rq, —2mq;s;, <n if ¢

I

and (4.5.1) is verified. Let P’ = [(0,1,E)] e =~ (P). Applying T(0,1,£), a
generator D' of 9. satisfies

D'(x)/x" =1 — B + terms of order > 1
4.5.7) D'(y)/y = B + terms of order > 1
D') =e+ (W—P)& +@-ad)x" + &y + (V—Pp)2

+ terms of order > 2

(we have € + (W—B)E=0). If B = 0, clearly ¢’ = c. If B # 0, we have
that ((1—B)/B,(V—B)/B) € Q% implies that (B,¥)e Q?%, hence ¢’ < c.
Now, (4.5.1) follows from the fact that e(E',P’) > e(E,P). Let
P’ = [(0,0,1)]en” }(P). Applying T(0,0,1), a generator D' of ;. satisfies

D'(x")/x" = 1 — ¢y + terms of order > 1
4.5.8) D'(y) =oax" + (B—VY)y + yz' + terms of order > 2
D'(z")/z' = ¥ + terms of order > 1.

The roots of the characteristic polynomial are (1—V,B—V,{) and we
can reason as above.
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Let us assume now that m is monoidal. Note that { = 0, since

Y < S:(2). Let P'=[(1,0)]en'(P). Applying TM((1,0);(x,y)). a
generator D’ of 2. satisfies

D'(x)/x' =1

D'(y)=a+a'x'+(B—1)()'+0)+y'z +terms of order>2
D'(z)/x'(...)

4.59)

(@+(B-1DE=0). Clearly ¢ <c=1. If ¢ =1, B=p/q.
gcd(p.q) =1, then " < p < p+ q=n and (4.5.1) follows imme-

diately. Let P’ = [(0,1)] e x~*(P). Applying TM((0,1); (x,y)), a generator
D’ of 92 satisfies

D'(x)/x" =1 — B + terms of order > 1
(4.5.10) D'(y")/y' = B + terms of order > 1
D'(z) = y'(...).
One has ¢’ < ¢ =1 and e(E',P') = 2 > ¢(E,P) = 1, hence (4.5.1).

b) Case e(E,P) = 2. There is a regular system of parameters (x,y,z)
of Oxp suited for (E,Y) and a generator D of %, satisfying

(45.11) I(E)p = (xy); I(Y)p = (x,3), (x,2) or (x.y,2),

Dx)/x =1
(4.5.12) D(y)/y = B + terms of order > 1
D(z) =0x + gy + Yz + terms of order > 2.

Since P is not a simple corner, we have BeQ.. If B = p/jq,
gcd (p,g) =1, thenn=p+ gq.

Let us assume first that m is quadratic. Let P’ = [(1,{,E)]e n ' (P).
Applying T(1,(,), a generator D’ of %y satisfies

D'(x)/x" =1
(4.5.13) D'(y") =PB-1+x.)N0Y+0
D'(z) =38+8x"+e(y) +O)+(WY—1)('+E)
+ terms of order > 2

(B—DE =0+ el + (W—1)&=0). The roots of the characteristic po-
lynomial of L(D';{P'};P’) are (1,B—1,y—1), hence ¢’ < c. If ¢’ = ¢,
then p—1+#0, hence { =0 and e(E',P) = e(E,P). In this case
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n"<p<p+gqg=n. Now (451) is straightforward. Let
P'=[(0,1,£)len"*(P). Applying T(0,1,{), a generator D’ of P} satisfies

D'(x)/x" =1 — B + terms of order > 1
(4.5.14) D'(y)/y' = B + terms of order > 1
D'(z) =d8x"t+etey +(Y—B)(z'+&)
+ terms or order > 2

(e+(W—PB)E=0). The roots of the characteristic polynomial of
L(D;{P'};P") are (1—B,B,¥—P), hence ¢’ < c. If ¢ = ¢’, we have as
above, that " < p < p + q = n and (4.5.1) follows immediately. Let
P'=[(0,0,1)len” }(P). Applying T(0,0,1), a generator D’ of @} satisfies

D'(x")/x" = 1 — ¥ + terms of order >
(4.5.15) D'(y)/y =B — ¥ + terms of order >
D'(z')/z” = ¢ + terms of order > 1.

1
1

One has ¢’ < ¢ and since e(E',P’) = 3 > ¢(E,P), (4.5.1) is satisfied.

Let us assume now that m is monoidal centered at (x,y), hence
Yy =0. Let P'=[(1,))]en ! (P). Applying TM((1,£);(x,y)), a generator
D’ of 2 satisfies
D'x)/x" =1
4.5.16) D'(y)= (PB—-1+a'x"+Y'z'+ terms of order > 2)(y’ +{)
D'(z) = x'(...)
(B—1D{=0). Clearly ¢’ < c.If ¢ =c =1, then{ =0 (since if § = 1
then ¢'=0), and e(E,P) = e(E',P')=2and n’ < p < p + q = n, hence
(4.5.1) is verified. Let P’ = [(0,1)]e n~*(P). Applying TM((0,1);(x,y)),
a generator D’ of Zp. satisfies (4.5.10). Hence ¢’ < ¢, e(E,P) = e(E",P’)
and if ¢ =c=1,thenn < p<p+ q=n.

If m is monoidal centered at (x,z), then ¢ = p = 0 and hence P is
a simple corner.

c) Case e(E,P) = 3. Then there is a regular system of parameters
(x,y,2) of Oxp, suited for (E,P) and a generator D of 2, satisfying

Dx)/x = 1
4.5.17) D(y)/y = B + terms of order > 1
D(z)/z = Y + terms of order > 1.
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Since P is not a simple corner, we have B, yeQ,. In particular,
B # 0 # V¥, and hence n is never monoidal. Writing B = p/q, ¥ = r/s,
q =mqy,, s= ms;, then n = mqs, + ps; + rq; as in (4.54). If
P’ = [(1,5E)) en 1(P) or P’ = [(0,1,E)] with ((,E) # (0,0), resp. £ # 0,
then ¢’ < ¢ by arguments as in (4.5.13). If ((,§) = (0,0), resp. £ =0
then ¢’ < ¢, e(E,P)=¢e(E,P)=3 and if ¢’ = ¢, then n" < n as in
(4.5.6). Note that since B, V€ Q. , we have (4.3.7). This ends the proof
of the theorem.

4.6. Now, we shall construct an invariant, called « date of birth »,
which will allow to run on the trees of infinitely near points
« horizontally » rather than « vertically ». This kind of invariant has
already been used in [7] and [9].

Let E be a normal crossings divisor of X. Put E = E(0), X = X(0).
Let us fix an infinite sequence of blowing-ups

(4.6.1) &L ={n@): X@{@) » X>{i—D}is,,

such that for each i > 1, n(i) has a non-singular center Y(i—1), having
normal crossings with E(i—1), where E() = n(i))" *(EG—1DuY(i—1))
with reduced structure (hence E(i) is a normal crossings divisor of
X (i)). We assume also that dim Y (i) < dim X(i) — 2 = dim X — 2.

Assume that E = E(0) has n + 1 irreducible components and let
(4.6.2) E@0)=E_,0)u ... UE_;(0) U Ey(0)

be the decomposition of E(0) into irreducible components. Now, let us
write inductively

(463) EG()=E_,)uv ... VE()) VE;()u ... UE,_;() U E@)

where for j < i — 1, E;(i) is the strict transform of E;(i—1) by =n(i)
and E,(i) is the exceptional divisor n(i)~'(Y(i—1)) of ().

4.7. DEFINITION. — Let us fix an index i 2 0 and let Y < E(i) be
an irreducible closed subscheme of X (i) having normal crossings with E(i).
Then the « date of birth » dat (Y;E(i)) is defined to be

4.7.1) dat (Y;E(i)) = max {j;E;() > Y}

once we have fixed the decomposition (4.6.3).
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4.8. DErFiNiTION. — Let (X,E,2) be as in 1.5. Let us denote
(X(0),E(0),2(0)) = (X,E,2). Let us fix a sequence . of blowing-ups as
in (4.6.1). The sequence . is said to « respect the procedure of reduction »
iff the following properties hold for each i = 1:

a) The center Y(i—1) is a  permissible center for
X@G—1),E@{—1),2(@i—1)). We shall denote by (X (i), E(i), 2(i)) the strict
transform of (X(i—1),E(i—1),2(—1)) by n(i).

b) If S;(2(i—1)) does not have normal crossings with E(i—1), then
the center Y(i—1) of =w(i) is a closed point of X(i—1) such that
S,(2(i—1)) and E(i—1) do not have normal crossings at Y(i—1).
Moreover, we assume that dat (Y(i—1);E(i—1)) is minimal.

¢) Assume that S,(2(i—1)) and E(i—1) have normal crossings. If
there is an irreducible component of So(2(i—1)) U S,(2(i— 1)) containing
at least one point which is neither a simple point nor a simple corner,
then the center Y(i—1) of mn(i) is such an irreducible component having
minimal dat (Y(i—1);E(i—1)).

d) Otherwise, the center Y (i—1) is an arbitrary closed point of
X@i-1).

Remark. — A sequence which respects the procedure of reduction
always exists. We have put d) above in order to assure the infiniteness
of the sequence in the case that the «first final situation » is globally
reached.

4.9. DEFINITION. — Let us take the notation of 4.8 and let us fix a
sequence ¥ which respects the procedure of reduction. A « sequence of
infinitely near singular points for (X,E,2) in S» is a sequence

4.9.1) 2 = {PMhso

satisfying :
a) P() e X(@), foralli>0.
b) P(i) € Sing (2(i),), for all i = 0.
¢) n()(PG) = P(i—1), for all i > 1.

We shall say that the sequence X is « non-degenerate » iff for each index
i such that P(i) is neither a simple point nor a simple corner, or
Sing (2(i),) does not have normal crossings with E(@i) at P(i), then
there is an index j = i such that P(j) € Y(j).
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4.10. THEOREM (reduction theorem). — Let us fix a sequence . which
respects the procedure of reduction and let us fix a sequence of infinitely
near singular points X for (X,E,D) in &. Then :

a) X is non degenerate.

b) There is an index N such that for each i = N, (X(i), E(i),2(i))
is in the first final situation at P(i).

Proof. — First, let us prove that a) implies b). Assume that i is an
index such that P(i) is neither a simple point nor a simple corner. Let
j = i be the first index such that P(j) € Y(j). By theorem 4.5 we have

(4.10.1) Inv(2(G+1),E(+1),P(j+1))
< Inv (2(i), E(i), P(i)) (strictly).

Hence there is an index M such that for each i > M, P(i) is a simple
point or a simple corner (theorem 3.6 assures that this property is stable
under permissible blowing-ups). Let us consider now P(M), which is a
simple point or a simple corner. There are two possibilities : 1) S,(2(M))
has normal crossings with E(M) at P(M). 2) The above is not satisfied.
In the first case P(M) is in the first final situation and by 3.7 this
property is stable under permissible blowing-ups. Hence we can take
N = M. Assume we are in the second case. Let j > M be the first
index such that P(j) € Y(j). We can assume without loss of generality
that j = M. Now, by the priorities b),c),d) of 4.8 we have
Y (M) = {P(M)} and hence n(M +1) is quadratic. By 2.3 we have

(4.10.2) S, (2M+1)) = S,(2(M)) U Y

where Y < n(M+1)"}(P(M)) and has normal crossings with E(M+ 1)
at PM+1) if e(E(M+1), PM+1)) < 2. If e(E(MM+1),P(M+1)) = 3,
we are in the first final situation and this property is stable under
permissible blowing-ups. Otherwise, we repeat the above arguments
and by 2.4 in a finite number of steps we are in the first final situation.

Now, let us prove that T is non-degenerate. It is enough to prove
that there is an index j > 0 such that P(j) e Y(j). We shall reason
by contradiction, assuming that for each j > 0, P(j) ¢ Y(j). This is
equivalent to

(4.10.3) {P()} = (n()) o n(j—1) o ... o n(1))"} (P(0))
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for each j > 1. Let us assume without loss of generality that
E_,.0),...,E_{(0), E,(0) are exactly the irreducible components of
E(0) containing P(0) (m=0,1 or 2). Then E_,(), ..., E_;(i), Ey()
are exactly the irreducible components of E(i) containing P(i) for each
i>0.

Assume first that S,(2(0)) and E(0) do not have normal crossings
at P(0). Hence, by the priorities of 4.8, each n(i+1) is a quadratic
blowing-up centered at a closed point Y (i) # P(i) such that S,(2(i))
and E(i) do not have normal crossings at Y (i), for each i > 0. Let

(4.10.4) {Q(0)}5=0,....n

be the closed points of X(0) such that S;(2(0)) and E(0) do not have
normal crossings at Q,(0) and dat (Q,(0)); E(0)) < 0 = dat (P(0), E(0)).
If h = 0, we are done, since by (4.8) we must have Y (0) = Qq(0) = P(0).
Assume that h > 1. Without loss of generality, we can assume that
Q,(0) = P(0) and that Y (0) = Q,(0). Since each point over Y (0) under
n(1) has date of birth > 1 (in fact = 1), we have that

4.10.5) Q1) = n(1)"1(Q0), s=0,....,h—1

are exactly the points of X (1) such that S,(2(1)) does not have normal
crossings with E(1) at Q,(1) and dat (Q,(1); E(1)) < 0 = dat (P(1); E(1)).
Hence in a finite number of steps we have h = 0, and we obtain the
desired contradiction.

Let us assume now that S,(2(0)) and E(0) have normal crossings
at P(0). Let

(4.10.6) {Rs(0)}s e 100)

be the irreducible components of Sy(2(0)) U S;(2(0)) containing at
least one point which is neither a simple point nor a simple corner.
Hence I(0) is a finite set. Note that the R (0), s € I(0), are exactly the
irreducible components of S,(2(0)) U S,(2(0)) containing at least one
point which is neither a simple point nor a simple corner and having
the following property :

(4.10.7) If E,(0) > Ry(0), then p < 0
(this is trivial). Now, let us define by induction a family

(4.10.8) {Re(D}s e 16



178 FELIPE CANO

putting
(4.109) J() = {sel(i—1);R,(i—-1D)£Y@G—1)} = I(i—1)

and if se J(i), then R (i) is the strict transform of R (i—1) by =n(i).
Now, define

(4.10.10) I(i) = {s € J(i); R,(i) contains at least one point which is
neither a simple point nor a simple cor-
ner} < J(i) = I(i—1).

Now it is easy to verify that the R;(i), s e I(i), are exactly the
irreducible components of S,(2(i)) U S,(2(i)) containing at least one
point which is neither a simple point nor a simple corner and satisfying
the following property :

(4.10.11) If E,(i) > R,(), then p < 0.

Now, we shall proceed by induction on # I(0). In order to do this,
let us assume that the following statement is true:

(4.10.12) «Let & be a sequence which respects the procedure of
reduction. Then there is a step N such that E(N) and
S,(2(N)) have normal crossings ».

(By (4.10.12), given M, there is N > M such that E(N) and S, (2(N))
have normal crossings). Assume first that # I(0) = 1. Then # I(N) = 1
and hence we have only one R(N) in (4.10.8). By assumption we have
P(N)e R(N). Moreover, let Z be an irreducible component of
Se(2(N)) U S;(2(N)) containing at least one point which is neither a
simple point nor a simple corner. Then by (4.10.11) we have

(4.10.13) dat (R(N); E(N)) < dat (Z; E(N))

(strictly). Hence the priorities of 4.8 ¢) imply that R(N) = Y(N) and
we obtain the desired contradiction. If # I(0) = 2 and # I(0) = # I(N)
we obtain as above that Y(N) = R,(N) for some s € I(N) and hence
#I(N+1) < # I(N).

Now, let us prove (4.10.12). We shall reason by contradiction,
assuming that (4.10.12) is not true. Then by 4.8 b), each n(i) is centered
at a closed point Y(i—1) such that S,(2(i—1)) does not have normal
crossings with E(i—1) at Y(i—1). Since the set of points Q such that
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S;(2(i)) and E(i) do not have normal crossings at Q is a finite set,
then we can easily find a sequence of infinitely near singular points

(4.10.14) = {P' (Do

which is non-degenerate and such that S,(2(i)) and E(i) do not have
normal crossings at P'(i). By (4.10.1) we can assume without loss of
generality that P’(0) is a simple point or a simple corner. Moreover,
we can assume that P'(0) = Y (0). By 2.3 we have (as in (4.10.2))

(4.10.15) S;2(1) =8,(20) vY

where Y < n(1)~!(Y(0)) and has normal crossings with E(1) at P'(1)
if e(E(1),P'(1)) < 2. Let us prove that this assertion is also true in the
case e(E(1),P’(1)) = 3. Then reasoning as in 2.4, after a finite number
of steps we have normal crossings at P'(i) and we obtain the desired
contradiction. Let us take the notation of 2.3 and assume first that
¢(E(0),P'(0)) = 2. Hence we have a = y = 0 and B¢ Q.. Thus (2.3.6)
is

(4.10.16) B-1DC=8+¢el+W—1)E=0

hence if it defines a 1-dimensional linear variety L, then L = ({=0)
and L is Proj (ToE,(0)) for some E,(0). Same argument for the case
e(E(0), P’(0)) = 3. This ends the proof of the theorem.

4.11. Remark. — We cannot expect that for some step N all the
points of X(N) are regular points, or simple points, or simple corners.
Take, for instance, the following example: X = A3(C), 2 is globally
generated by

4.11.1) D = xd/0x + zy 0/0y

where E = (x=0). We have infinitely many singular points (0,0,p/q)
which are not simple points. Except for a finite number of these points,
we have (if we want to desingularize) to blow-up the line x = y = 0.
Hence the desingularization is essentially the same as xd/0x + (p/q)yd/dy
in dimension two. But the number of blowing-ups needed for this
depends on Euclides’ algorithm for dividing p/q, which is not uniformly
bounded.
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5. Dimension two revisited.

5.1. In this paragraph we shall briefly recall the analogue of 4.10
for the case dim X = 2 (without any restrictions on the initial situation
X,E,2)).

5.2. THEOREM ([S], §3, cor.2 and §4, th.(4.2)). — Let us assume
that dm X = 2, E is a normal crossings divisor of X and & is a
unidimensional distribution over X , multiplicatively irreducible and adapted
to E. Then there is a finite sequence of quadratic blowing-ups

(5.2.1) S =1{n@: XO) = X(E~Dhi=y,..~

with X(0) = X such that if (X(N),E(N),2(N)) is the strict transform of
(X,E,2) by the successive (i), each closed point P of X (N) satisfies one
of the following conditions :

a) V(2(N),E(N),P)=0

b) v(Z(N),E(N),P) = 1 and there is a regular system of
parameters (x,y) of Oxp and a generator D of 2P(N)p such
that IE(N))p = (x), v(D(x)) = 2 and cl*(D(y)) = y (i.e. one
has one of the final forms of [12], vgr.).

(5.2.2)

5.3. Assume that (X,E,2) satisfies the conditions a) or b) of (5.2.2)
for each closed point Pe X. Let us define the invariant Inv (D,E,P).
Put Inv (2,E,P) = 0 if v(2,,P) = 0. Let ®(T) e k[T] be the charac-
teristic polynomial of the linear map L(D;{P};P) defined as in (2.7.1)
for a generator D of Z,. Let (A,,A,) be the roots of ®(T), with
A, # 0. The invariant Inv (2,E,P) is defined to be 0 if A,/A, ¢ Q. and

p+ qif A/A = p/qeQ,, gcd(p,g) = 1.

Note that if v(2,E,P) = 1, then Inv (2,E,P) = 0 since A,/A; = 0 in
view of b) of (5.2.2). The number of closed points Pe X such that
Inv (2,E,P) > 0 is finite. (Note that if E, is a component of E with
E, < Sing (2,7), then Inv(2,E,P) =0 for each PeE,). Let a(2,E)
be the maximum of the numbers Inv (2,E,P) and let b(2,E) be the
number of closed points P such that Inv (2,E,P) = a(2,E). The invariant

(5.3.1) Inv (2,E) = (a(Z,E),b(Z,E))
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decreases strictly each time one makes a quadratic blowing-up centered
at a closed point P with Inv (2,E,P) = a(2,E) # 0.

Thus, after a finite number of steps we can obtain the following
« final situation » for (X,E,2) :

(5.3.2) 1° (X,E,2) satisfies a) or b) of (5.2.2) for each closed point
PeX.

(533) 2° a(ZE) = 0.

The above situation agrees with the classical one (see [12]) except
for two slight differences : first of all, the classical situation takes 2
multiplicatively irreducible and adapted to ¢ = E, thus in order to
obtain the classical situation one has to divide D by the equations of
the components E; of E such that E, < Sing (2,). Secondly, in the
classical situation one does not distinguish whether an integral branch
(i.e. a branch I' which is tangent to 2 ; algebraically this is equivalent
to saying that 2,(I(I')p) = I(I')p) of the final situation comes from an
integral curve of the initial situation or has been created in the process.
In our situation, the initial integral branches correspond exactly to the
points of Sing(2,) which are not «corners». See below and
paragraph 7 for more details.

5.4. Let us assume that (X,E,9) is in the «final situation » defined
in (5.3.2) and (5.3.3). A closed point Pe X is a «corner point» iff
e(E,P) = 2. Hence v(2,E,P) =0, v(2,,P) =1 and 9, is generated
by D, satisfying

D(x)/x =1

(54.1) D(y)/y = A + terms of order > 1, A ¢ Q.

for a certain regular system of parameters (x,y) of Oxp suited for
(E,P). Easy computations from (5.4.1) show that P is transformed only
into corner points or into regular points under a quadratic blowing-up.
The «simple corners» of 3.3 have the same property (see 3.6 c)). In
particular, there is no integral branch passing through these corners,
different from the components of the divisor. In fact, the desingularization
of this branch would create a singular point of £ which is not a
corner. See also paragraph 7.

5.5. In the situations a) and b) of (5.2.2) the linear map L(D;{P};P)
is not nilpotent (i.e. there is at least one nonzero eigenvalue). We shall
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say that P is a «pre-simple » point iff L(D;{P};P) is not nilpotent.
Being pre-simple or regular is stable under blowing-up. Moreover, if
PeE (i.e. e(E,P)> 1), then pre-simple is equivalent to a) or b) of
(5.2.2). Hence, after one blowing-up of a pre-simple point, we always
have a) or b) of (5.2.2) at the singular points.

6. Second final situation.

6.1. Thoughout this paragraph we shall assume that dim X = 3 and
that (X,E,2) satisfies the assumptions of 1.5.

Let us fix an irreducible component F of E and let us denote by
E/F the normal crossings divisor of F given by (E—F) n F. Then we
can define an Op-submodule of E¢[E/F], denoted by 2/F, which is
given locally at each closed point PeF in the following way. Let (x,y,z)
be a regular system of parameters of Oy p suited for (E,P) such that
I(F)p = (x). Let us denote also by (y,z) the induced regular system of
parameters in Opp (which is also suited for (E/F,P)). Let D be a
generator of 9,. Then (2/F), is generated by an element D/F € E¢[E/F]
satisfying

(6.1.1) (D/F)(y) = D(y)(mod x)
h (D/F)(z) = D(z)(mod x).

Then 2/F does not depend on (x,y,z) nor D. In fact, 2/F is the
inverse image of 2 via the inclusion i: F — X, (see[6], 1.(2.1)). Then
we deduce easily that 2/F =0 iff F < Sing (2,) and if 2/F #0
then 2/F is a unidimensional distribution over F adapted to E/F,
which may not be irreducible.

Assume that 2/F # 0. Then there is a locally principal ideal sheaf
He(D,E) of Op satisfying

(6.1.2) He(D,E).oag(2/F) = 2/F

(see 1.2 for the definition of o).

Let us denote by Hp(2,E) the closed subset of F given by #¢(2,E).
(In general #(2,E) does not give a reduced structure on Hg(2,E)).
If v(2,,P) =0, then P¢ Hx(2,E), hence

(6.1.3) Hp(2,E) € $,(2) U So(2).
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6.2. DerFiNiTiON. — (X,E,2) is in the « second final situation » at a
closed point Pe X iff the following conditions hold :

a) (X,E,2) is in the first final situation at P.
b) Sing (2,8) has normal crossings with E at P.

¢) For each irreducible component ¥ of E at P, such that
F ¢ Sing (2,), then P is a pre-simple point for (F,E/F,oyd2/F)).
(Note that b) implies that Hg(2,E) has normal crossings with E at P,
in view of (6.1.3)).

6.3. DerFINITION. — Let us consider a sequence

(6.3.1) & = {n(@): X@G) - X(i—D}isy

as in (4.6.1). Put (X(0),E(0),2(0)) = (X,E,2). The sequence .% is said
to « respect the second procedure of reduction » iff the following properties
hold for each i > 1:

a) Same as in (4.8).
b) Same as in (4.8).

¢) Assume that S;(2(i— 1)) and E(i—1) have normal crossings. Assume
that there is an irreducible component ¥ of E(i—1) such that
F 4 Sing (2(i—1),&) and a closed point P of F such that P is not a
pre-simple point for (F.E(i—1)/F,ag;_1,{2(i—1)/F)). Then the center
Y(@i—1) of n(i) is such a point P having minimal dat (P;E(i—1)).

d) Assume that S,(2(i—1)) and E(i—1) have normal crossings and
there is no F, P as in c¢). If there is an irreducible component of
So(2(i—1)) u S, (2(i—1)) containing at least one point which is neither
a simple point nor a simple corner, then the center Y (i—1) of n(i) is
such an irreducible component having minimal dat (Y (i—1);E(@—1)).

e) Otherwise, the center Y(i—1) is an arbitrary closed point of
X(@i—1).

As in 4.9, we shall say that a sequence X of infinitely near singular
points for (X,E,2) in & is «non-degenerate » iff for each index i such
that (X (i), E(i), 2(i)) is not in the second final situation at P(i), there
is j = i such that P(j) e Y(j).
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6.4. THEOREM (Second theorem of reduction). — Let us fix a sequence
& which respects the second procedure of reduction and a sequence X of
infinitely near singular points for (X,E,2) in . Then

a) X is non-degenerate.
b) For each index N there is an index M > N such that
X(M),E(M),2(M)) is in the second final situation at P(M).

Proof. — Let us show first that a) implies b). Without loss of
generality we can assume that for each i > 0, P(i)e Y(i). Moreover,
by (4.10.1) we can also assume that P(0) is a simple point or a simple
corner (hence so is each P(i), i > 0). Since 6.3b) and 4.8 b) are the
same, (4.10.12) is also true and we can assume without loss of generality
that E(0) and S,(2(0)) have normal crossings at P(0). In order to prove
b) it is enough to find M > O such that (X(M),E(M),D(M)) is in the
second final situation. Let us define

(6.4.1) I(i) = {s; if F = E®i), then F ¢ Sing (2(i),F), P@) is a
singular point of (F,E(i)/F,ag,,{2(i)/F)) which is not pre-
simple}

for each i > 0. If # I(0) = 0, we are done, since (X(0),E(0),2(0) is
in the second final situation at P(0). If # I(0) > 1, then =m(1) is
quadratic in view of 6.3 ¢). By the proof of (4.10.12), S,(2(1)) and
E(1) have normal crossings at P(1). If # I(1) =0 we are done,
otherwise the situation repeats. We shall prove first that I(0) > I(1)
and second that there is an index i such that # I(0) > # I(i) (strictly).
Hence we finish by induction on # 1(0).

Let s < 0 be an index such that s ¢ I(0). If E,(0) = Sing (2(0),J),
then E,(1) = Sing (2(1), D), hence s¢I(1). Assume
E;(0) ¢ Sing (2(0), &). We can also assume that P(0)e E;(0) and
P(1) e E,(1). Denote F = E,(0), F' = E,(1). Then P(0) is either a
regular point or a pre-simple point of (F,E(0)/F,ag)s(2(0)/F)). Let
ne: F' > F be the restriction of © to F. Then

(64.2) (F,E()/F,0gqyr(2(1)/F))

is the strict transform of (F,E(0)/F,0g),{2(0)/F)) by ne. Hence P(1)
is either a regular point or a pre-simple point of (6.4.2), by the results
for the two-dimensional case. Then s ¢ I(1). It remains to prove that
1¢1I(1). Take a regular system of parameters (x,y,z) of Oxq)p) Such
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that E(0) is given locally at P(0) by x = 0, xy = 0 or xyz = 0 and
there is a generator D of 2(0)p,, satisfying

D(x)/x =1
(6.4.3) D(y) = ax + By + terms of order > 2
D(z) = &x + gy + Yz + terms of order > 2

where B¢ Q.. (Recall that P(0) is a simple point or a simple corner).
If PQ1) = [(1,§,E)] e E; (1), applying T(1,(,E) (see (2.3.5)), a generator
D’ of 2(1)p(y, satisfies

D'(x)/x' = 1
(6.4.4) D'() = B-1Dy + x'(...)
D'() =gy + W—1)z + x'(...)

(note that P(1) e Sing (2(1), &)). Hence D(1)/E, (1) is generated at P(1)
by

645 D/Ei(1)=@B—-1) y' 0/0y’ + [ey'+(¥—1)z'] 0/0z".

Since B¢Q,, p—1#0 and P(1) is a pre-simple point of (6.4.2)
for " = E,;(1). Hence 1¢I(1) in this case. If P(1) = [(0,1,8)], a
generator D' of 2(1)p(,, satisfies

Dx)/x"=1-B—ax" — y(...)
6.4.6) D)y =ax" + B+ y(..)
D'(Z) = B—af)x" + W—PB) z/ — ax'z’ + y'(...).

Hence 2(1)/E,(1) is generated at P(1) by

(6.4.7) D'/E,(1) = (1—B—ox')x’ 8/0x’
+ (B—af)x’ + (Y—PB)z' —ax'z’) 8/dz .

Thus P(1) is a pre-simple point of (6.4.2) for E' = E,(1). Hence
1¢1I(1). If P(1) = [(0,0,1)], a generator D’ of 2(1)p,, satisfies

DX)/x'=1—-y—08x" —¢y + z(...)
(6.48) D'()) =oax + B—V)y — 'y — ey'? + z'(...)
D'(z)/z =y +x + ey +2(...).

Hence 2(1)/E,(1) is generated at P(1) by

649 D'/JE,(1) = (1—-V¥—dx"—gy)x' d/ox'
+ (X" +(B=V)y — dx'y' —ey?) 0/dy’.
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Since B¢ Q., (1—V¥,B—V¥) # (0,0) and P(1) is a pre-simple point of
(6.4.2) for F' = E(1). Hence 1 ¢ I(1). This ends the proof of 1(0) o I(1).

In order to prove that # I(0) > # I(i) for some i, let us fix
s e I(0). By 5.2, there is an index i such P(i) is either a regular point
or a pre-simple point of

(6.4.10) (Es (i), EG)/E (i), 0tgiy/e, (2 (i) / Es (i)
and hence s ¢ 1(i).

Let us prove that ¥ is non-degenerate. Assume that the following
statement is true:

(6.4.11) «Let & be a sequence which respects the second procedure
of reduction. Then there is a step N such that E(N) and S,(2(N))
have normal crossings and such that for each irreducible component F
of E(N), such that F ¢ Sing (2(N),), all the points of F are either
regular points or pre-simple points for (F,E(N)/F,agn,(2(N)/F))».

Then we can reason as in the proof of 4.10a) and ¥ is non-
degenerate. In order to prove (6.4.11) we can reason as in the proof
of (4.10.12) together with the above argument to prove # 1(0) > # I(i).
This ends the proof of the theorem.

6.5. ProrosiTioN. — If (X,E,2) is in the second final situation at
PeX and n: X' — X is a quadratic blowing-up, then (X',E',2") is also
in the second final situation at each P’ such that n(P')= P. If = is
monoidal with permissible center, then a) and c) of (6.2) hold for each
P’ such that n(P’) = P.

Proof. — If m is quadratic, then the result follows easily from the
proof of (4.10.12) and 6.4. Assume that m is monoidal. By 3.7, we
have 6.2 a) for P'. Let F be an irreducible component of E at P,
such that F ¢ Sing (2,). Let Y be the center of m and let us denote
by F’ the strict transform of F by .

Assume first that Y < F, hence n: F’ — F is the identity morphism
and since Y < Sing (2,(), we deduce easily that ag. g (2'/F’) = ag(D/F)
at the point P=P'. If Y ¢ F, then n: F' - F is a quadratic blowing-
up and by (6.4.2) and 5.2, P’ is either a regular point or a pre-simple
point for (F'E'/F',0g x(2'/F')). Assume now that F' = n!(Y). If
e(E,P) = 1, the result follows from (3.6.17) and (3.6.19). If e(E,P) > 2,
the result follows from (3.6.20), (3.6.21) and also (3.6.17) and (3.6.19).
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6.6. Remark. — 1) The second final situation is not stable under
permissible blowing-ups, as we see from the example (2.9.1).

2) In general, we cannot expect to obtain that (F,E/F,o;{2/F)) be
in the final situation described in (5.3.2) and (5.3.3), even for the simple
corners. For instance, let X = A3(k), E = (xyz)=0) and let 2 be
globally generated by

(6.6.1) D = x0/0x — nyd/dy — nzd/dz

where n € N. Then origin is the only point in Sing (2,). If F = (x = 0)
then ag,(P/F) is generated by

(6.6.2) y0/dy + 20/0z

which does not satisfy (5.3.3). If n: X’ - X is the quadratic blowing-
up centered at the origin, for the point P’ = [(1,0,0)]e n~! (origin) we
obtain that ;. is generated by

(6.6.3) D' = x'd/ox’ — (n+1)y'd/dy’ — (n+1)z'0/0z'

and this situation is repeated indefinitely.

7. Integral branches.

7.1. In this paragraph we shall describe the integral branches of
(X,E,2) which are not contained in E in terms of the first (or second)
final situation which we can obtain by means of permissible blowing-
ups. This gives a description of the leaves of a foliation %, with
isolated singularities in the case when (X,,%2) may be transformed
into (X',E’,2’') as in (1.5) by means of blowing-ups at the points of
Sing (2,7) or points (possibly not closed) which project (under the
successive transformations) into Sing (2,J).

7.2. DeFINITION ([4], [8],...). — Let PeX be a closed point, a
« branch » at P will be any integral irreducible closed subscheme of

dimension 1 of Spec (@x,PA). Given a branch T at P let us denote by
I(') the ideal of T', I(T) = Ox,p .

Let 2 be any unidimensional distribution over X. Then 2 defines
a submodule 2} of Der,(Oxp ). The branch I is said to be an « integral
branch» of 2 at P iff

(7.2.1) 2y (1) < I(I).
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7.3. LEMMA. — Let 2 be a unidimensional multiplicatively irreducible
distribution over X (no assumption on dim X), adapted to a normal
crossings divisor E of X. Let Y ¢ X be a regular closed subscheme
having normal crossings with E, such that Y < Sing(2,). Let =:
X' = X be the blowing-up of X centered at Y and let (X',E’',2’) be the
strict transform of (X,E,2). Let us assume that Y < E or that Y = {P}
is a closed point. Then, there is a bijection

(7.3.1) V: {integral branches of 2 not contained in E} -
— {integral branches of 2' not contained in E'}

given by y(I') = I'" = strict transform of T by m.

Proof. — T'—>T' is a bijection between the branches of X not
contained in E and the branches of X' not contained in E'. Now, it
is enough to show that I' is an integral branch of 2 iff I is an
integral branch of 2'. Let I" be a branch at Pe Y (otherwise the result
is easy) and assume I is a branch at P’en™*(P). Let f be a local
equation of n~'(Y) at P'. Let p be as in (1.3.3) and let v be the
multiplicity of I at P. Since I'" ¢ n~'(P), we have

(132) 25 (IN).0xp ) = I(T).Oxp” < f*Pp” (fIIT).Oxp")
c . IT).Oxp
Since 2p. () = (f), (7.3.2) is also equivalent to

(7.3.3) F*Dh” (I Oxp”) < 1Y) Oxp”
Since p = 0, (7.3.3) is equivalent to

(7.3.4) Dy (I(I).Oxp") < I(T). O p”

and the result is proved.

7.4. PropPOSITION. — Let dimX = 3. Let (X,E,2) be in the first (or
second) final situation at a closed point Pe E. Then

a) If v(2,,P) = 0, then there is exactly one integral branch through
P and it is contained in E. Moreover, it is a regular branch.

b) If P is a simple point, then there is exactly one integral branch T
through P which is not contained in E, the others are contained in E.
Moreover, T is a regular branch.
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c) If P is a simple corner, then every integral branch through P is
contained in E .

Proof. — a) P is a regular point of 9 and hence there is only one
integral branch I' through P and, in addition, I" is a regular branch.
Since 2(I1(E)) = I(E), it is easily seen that I' < E.

¢) Assume that I' ¢ E is an integral branch. By a) and 7.3 the
sequence of infinitely near points of I' cannot touch a regular point.
Hence, by 3.6 ¢) all of them must be simple corners. But this is not
possible, since if I' ¢ E, then after finitely many blowing-ups I' is
regular and touches exactly one component of the divisor.

b) First, let us prove the uniqueness. Assume that I' # I'" are
integral branches through P. By 7.3 and by 3.6 a), b), the sequences
of infinitely near points of I' and I agree, hence I' = I'": in fact, the
above sequence cannot touch either a regular point (by a)) or a simple
corner (by c)), hence each time we have the simple point given by
3.6a). This also implies that I' is regular. In order to prove the
existence, let us fix a coordinate system (x,y,z) in Oyp , such that the
point P’ of 3.6 a) is successively given by [(1,0.0)]. Assume that P is
generated by

(7.4.1) D = xd/dx + ad/dy + bdjoz.

Then v, (@), V., (b) > 1 and hence (y,z) gives an integral curve of
9 atP.

7.5. Let us fix a sequence & which respects the procedure of
reduction (or the second procedure of reduction). Let X = {P(i)};», be
a sequence of infinitely near singular points in &. By 3.6 and the
reduction theorems 4.10 and 6.4, one of the following possibilities
holds :

a) There is an index N such that for each i > N, then P(i) is a
simple point. In this case we shall say that X «stabilizes at simple
points ».

7.6. CorOLLARY. — Let & be a sequence which respects the procedure
of reduction (or the second procedure of reduction). Let us fix a point
Pe Sing (2,). Then there is a bijection between the integral branches
of Z not in E and passing through P and the sequences of infinitely near
singular points in ., starting at P and which stabilize at simple points.
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Proof. — Follows from 7.3 and 7.4,

7.7. Remark. — In this paper we do not consider the convergence
problems for the integral branches in the case k = C (see, e.g. [3]).

Appendix.

A.1. Assume that dim X = 3. Let E be a normal crossings divisor
of X and let 2 be a unidimensional distribution, multiplicatively
irreducible and adapted to E over X. The main result of [6] (th.I
(4.2.9)) asserts that after finitely many permissible blowing-ups we can
have v(2,E,P) < 1, at least « punctually ». Moreover, the techniques of
[6] work without essential obstruction for the case v(2,E,P) =1 and P
being not of «type zero» (see[6]). In the case v(D,E,P) =1, «type
zero » is equivalent to the fact that L(D;{P};P) is not nilpotent (hence
it has a nonzero eigenvalue). In this appendix we shall consider exactly
this situation, ie. v(2,E,P) =1 and type zero. Moreover, we shall
assume that Sing (2,) = E, which can be achieved by a sequence of
permissible blowing-ups (see [6] and [7]).

A.2. DefFINITION (See also [7]). — Let us consider the ideal

(A2.1) J(@,P) =[() Im[L(D;{P};P)]"].Gr Oy,

n=1

(note that J(2,P) # 0, since L(D;{P};P) is not nilpotent). The directrix
Dir (2,P) is defined to be the linear subvariety of TpX given by the
zeroes of J(2,P).

A.3. THEOREM ([7],11.2.4) — Assume that n: X' — X is the quadratic
blowing-up centered at P and let (X',E’',2’) be the strict transform of
(X,E,2). Let P'e X' be such that n(P') = P and v(2',E',P’)= 1. Then

a) P’ e Proj (Dir (2,P)) c Proj (TpX) = n~}(P).

b) dim Dir (2',P") < dim Dir (2,P).

A.4. THEOREM. — Assume that dim Dir (2,P) = 1. Then one of the
Jollowing two possibilities holds :

a) After finitely many quadratic blowing-ups centered at the point
given by A.3 a), each point over P has adapted order equal to zero.
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b) There is a regular system of parameters (x,y,z) of (’xp such that
E = (x = 0) and a generator D of 2 satisfies :

b—1) vy(Dx)x) 21,
b = 2) Vs () > 1, vy (D) > 1,
b= 3) c'(D(y) = ay + Bz; cl' (D) = vy + bz,
with ad — By # 0.

Moreover, assume that we have the situation b) and let
n: (X ,E,2') » (X,E,2) be the quadratic blowing-up centered at P. Then
there is exactly one point P'e X' with n(P') = P satisfying b — 1),
b — 2) and b — 3) above. The other points over P are regular points or
simple corners. Hence the formal branch y = z = 0 is the only integral
branch of 2 at P which is not contained in E.

Proof. — Assume that a) is not satisfied. Note that dim Dir (2,P) = 1
implies e(E,P) < 1, hence e(E,P) = 1. We can take a regular system
of parameters (x,y,z) such that E = (x=0) and a generator D of 2,
satisfies

(A4.1) v(DX)/x) = 1; c'(D(y) =ay + Bz;
c'(D(2)) = vy + 8z, with ad — By # 0.

Thus, the points P' of A3 a) is P’ = [(1,0,0)]e n™!(P). Applying
T(1,0,0) a generator D’ of D} satisfies

(A42) v(DE)/X)=1; c'(D(Y)) = oy + Bz’ + ex’;
cd'(D(2)) = vy’ + 8z + ¥x'.

After a coordinate change of the type y; =y’ + Ax', 2} =2’ + pux’,
we have the situation of (A.4.1). But this change corresponds to a
coordinate change y, = y + Ax?, z; = z + px? before blowing-up.
Then, after a formal change of coordinates y —y + Y Ax', z—>z +

22

Y px', we can assume that the point P’ of A.3 a) is given at each

i22

step by P’ = [(1;0,0)] (hence this points correspond to the infinitely near
points of y = z = 0) and at each step we make the transformation
T(1,0,0). Let us consider the invariant

(A4.3) A(D,P;(x,y,z))=min {v(D(y) mod (y,2)), v(D(z) mod (y,2))}.
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If A= oo, we have b — 2). If A < o0, it decreases strictly by one at
each step and we obtain a contradiction. This proves the first part of
the theorem. For the second part it is enough to make the computations
after T(1,(,€), T(0,1,¢) and T(0,0,1). The final part comes from 7.4 a)
and ¢).

A.5. THEOREM. — Assume that dim DirA(Q,P) = 2. Then there is a
regular system of parameters (x,y,z) of Oxp , suited for (E,P) such that

a) E=(x=0) or E = (xy=0),

b) Let F = (z=0), then 2 < E[F] (after the formal completion).

¢) vV(D,EUF;P) = 0 and P is a simple corner for (X,EUF,D).

Proof. — Let (x,y,z) be a regular system of parameters of Oy,

satisfying a) and such that Dir (2,P) = (z=0). Moreover, we can choose
(x,y,z) and a generator D of 2, such that

(A5.1) ' (D(y) = ox ; '(D(2)) = z.

Let us writt D(z) = f(x,y) + zg(x,y,z), where g(0,0,0)=1. Let
f=Y fix'y and let us denote

(%))
(A52) Exp (f;(x,3)) = {(i.)): f;;#0} = Z3 .

If Exp(f;(x,y)) = &, we are done since z divides D(z) and since
v(D(x)/x) = 1 and then the eigenvalues of L(D;Y;P) are (0,1), where
Y = (x=z=0). Assume the contrary. Let (B,y) = min Exp (f;(x.y)) for
the ordering
(A.5.3) (i) < (I'j) <> (i+j<i'+j) or
(i+j=1i+j and i<i).
Now, let us make the coordinate change z; = z + f;,xPy". Clearly, we

have a) and (A.5.1) for the regular system of parameters (x,y,z,). Let
us write

(A54) D(z;) = D() + fyy'(BDR) /x+YD(1)/y)
=fl(xay) + Zlgl(x’y’zl)-

Since v(D(x)/x) >1 and cl'(D(y)) = ax, we deduce easily that
(By>v1) < (B,y) (strictly), where (By,v,) = min Exp (f;;(x.y)). In this
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way, we make a formal coordinate change z — z + XA;x‘)’ such that
Exp (f;(x,y)) = & . This ends the proof of the theorem.

A.6. Remarks. — We can add the situations of A.4 b) and A.5 as
new final forms. In the case of A.5 we have to control the integral
branches contained in F, but this is a two dimensional problem. Finally,
note that dim Dir (2,P) = 0 is not possible, since e(E,P) > 1.
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