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CHAPTER 11

DIFFERENTIABLE FUNCTIONS

10. Ideals generated by analytic functions.

We give an elementary proof of the theorem of Malgrange
[27, Ch. VI]. Let N be a real analytic manifold. Put ¢ = Oy. Let A
be a p X g matrix of real analytic functions on N, and Ilet
A-: €°(N)! » €°(N) denote the ¥ °(N)-homomorphism defined by
multiplication by A .

THEOREM 10.1. — A-G°(N)! = (A-¢°(N)?) .

Remark 10.2. — Let Z = Y be closed subanalytic subsets of N.
Suppose that fe #(N;Z)y and, for all aeY, there exists G, e @ such

that f, = A,-G,. The following proof shows, moreover, that there exists
g€ F(N;Z) such that f — A-ge F(N;Y)? (cf. [7, Thm. 0.1.1]).

Proof of Theorem 10.1. — Let o/ denote the sheaf of submodules
of OF generated by the columns ¢', ... @7 of A. Let # be the subsheaf
of ¢ of (germs of) relations among the columns of A. Then # is
coherent.

We can assume that N is an open subset of R". If aeN, we
identify @, with R[[y]], y = (71, ..., ¥, . By Lemma 7.2 and Remark 7.3,
~we can suppose there is a filtration of N by closed analytic subsets,

I\I:=XODXID tee DX,+1=@,

such that, for each k =0, ... r:
(1) X; — X4, is smooth.

(2 N(«,) and N(H,) are constant on X, — X,,,. We write
Ri() = N(A,) and R(B) = R(Z.), ae X, — Xiss -

(3) Let (Bi,j), i=1,...,t, denote the vertices of 9, (/). Then,
for each i, there exists | in the submodule of O(X,)[[y]]’ generated by
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(the elements induced by) the ¢ (cf. Remark 7.3), such that, for all
aeX, = Xpry1, v(¥'(@a;9) = (Bj) and Ve, where Vi(y) =
Vi(a;y).

(4) There exist o in the submodule of OX) [[y])* induced by £Z(N)
such that the v(c’(a;-)) are the vertices of N, (%), for all ae X, — X, .

Fix k. Let {A;,,A} denote the decomposition of N" x {1,...,p}
determined by the vertices (B;,j;) of M, (F), asin §6. Let ae X, — X, .
By the formal division algorithm (Theorem 6.2) and Remark 6.7, there
exist unique r,e0? and gqy,€0,, ¢=1,...,t, such that
supp ria < A’ (B(,j() + Supp qir,a < A{9 and

(10.3) Y=Y gy 0W0) + F).
¢=1

Putfi(y) = " — ri(y),i = 1, ..., t; then the 0} € o, (cf. Corollary 7.7).
The coefficients 05 ;(a) of 8i(y) = Y. 05,(a)y®/, as well as the coefficients
B.j :

of the g, ,, are analytic on X, — X,;,, and extend to Xk as quotients

of analytic functions by products of powers of the \Ilf,,_j,(a), where

Vi(y) = Y V4,(a)y?/. There exist analytic functions 6 defined in a
B.j

neighborhood of X, — X,.,, whose power series expansions at each
aeX, — X, are the 0. (cf. Corollary 7.7(3)).

Suppose that fe (A-#®°(N)?) and that f is flat on X,,,. It suffices
to find he #F(N ;X;+,)? such that f — A-he F(N;X\)".

Let ae X, — X,.,. Then f,e «,. By the formal division algorithm,
there are unique G;, € 0,,i=1,...,t,such that (B;,j) + supp G.,c A
and

(10.4) fo= Y G0
i=1
Put G, =0 if aeXs -

We claim there exist g;e #(N;X,.,) such that G;, = g;,, for all
ae X, : Write G;, = ZGi‘B(a)y". By the formal division algorithm and
B

Lojasiewicz’s inequality [27, IV.4.1], each G;; is the restriction to X, of
a > function which is flat on X,.,. Let ae X, — X;,,. Since f is
#® and the 0 are analytic, then, regarding both a and y as variables
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in N, we have

ofa(y) _ ofu(p)

9

(10.5) 0a; dy;
96.(y) _ 98.()
0a; 9y,

j=1,...,n («Taylor expansion commutes with differentiation»). If
A=(My,...,A)eR", write Dy, =) A0/a;; Dy, is the directional
derivative with respect to the a variables in the direction A. If D,,
is tangent to X, — X;,, at a, then D, ,G,,(y) is well-defined, and,

by (10.4) and (10.5), Y (Dy.Gi, — D1,Gi.)-6; = 0. For each i,
i=1

(Biji) + supp (D1.Gio— D, ,Gis) = A; (where supp is with respect to y).
Therefore, by the uniqueness of formal division, for each i =1, ...,¢,

(10.6) D, .Gi. = Dy,Gi..

Choose local coordinates (u,v) = (4;, ..., Un V5 ...,0p—p) DEAT
aeX, — Xi+, such that X, — X,., is given by v = 0. Write G;, as

Gy = ¥ (z vaa(a)“_“).ef.

BeNP~Mm NgeNM ol B'
Then (10.6) implies that )’ G{? (a)u®/a! is the formal Taylor series of

GX® at a. By Whitney’s extension theorem [27,1.4.1] and Hestenes’s
lemma [37, IV.4.3], there exists g€ #(N;X,,,) such that G;, = §,,, for
all aeX,, as claimed.

To finish the proof, we must express f in terms of the columns ¢’

of A. By (3) and (10.3), 0i(y) = iE_,,-,‘,,(y)cp{,(y), i=1,...,t, where

j=1
o(y) = ¢(at+y), &;.€0,, and the coefficients &;g(a) of &;.(y) =
Y &;p(a)y® are quotients of analytic functions by products of powers of
B
the q;g,,,,(a). Put &, = (&4 - - -»Eia) - By the formal division algorithm

and Remark 6.7, there exist unique n; ,(y) € 0¢ such that &, — n,, € &,

and  suppn,, N I(®B) = @. Write Mo = (e .- Nigs) and

Ny = Y, Nyp@)?, j=1,...,9. By (4), the n;4(a) extend to X, as
B
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quotients of analytic functions. By the uniqueness of formal division,
Nia(b—a+y) = n;,(»), for b in some neighborhood of a in X, — X;,,
(cf. the proof of Corollary 7.7 (3)). Thus the n;, are the formal power
series expansions at a of analytic functions n; defined in a neighborhood
of Xk - Xk+1 .

If aGXk - X“l > then fa = Z G,»_,,ef, = Z rlij.aGi,a(sz- Put Hj,a =
i ij
Y 1 Giaif aeXy — Xesy,and H, =0if aeXeuy,j=1,...,4q. Then

there exist b, € # (N ;X,.,) such that H;, = hforallae X,,j=1,...,q.
Thus, f — A-he F(N;X,Y, where h = (h;, ..., h). 0

11. Modules over a ring
of composite differentiable functions.

Let K =R or C. Let M and N denote analytic manifolds (over K),
and let @ : M —» N be an analytic mapping. Let A and B be p X g
and p X r matrices of analytic functions on M, respectively. We use
the notation of 8.2. If ae M, let #, = {Ge 0%, : ®,(G)eIm B,}.

Let # < (}; denote the sheaf of (@y-modules generated by the
columns of B. Let U be a coordinate neighborhood of some point in
M, with coordinates x,, ..., x,,, say. By Theorem 7.4, the diagram of
initial exponents N(B,) = N™ x {1,...,p} is Zariski semicontinuous on
U. Thus, after perhaps shrinking U, there is a filtration by closed
analytic subsets, U = X, o X, o ... 2 X,;; = J, such that N(A,) is
constant on each X; — X,,,. Let be N. The following proposition
shows that £, is constant on every connected component of
Xy — X))o '(b), A =0, ...t

ProrosiTioN 11.1. — Let U be a local coordinate chart in M. Let
beN and let S be a locally closed semianalytic subset of U such that
S < ¢ !(b). Suppose that N(AB,) is constant on S. Let fe O(UY and let
Ge 0f. Then

H ={aeS: f,— ®,(G)eImB,)

is open and closed in S.
Proof. — We can assume that U (respectively, N) is an open

neighborhood of the origin in K™ (respectively, K", and that ¢(0) = 0
and b = 0. We identify (the components of) ¢ and f and (the entries



54 E. BIERSTONE AND P. D. MILMAN

of) A and B with their convergent power series expansions at 0. If
x=(x,...,x,) and y = (yy, ..., V), then

fx+y) — Ax + ) -G(ox + y) — 0(x)
D® D*G(0 D* P
=2 %Y“—A(Hy)'}: “(Z (p(x)y“> ,

! !
oae N™ ) BeN" B o

a>0
where a (respectively, B) denotes a multiindex in N™ (respectively, N").

Thus e
fx+)—Ax+y)-Glox+y-—0ox) =Y _q(v')iy

aeN™
where the H, converge in a common neighborhood of 0 (which we can
take to be U). (For all a e N, each component of H,(x) — D% (x) is
a finite linear combination of certain products of derivatives of the
components of ¢ times derivatives of the entries of A.)

Let N = N(B,), aeS, and let (o,j), i =1,...,k, denote the
vertices of M. For each aeS, let gi(y)e OF K[yF, i=1,...,k,
denote the standard basis of %,, where ing, = y"/. Then each
g:(y) = Y g ;(ay™ is convergent, and each g (a) is analytic on S

a.j

(Corollary 6.8).
Let a€S and let h,(y) = Y H,(a)y*/a!. By Theorem 6.2, there exist

It

unique ¢;,(y)e @, and r,(y)e @ such that (o;,j) + supp g, = A;,
suppr, = A (where A;, A are as in §6), and

k .
(11.2) ha(») = Y 4ia(1)ga(y) + ra(y).

i=1
Write r,(y) = ) ry(a)y*’. Then each r,;(a) is analytic on S (cf.
aj

Remark 6.5). By (11.2), haélm B, if and only if each r,;(a) = 0; i,
H is closed.

Since  f(y) — A(»)-G(@(»)) € B, = K[[y]’, there exist unique
q:(y) € Oy such that (a;,j) + supp q; = A; and f(y) — A())-G(e(y) =
k
Y q:(»)g6(y). Consider the identity

i=1

k

(113) f(x+y) = Ax+y)»G(o(x+y)) = Y qi(x+y)go(x+y).

i=1
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Suppose that 0eS. Let # = O, = K{x} denote the ideal of germs of
analytic functions at O which vanish on S. Write 05y = 0y/F and
Oso = 0o/ F-0,. We expand each term of (11.3) as a power series in
y with coefficients in @, = K[[x]], and take the induced power series
in y with coefficients in @5, Since each component of ¢ vanishes on
S, the left-hand side of (11.3) gives the same result as reducing the
coefficients of Y H,(x)y*/a! modulo .#; write h.(y) for the resulting
element of Os,[[y])’. Likewise, write g;,(y) and gi(y) for the elements
of Oso[[y]] and Os,[[y]]? induced by g,(x+y) and gi(x+y), respectively.
Thus,

(11.4) h(y) = Z 4i.(»)g(y) .

Since (a;,j)) + supp ¢; = A;, then (a,j)) + supp q;x < A;.
Clearly, in g'(y) = y™".

On the other hand, by the formal division algorithm, there
are unique Q(y) € Osol[yll and R,(y) € 0so[[y])* such that
(04,ji) + supp Qix = A;, suppR, = A, and

k
(11.5) h(y) = ¥ Qu(»)gi(y) + R.(y).

i=1

Since the coefficients of h,(y) belong to 0Os,, so do those of Q,.(y)
and R,(y) (cf. Remark 6.5); moreover, all coefficients can be evaluated
in a common neighborhood of 0 in S.

Comparing (11.4) and (11.5), we get R, (y) = 0. But from (11.2)
and (11.5), R,(y) = r,(y) for aeS sufficiently close to 0. Therefore, all
r.;j(a) vanish on S near*0; i.e., # is open. O

CoroLLARY 11.6. — If ¢ is proper, then (locally in N), there is a
bound s on the number of distinct submodules &, of @Z, where ae ¢! (b).

Proof. — Let U, X, ..., X,;; be as above. Suppose that U is
relatively compact and each X, is semianalytic in M. Then, for each
A=0,...,t, there is a bound on the number of connected components
of (X,—X,.) no~i(b) [11], [12], [20, Thm. 2.5]. The result follows
from Proposition 11.1. O

Remark 11.7. — Suppose ¢ is proper. Then (locally in N), there is
a bound s’ on the number of connected components of a fiber ¢ ~'(b).
If B =0, then Corollary 11.6 is satisfied with s = s".
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In the remainder of this section, we assume that K = R. Let o*:
€ (N) > €°(M) denote the ring homomorphism induced by ¢, and
let®: €°(N)? > €~ (M)’ denote the module homomorphism over ¢*
defined by ®(g) = A-(gop), where ge¥*(N)!. Let B-:
€M) > €°(M)y denote the &>®(M)-homomorphism induced
by multiplication by the matrix B.

Let (@€*(N)!+B-@°(M)) = {fe €°(M)?: for all be (M), there
exists G, € 0? such that fo— ®,(G,) eIm B,, for all ae ¢ !(b)}.

THEOREM 11.8. — Suppose that ¢ is proper. Then each of the
equivalent conditions of Theorem 8.2.5 implies that

DE=(N) + B-¢° (M) = (0¢=(N)? + B-4¢*(M))".

Remark 119. — Let Z be a closed subanalytic subset of N. Our
proof of Theorem 11.8 will show that each of the equivalent conditions
of Theorem 8.2.5 implies the following stronger result: If
fe(@€*(N)! + B-¥°(M))” and f,eIm B, for all aec¢~'(Z), then
there exists ge #F(N;Z)? and he €° (M) such that f = ®(g) + B-h.

Remark 11.10. — In the case that A =1 and B = 0, it is enough
to assume that ¢ is semiproper [5, Rmk. 3.5]. The following example
shows that « semiproper » is not sufficient in general: Let M = M, U M,
be the disjoint union of M; = R? and M, = R?. Let N = R2 Define
¢: M- Nbyo(x,y) = (x,p) if (x,) eM,, 9(x,y) = (x,xy) if (x,y) € M,.
Let p=q=1 and let A(x,y) =0 on M;, A(x,y) =1 on M,. Take
B = 0. Define fe¥®(M) by f(x,y) =0 on M, and f(x,y) = ye ¥
on M,. Let (u,v) denote the coordinates of N. Then f is flat on
¢ 'u=0}), and outside ¢ '({u=0}), f=d(g), where
glu,v) = (v/u)e“/”z. Hence fe(®#°(N))". Clearly, f¢ ®€>(N). This
example satisfies the conditions of Theorem 8.2.5 because ¢|M, is
generically a submersion (cf. § 13).

Remark 11.11. — The assertion that ®Z*(N)? + B-¢* (M) =
- (@€ (N)+B-#®°(M))" is local in N. Hence we can assume that N is
an open subset of R” and, by Corollary 11.6, that there is a bound s
on the number of distinct submodules #, = @7, where ae ¢~ '(b),
be N. We will prove Theorem 11.8 using the conditions of Theorem 8.2.5
with this s.

We will also use the following :
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Remark 11.12. — Let X be a germ at the origin of a closed analytic
subset of R™. Let X¢ denote the complexification of X, and let Sing X©
denote (the germ of) the singular points of X¢. The real part £ of
Sing X€ is (a germ of) a proper analytic subset of X. There exist
fix)eR{x} = R{x;,...,x,}, 1 <i< k, such that the complexifications
fi(z) of the f;(x) generate the ideal in C{z} = C{z,...,z,} of convergent
power series which vanish on X¢. Then, for all aeX — X, #, is
generated by the f, (where we have used the same symbol for a germ
at the origin and a representative of the germ in a suitable neighborhood,
and where #£x denotes the sheaf of germs of real analytic functions
vanishing on X) .

Proof of Theorem 11.8. — We make the assumptions of Remark 11.11.
If bep(M), then there exist d,...,a°%cp~'(b) such that (\,co-1 4 &,

=(\%,. f aeM;, a=(d,...,a), we put #, = (|#,. Since the
i=1 i=1

diagram of initial exponents N, = N(A,) is Zariski semicontinuous on
M;, (8.2.5(4)), there is a locally finite filtration of M, by closed analytic
subsets, M;, = Z,>Z, > ...Z,>Z,,, > ..., such that, for all ve N,
N, is constant on Z, — Z,,, and, for all aeZ, — @ '(9(Z,+)),
92- = maéw’l(v(a))g?a'

It follows that there is a locally finite partition {X,},.n of M;, such
that, for each p:

(1) X, is a relatively compact connected smooth semianalytic subset
of Mj,, and X, lies in a product coordinate chart U, in M°.

2) X, — X, € Ui, Xy.

(3) N, is constant, say N, = N, on X,.

(4) Let Y, = @(ur<,Xy). Then, for all aeX, — ¢ '(Y,), % =
maew“ tow)Pa-

(5) (By Remark 11.12.) There exist finitely many elements 0, of
0(U,) such that, if W,={xeU,: 6,(x)=0 for all i}, then dimX,
= dim W, and, for all aeX,, fxw, = fww. = the ideal generated
by the 6, at a (where Fxpn denotes the germs of real analytic functions

vanishing on X, at a). In particular, X, is an .open subset of the
smooth part of W,.

Let fe (@€ (N)?+B-¢>(M))". It is enough to prove that, for each
u, there exist ge €*(N)? and he €°(M)" such that f — ®(g) — B-h is
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flat on ¢ '(Y,.,). By induction, we can assume that f is flat on
o '(Y,).

Let X =X, — 0 '(Y,). If X = &, we can take g = 0 and h = 0.
Suppose X # . Then ¢ X :X - N — Y, is proper. Let ae X, a =
(@,...,a"), and let b = @(a). By (3) and the formal division algorithm
(Theorem 6.2), there is a unique G, e (0 such that

(11.13) supp G, n RN, = J,
and £, — ® (G,)eImB_,i = 1,...,s. Then, by (4), for all ae o '(b),

]a - a)111((311)6 Im Ba'
Write Gy = (G, .- -,Gys), Gjp = Y, GP )P €0, = R[[y]], where

BeN”
y= (...,ys). Then (11.13) is equivalent to: DPG;, =0 for all
B.)eR,.

Lemma 11.14. — For each (B,j)eN" x {1,...,q}, there exists
gle €*(X) such that :

(i) gP extends continuously to zero on X — X.
(i) For all aeX, g, =109, (DG, yu), where i;:0y:,— Ux, is
induced by the inclusion :: X = Mj.

It follows from (ii) and an estimate of Glaeser [16, § 4, 5] (or [37,
pp. 180-181]) that, for each j=1,...,q, there exists gie ¥*(N—-Y,)
such that g/, =G;, for all beo(X) =Y,., —Y,. By (i), for all
B,y eN" x {1,...,q}, D“g,’-lq)(X) extends continuously to zero on Y, .
Since Y,., is subanalytic, it follows that there exist g;e €*(N) such
that g; is flat on Y, and g;, = G;,, for all be @(X) . Putg = (g, ...,8,).
Then (f—®(g)), eIm B,, for all ae @ '(Y,.,). By Theorem 10.1 (and
Remark 10.2), there exists he € (M)" such that f,.— ®(g) — B-h is flat
on ¢ '(Y,+,), as required. O

Proof of Lemma 11.14. — 1If (B,j)eR,, then DG, = 0, for all
be @(X). Hence it is enough to prove the assertion for (B,j) ¢ N,. Let
aeX, a=(a'...,da). We have f,,i - Aa,-- (Goao®,) € Im ﬁa,-,
i=1,...s;ie, (f)icc — Pul(Gyn) €Im B,.

For each /eN, let ‘F, (respectively, ‘G,) denote the image of
(fa Di<ics (respectively, of G,,) by the lower (respectively, upper)
horizontal arrow in the completion of the left-hand diagram (8.2.6);
thus,

(11.15) ‘F,— A,,."G,eIm B,,.
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Recall that ‘G, is the element of @BS,(AQ‘,’(‘, induced by
(DPGyuoda)p<,- Write ‘G, = (GDp < = (Gf)p<ri<jcq» Where each
Gl e Oy, and Gf = (Gl)i<j<q- Then GP, = 0 for all (B,j)eR,.

We use the notation of 8.2, 8.3. Let keN. According to
Theorem 8.2.5. (1), there exists ¢ = /(k) e N such that ¢(k,a) < ¢ for
all aeX. Let p,(X)=max,.xp,(a) and let o, (X)=max,x0)(a).
Put Y, ={aeX: p(@)<p,(X)} and Z,,={aeX: o}i(a)<o,(X)}.
Then Y,, and Z,, are proper analytic subsets of X. Let ae X . Define
T¥.(a) and T,,, as in 8.3. From (11.15):

adol’k(X)Sz.k,a o Adp['k(X)ﬁt.k,-‘{Fa = T/.k.;' ‘G

as

A ps k(XA ~
Where Sl,k,a = Ad ¢k D(.k,l (o] B(‘, .

Let e(k) denote the number of exponents (B,j) e N" x {1,...,q} such
that (B,j) ¢ N, and |B| < k. Suppose ae X — (Y, ,UZ,,). By the formal
division algorithm (Theorem 6.2) and Remarks 8.2.4 and 8.3.1,
rank TZX,(a) = e(k); moreover, if V,(k) denotes the subspace

G = (Gjﬁ)\ﬁvsk,lsj<qe @m»a(@x,./mx,-‘@x.n)q: G/p =0if (B.je inu},

then rank T, (a)|V,(k) = e(k).

By the induction hypothesis and Cramer’s rule, there is a minor
8 = & of order e(k) of TX, such that & is not identically zero on X
and such that, for all aeX and (B,j))¢R,, Bl <k,

(11.16) .-Gl = €D,

where £f e €*(X) is the restriction to X = X, — @ '(Y,) of a ¢~
function on U, which is flat on ¢ ~'(Y,). The minor & is the restriction
to X of an analytic function defined on U, (which we also denote §).

Suppose (B,)) ¢ N,, Bl < k. By Whitney’s extension theorem
[27, 1.4.1], there exists nf € €~(U,) such that n} is flat on W, — X and
nfIX = &F. Then, by (11.16) and (5) above, for all aeU,, (nf),
belongs to the ideal in (AOUW, generated by §, and the 9“,»'.. By

Theorem 10.1, there exists h} € #*(U,) such that n} — &-h? belongs to
the ideal generated by the 6, in €*(U,). Then h}‘ vanishes on X — X

and, if gf = hP|X, then g%, = GP, for all ae X, as required.
. O
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CHAPTER 111
SEMICONTINUITY RESULTS

12. Algebraic morphisms.

Let K =R or C. Let K[x] (respectively, K[[x]]) denote the ring of
polynomials (respectively, formal power series) in x = (x|, ...,X,).

DeriNiTION 12.1. — Let U be an open subset of K". An analytic
Junction fe O(U) is Nash if it is algebraic over the ring K[x] of
polynomials in the coordinates x = (x;,...,x,) of K™; i.e., there is a
nonzero polynomial P(x,y) € K[x,y] such that P(x,f(x)) = 0 for all xeU.
Let N(U) denote the ring of Nash functions on U.

We can define a category of Nash manifolds and Nash mappings
using, as local models, open subsets U of K", me N, together with
the rings N(U).

THEOREM 12.2. — Let M and N denote Nash manifolds, and let
¢®:M > N be a Nash mapping. Let A and B be p X q and p X r
matrices, respectively, whose entries are Nash functions on M. We use
the notation of 8.2, 8.4. Let se N. Assume that N is an open subset of
K". Then the diagram of initial exponents RN, = N(R,) is Zariski
semicontinuous on M.

Remarks 12.3. — (1) Our proof of Theorem 12.2 together with
Proposition 9.6 in fact establishes 12.2 under the following more general
hypothesis: Let M and N denote analytic manifolds. Let ¢: M > N
be an analytic mapping, and A, B matrices of analytic functions on
M, satisfying the following condition: For every ae M, there are
(analytic) coordinate neighborhoods U of a in M and V of ¢(a) in N,
such that @(U) = V and both the components of ¢@|U and the entries
of A|U and B|U belong to N(U).

(2) In the special case that M and N are algebraic manifolds, ¢ is
a regular (rational) mapping, and A, B are matrices of regular functions
on M, our proofs actually show that 9N, is Zariski semicontinuous in
the algebraic sense ; i.e., for each ae My, {x e My, : N, >N,} is a closed
algebraic subset of M;,.
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To prove Theorem 12.2, we will use a version of « Artin approximation
with respect to nested subrings » (cf. [2], [3], [33]):

DeriNITION 12.4. — A formal power series f(x) € K[[x]] is algebraic
if it is algebraic over K[x]. The algebraic elements of K[[x]] form a
subring which we denote K{x).

Clearly, K{x) < K{x}, the ring of convergent power series. Let
(x) = (x4, ...,X,) denote the ideal in K[[x]] generated by x,, ... x,,.

Remark 12.5 [3]. — Let fi(x)eK][[x]]. Then f,(x) is algebraic if
and only if there exist reN, f(x)eK[x]], i=2,...,r,
and Fi(x,y)eK[x,y], j=1,...,r where y = (y,...,y,), such that:

(1) F(x,f(x)) = 0, where f = (f;,....f) and F = (F,, ...,F);
oF
) det (a_y>(°’ 1(0) #0.

THEOREM 12.6. — Let
(12.7) : S, y,u,0) =0

be a system of equations in X = (X,...,%n)s V= D1s-+->Vn)>
u=(u,...,u,) and v = (vy,...,v;), where f=(fi,....f) and each
fieK<x,y,u,v). Assume that f is linear with respect to v, i.e.,

q

fxy,u0) =Y vgix,y,u),

i=0

where vy = 1 and each g, eK<{x,y,ud". Suppose that (12.7) admits a
solution u = 4(x) e K[[x])F, v = d(x,y) e K[[x,y]]?, where ii(0) = 0. Then,
for all t e N, (12.7) has a solution u = u(x) e K<{x)?, v = v(x,y) e K{x,y)*
such that u(x) — 4(x) € (x)“K[[x]]’ and v(x,y) — d(x,y) € (x,y)K[[x,y]]?.

Remark 128. — The analogue of Theorem 12.6 for convergent
power series is false : Let f(x) = f(x;,x,) and @i(x), i = 1,2,3, be as
.

in Example 2.8. Then the equation f(x) — g(y) = Y, hi(x,y)(yi~ 9:(x))
i=1

admits a formal solution g(y), hi(x,y), i = 1,2, 3, but no such convergent

solution.
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LEmMMA 12.9. — Theorem 12.6 holds under the stronger assumption
that each fi(x,y,u,v) e K[x,y,u,v]. (In this case, it is unnecessary to
assume 4(0) = 0.)

Proof. — For convenience, we make the following change of
notation: v will mean (v,v;,...,v,), where v, =1. We also put
b(x,y) = (Do(x,y), ..., 0,(x,y)), where do(x,y) = 1. Let A denote the
localization of the ring K[[x]][y] at the ideal generated by x and y.
Let A denote the completion of A ; of course, A = K[[x,)]].

Each gi(x,y,i(x)) e A. Since v = d(x,y) is a solution of the system
q

Z vigi(x,y,i(x)) = 0, then, by Krull’s theorem, there is a solution
i=0

v = v(x,y), where v, = 1 and each 3;(x,y) € A. Clearly, v can be chosen
to approximate ¢ to any given order.

We can write 0(x,y) = w(x,y)/Wo(x,y), where w = (W,, ..., W,), each
w; € K[[x]][y] and w,(0,0) # 0. Then Z wi(x,y)gi(x,y,i(x)) = 0. Write

each w; and g as a polynomial in Vis o vvs Ynt
wi(x,y) =Y W (x)y* e K[IXID], &i(x,y,u) =Y gu(x,u)y" € K[x,ulh7,

a
where o denotes a multiindex in N". Then u = #(x), w,, = Wy(x) is a
formal solution of the system of polynomial equations

q
Y Y wugplxu) =0, yeN".
i=0 a+P=7v

By Artin’s theorem [2, Thm. 1.10], there is an algebraic solution
u = u(x), wy, = wy,(x) which approximates the given formal solution to
any specified order.

Put wi(x,y) =3 we(x)y* and v(x,y) = w(x,y)/wo(x,y), where

w= (Wo,...,w,). Then u = u(x), v = v(x,y) is an algebraic solution
of (12.7). Clearly, the solution can be chosen to approximate #(x),

?(x,y) to any specified order. O
Proof of Theorem 12.6. — We make the same notational changes
as in Lemma 12.9: v will mean v = (vy,v,, ...,v,), where v, = 1, etc.

Write g, = (gi4,...,8»), i =0, ...,9, where each g;eK<{x,y,u). By
Remark 12.5, there exist se N, s > g, as well as g;(x,y,u) e K<{x,y,u),
i=q+1,...,s, j=1,...,r, and G (x,y,u,z) e K[x,y,u,z],
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k=0,...,s,¢=1,...,r, where z=(z)), i=0,...,s,j=1,...,r,
such that :

(1) G(x,y,u,g(x,y,u)) = 0, where g = (g;), G = (Gy) ;
oG
(2) det (5‘)(0,g(0)) #0.
VA

By the implicit function theorem,

z — g(x,y,u) + g(0) = c(x,y,u,2)-G(x,y,u,g(0) + z),

where c¢(x,y,u,z) = (cj.(x,y,u,2)) is a matrix whose rows are indexed
by (i,j) and whose columns are indexed by (k,/). Each entry
Cine(%,y,u,2) e K(x,y,u,z). Then, for each j=1,...,r,

q

Z vigij(x!y’u)

i=0

q q
= Z vi'(gij(o) + Zij) - 2 Z Uicijk/(X,y,u,Z)sz(X,y,“,g(O) + 2).
i=0 i=0 kst
Consider the system of polynomial equations

q

(12.10) Z v;-(g4;(0) + z) = Z ij(ka(X,y’”ag(O) + 2),
k¢

i=0

j= i, ...,r, where u, v and w = (wy,) are the unknowns. Then (12.10)

admits a formal solution u=ix), v = 0(x,y) and
q

Wie = Wie(X,9,2) = Z i, Y)cine (x, y,1i(x) ,z) . Let t e N. By Lemma 12.9,

i=0

there exist u= u(gc) e K{x)?, v =v'(x,y, 2) e K{x,y,z)7"!
and Wiy = Wi (x,,2) e K<(x,y,2) such that vo(x,y,2) = 1,
u(x) — d(x) e (x)-K[[x]F, v'(x,y,2) = 6(x,y) € (x,y,2)"-K[[x,y,2]}*""!, and

(12.11) i u;(x,y,z)'(gij(O) + zy)

i=0

= ZWij((xayaz)Gk/(x,'y’u(x)’g(O) + Z),
k.t

j=1,...,r. Substitute z; = g;(x,y,u(x)) — g;(0) into (12.11), to get
q

Z Ui(x’y)gi(x’y9u(x)) = Oa

i=0

where vi(x,y) = vi(x,y,g(x,y,u(x)) — g(0)), i =0, ..., q. U
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Remark 12.12. — Let fi(x)e C<{x) = C{x;,...,xn». Let fi(x),
i=2,..,r, and Fi(x,y), j=1,...,r, y=Ui,...,¥y), be as in
Remark 12.5. Put Z = {(x,y) e C™*": F(x,y) = 0}. We can assume that
the projection m(x,y) = x of Z onto C" is finite. The smooth points of
Z which are not critical points of m project onto the complement of a
proper algebraic subset V of C". Clearly, f; extends to C" — V as a
multivalued holomorphic function, whose various determinations are
algebraic at every point of C" — V. By differentiating the system of
equations F(x,f(x)) = 0 with respect to x;, we can see that the partial
derivative df;/0x; also extends to C" — V as a multivalued holomorphic
function whose various determinations are algebraic at every point.

Proof of Theorem 12.2. — By Lemma 9.5, we can assume that M
is connected. Let a,e M{ = M°. There is a product coordinate

neighborhood U = [[ U’ of a, in M’ such that the components of ¢
i=1

and the entries of A and B all restrict to Nash functions on each U'.

Let x = (x4, ...,X,) (respectively, y = (yi, ..., y,)) denote the coordinates

of each U’ (respectively, of N). The notation of this paragraph will be

fixed throughout the remainder of the section.

Lemma 12.13. — Let aeM;n U, a= @@,...,a6). Let ®,:
Oyay > ®0% and B,: @0, - ®O", as well as &, and B,, be as in
i=1 i=1 i=1

82. Let Gelol and He ®0,. Pur f= ®,G) + B,H)e &0,
i=1 . i=1

=", ....f%. Suppose each f"es(OZ,- = K][[x]) is algebraic. Let teN.
Then there exist g€ 0%, and he (-B(AO’ai such that g and h are algebraic,
i=1

f=®,(g) +B,(h), and g — Gemiyy D%, h— He ém;.(‘o;i.

Proof. — Write H = (H',...,H). Then
(12.14)  fi(x) = A (x)-G(9,(x) — 9(a)) + B(x)-H (x),

i=1,...,s. In other words, for each i =1, ...,s, there is a p X n
matrix Q(x,y) with entries in K[[x,y]] such that

(1215) fi(x) = A(x)-G(») — B(x)-H'(x)

= Q%)) — 0,4x) + 9(@)).
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In this system of equations, G(y) and the H'(x), Q(x,y) are the
«unknowns ». Since A, B and ¢ are algebraic, then, by Theorem 12.6,
there is an algebraic solution g(y), hi(x,y), ¢'(x,y) of (12.15); i.e.,

(12.16) fi(x) — A i(x)-g(y) — B i(x)- hi(x,y)
=gy (y — ¢0,x) + @),

i=1,...,s, such that g(y)—-GHe) K[yl and each
hi(x,y) — H'(x) € (x,y)" - K][[x,y]]". Substitute y = (?)a,-(x)— ¢(a’) back into
(12.16), for each i, to see that g(y), K(x) = hi(x,¢(x) — ¢(a)) is a
solution of (12.14); clearly h'(x) — H'(x) € (x)'-K][[x,y]I.

U

CoroLLARY 12.17. — A, ={Ge @g(,): ®,(G)eIm B,} is generated
by algebraic elements.

Proof. — Let (B,j) be a vertex of M, = N(#,). By Lemma 12.13,
there exists g€ %, such that g is algebraic and ing = y™.

O

We now complete the proof of Theorem 12.2. We can assume that
K = C. Let X denote an irreducible germ at a, of a closed analytic
subset of M;,. We can assume that X is a closed analytic subset of U
and that its smooth points are connected. Let My denote the generic
diagram of initial exponents (Definition 8.4.3). By Proposition 8.4.6(1),
it suffices to find a proper closed analytic subset W of X such that
N, = Ny for all aeX — W.

Let (Bs,k;), £ =1, ...,t, denote the vertices of Nyx. Let k = k(X)
as in Definition 8.4.1, so that each |B,] < k. Let D, be as in (8.3.2)
and let Z =« X be as in Remark 8.4.4. By Lemma 8.4.5, i, = Ny for
all aeD,n(X — Z).

Let a,eD,n(X —Z), a, =(ai,...,a}). Put b, = @(a;). Let
Gi(y) = yﬁ"k’ - r(y), £=1,...,t, denote the standard basis of %, ,
so that supp” NNy = &, for each/. By Corollaries 6.8 and 12.17,
each G’(y) is convergent. Thus, for b in some neighborhood of b,,we
can substitute b — b, + y into G’, and expand in powers of y:

G'b—b+y)=(b—b +y* =rbd-b +y)

By, k
=y = R,
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where supp 7;(y) " Nx = . For a in a sufficiently small neighborhood
of a in Mj, put Gi(y) =G'(e(a) — b, +y). Then Gi(y) =

Bpky

v = ri(y), where ri = F,,. Clearly, G{e#,. If aeX — Z, then
RN, = Ny by Proposition 8.4.6.(2), and it follows that in G. = y**/. In
particular, R, = Ny in a neighborhood of a, in X.

By Lemma 12.13, for each ¢ =1, ...,t, there exist g'e @1(,1,,
h,e ® @;i, h,= (), ..., h}), such that g’ and each h) are algebraic,
i=1

ing =", and ®, (¢) = B,,(h,). In particular, g’e R, For each
£=1,...,t, put

B
G'@w:y) = ¥ (D”g’)(v)ﬁ—! e b, [y,

Be NN

Hiu;x) = ¥ (D“h‘,)(u-):—: e 04X, i=1,...s,

aeN™M

where v = (u,,...,u,) and v= (v,...,v,). By the formal division
algorithm (cf. Remark 6.5),

(12.18) yeke = % Qv;y)G (v;y) + RY(v;)),

j=1
£ =1,...,t, where, for each 7,
Q ;) e 0,[¥]l,  R/(v;») €0, [V, suppR/(v;0) " Ry = &,

and the coefficients of Q, and R’ (as elements of (AO,,I) are algebraic.
(They are linear combinations of the coefficients of the G’(v;y) divided
by products of powers of the DPg; (v), where g = (gf,...,8%).)

For each # =1, ..., t, write

Ri(w;y) = Y Rjy.
(B.j) ¢ Nx

It follows from Remark 12.12 that there exist :

(1) A proper algebraic subset V of N such that b, ¢ V, and, for
each i =1,...,s, a proper algebraic subset W' of U’ such that
a¢WwW,
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(2) For each £ =1, ...,t and (B,j) ¢ Nx, an (a priori, multivalued)
analytic function pf; defined on N — V, such that R§;(v) is the formal
Taylor expansion (Rj ), (v) of some branch Rj; of pf; at b,. Likewise,

for each ¢/ = 1, ..., t, multivalued analytic functions defined on N — V
(respectively, multivalued analytic functions defined on U' — W',
i=1,...,s) which extend the coefficients of Q, (respectively, the
coefficients of H,, i = 1, ...,s).

Foreach# = 1,...,t, write ri(y) = Y. rf,(a)y*’. We claim that,
B¢ R

for a in a sufficiently small neighborhood of aI in X -7,
(12.19) rs;(@) = R§;(e(a)),

for all 7, B, j. Indeed, if a belongs to a suitable neighborhood of a,,
then R ;(9(a)) = Rf;(@(a)—b,) and

G'(9(a)—by;y) = g’(e(@)—bi+y) e A,.
Thus y***—R’(@(a)—b,;y) € #,. Moreover,

supp R’ (p(a)—b;;y) N Nx= .

For a close enough to a, in X — Z, R, = RNy, so that

Gi(y) = y* — R(9p(a)—b;;y),

by uniqueness of the standard basis ; hence (12.19).

Let W=Xn (e (V) U |J @) "(W)), where ' : M, > M denotes
i=1

the projection p'(x) = x', x = (x',...,x%). Then W is a closed analytic
subset of X, and a, ¢ W. By (12.19) and (2) above, the coefficients
rh(a) of each Gi(y) = y** — ri(y), as well as the coefficients of the
Q, composed with ¢, and the coefficients of the H), can be analytically
continued (as multivalued functions) throughout X — W. By continuity
and (12.18), if a eW, then any analytic continuation of (the coefficients
of) Gi(y) to a results in an element of #,. If aeX — (ZU W), then
N, < Ny; it follows from uniqueness of the standard basis that any
analytic continuation of G.(y) to a gives the same result, and that
N, = Ny. O
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13. Regular mappings.
Let K=R or C.

THEOREM 13.1. — Let M and N be analytic manifolds (over K) and
let @: M - N be an analytic mapping. Suppose that ¢ is regular (as
in 2.7). Let seN. For each aeM;,, let H, denote the Hilbert-Samuel

function of the ring Jpu/R,, where &, = () Ker %, a = (a',...,a).
i=1

Then H, is Zariski semicontinuous on M.

Remark 13.2 (Tougeron). — If s = 1, the uniform Chevalley estimate
(8.2.5(1)) can be proved using results of [39].

Remark 13.3. — Let V be an analytic manifold, and let Z be a
closed analytic subset of V. We denote by £, the subsheaf of ideals
of Oy of germs of analytic functions which vanish on Z. Suppose that
dimV = n and that Z has pure dimension n — 1. Let be V. Then
Sz 1s a principal ideal. Let p be as in Remark 6.10 (2); we call
pz(b) = p the multiplicity of Z at b. Thus p,(b) is the largest pe N
such that #,, = mj, where m, is the maximal ideal of Oy,.

Proof of Theorem 13.1. — By Lemma 9.5, we can assume that the
generic rank r;(a) of ¢ near a is constant on M ; say r,(a) = n — k,
aeM. Let aye M}, a, = (aj,...,a3). Put by = @(a;). We can assume
that N is an open subset of K" and b, = 0. Since ¢ is regular, then,
after replacing M and N by suitable neighborhoods of {a},...,a}} and
by (respectively) if necessary, there is a closed analytic §ubset Z of N
of dimension n = k, such that (M) =« Z and #,, = ﬂ Ker (p,f(z‘).

i=1

The result is trivial if k = 0. Suppose that k = 1. We can assume
that K = C and that Z has pure dimension n — 1. Since Z is coherent,
the multiplicity of Z is Zariski semicontinuous, by Theorem 7.4 and
Remark 6.10. Let n: Z' - Z denote the normalization of Z. Since n
is finite, it follows that (after shrinking N if necessary) there is a
filtration of Z by closed analytic subsets,

Z=ZODZID"'DZl+l=Q’
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such that, for each i =0, ..., ¢:
(1) Z; — Z;,, is smooth and connected.

(2) Let Z; = n"YZ). Then n|(Zi—=Z,): Z — Z|., > Z;, — Z,, is
a smooth covering projection.

- (3) The multiplicity of Z is constant on Z, — Z,,,.

It follows from (2) that, for each i, there are finitely many analytic
sets Z; defined in a neighborhood of Z; — Z,.,, such that, for all
beZ — Z.,, the germs Z;, of the Z; at b are the distinct irreducible
components of Z,. Then, by (3), for each i and j, the multiplicity of
Z;, is constant on Z, — Z,, .

Let X;=¢ '(Z), i=0,...,t. Suppose that a=(d),...,a)eX;—X,,.
Then, for each ¢/ =1,...,s, there is a j such that Ker (p:‘,
=Fz,0m- 1t follows that Ker @} =57 45 for x=(x',...,x%
in some neighborhood of a in X; — X;,,. Therefore, by Remark 6.10,
the Hilbert-Samuel function H, is constant on each connected component

of X; — Xi;,. By Proposition 8.3.7, H, is Zariski semicontinuous on
M. This completes the proof in the case k = 1.

In general, by the representation theorem for germs of analytic sets
[32, Ch. III], we can assume :

(1) There is a neighborhood V' of O in K" * such that
N=V x K c K% x K.

(2) Let y = (yy,...,yn) denote the coordinates in K". Then, for each
i=1,...,k, there is a monic polynomial P,e ®(V')[Y,_;+,] such that
P, vanishes on Z.

(3) Let d; = degree P,, i=1,...,k. Put P= P, and d = d,. Let
A(yy,- . .,yn—r) denote the discriminant of P. Then A is not identically
zero and, for all j=1,...,d and all o= (a,...,0) €N with
0<o<d,i=1,...,k, there exists v,; € O(V') such that

d

— d—j
Qot - A'yf:k—k+l cee Yl — Z vaj'Yn—Jk+l

j=1
vanishes on Z.

Suppose a = (a',...,a)e M} and b= @(a), b= (by,...,b,). Set
b’ = (by,...,b,—). Suppose Ge @, = K[[y]]. Then, by the formal
Weierstrass  division theorem, there exist G,e@,, 0 < o, < d,,
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i=1,...,k, such that

G- Y Goyitiwr -y € (P)-0,,

0<o;<d;

where (P;) denotes the ideal of (), generated by the P,. By (3), there
exist Hje@b,, j=1,...,d, such that

Av-G = Y Hiyitho € (PLQ)- 0.

M

[

J

Let n: No>V=V xK denote the projection
TVis-->Vn) = Wise v osYn-k+1). Put Yy = noe. Then Y is regular and

has generic rank n—k. If Ge () Ker ¢, then

d
H=Y H-yiZ.i. € () Ker ¥*. It follows from the case k = 1 and

j=1 /=1

Theorems 8.2.5 and 9.1, that there is a neighborhood U’ of a, in
M, and a filtration of U’ by closed analytic sets,
U=YyoY o...oY,,, =, such that, for each A =0, ..., t,
there exist finitely many hy, € # (Y5;Y2 1) [V1s- - -»Ya—k+1]] such that the

My (a5, . ..Va-i+1) gemerate () Ker U%, a=(a',....a)€Y, — Yis.

‘=1.
Then by Proposition 9.4, there is a neighborhood U of a, in M;
and a  filtration of U by closed analytic sets,
U=X,2X,> ... 2X,;; =, such that, for each A =0,...,r,
there exist finitely many elements g, € 4 (Xy;Xy+1)[[y]] such that the

gw(a;y) generate () Ker ¢, for all a= @,....aHeX, — Xpi1.

/=1
Therefore, by Lemma 7.2 (2) and Proposition 8.3.7, the Hilbert-Samuel
function H, is Zariski semi-continuous on Mj,. O -

14. The finite case.

Let K=R or C. Let M and N denote analytic manifolds (over
K) and let ¢ : M —> N be an analytic mapping. If ae M, then 0, is
an O,,-module via the homomorphism ¢F : Oy, — 0,.
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DEeFINITION 14.1. — We say that ¢ is locally finite if, for every
aeM, O, is a finitely generated O,,-module. (This definition extends
to morphisms of (possibly singular) analytic spaces.)

THEOREM 14.2. — Let M and N be analytic manifolds, and let
@ : M — N be a locally finite analytic mapping. Let A and B be p X q
and p X r matrices of analytic functions on M, respectively. We use the
notation of 8.2. Let se N. Then there is a uniform Chevalley estimate
(8.2.5(1)) on M;,.

Theorem 14.2 extends to the case that M is a (possibly singular)
analytic space which is Cohen-Macauley : see Remark 14.13 after the
proof.

Proof of Theorem 14.2. — We can assume that K = C and that N
is an open neighborhood of 0 in C". By Lemma 9.5, we can assume
that M has pure dimension m. Let a, = (ay, ...,a}) € M. Shrinking
N and replacing M by an appropriate neighborhood of {ay, ...,a}},
we can assume that ¢ is propér and that Z = @(M) is a closed analytic
subset of N, each irreducible component of which contains ¢(ay).

Suppose that ¢(a;) = 0 in N < C". Since dim Z = m, we can assume
that N =N x N”" < C" x C"™" and that the projection m:N — N’
induces a finite (i.e., proper and locally finite) mapping of Z onto N'.
Let 6 =noe, 6=(,...,08,). Let ae M and let my, 0, denote the
ideal in (), generated by my (via the homomorphism 6}). Since 6 is
finite, dimc0,/ Mg+ 0, < ©. '

LEMMA 14.3. — Let ¢ = dimcO,/ Mg+ O,. Then m;™' < my,-0,.

Proof. — If j =1 and Mgy -0, + M), = My, -0, + m;', then, by
Nakayama’s lemma, mgg 0, = Mg+ O0, + n;, so that m}, < Mgy 0,.
Suppose m;*! & Mg+ O,. Then, for all j </ + 1,

dimC(Oa/(mﬂ(a) * (Oa + m{lJr l) > dimc(oa/(me(a) ° (90 + m{l) .

Therefore, dimc0,/mgg, -0, > dimc0,/(Myq - O, +mi*?) > ¢ a contra-
diction. O

Remark 14.4. — We define the multiplicity mult, 0 of 0 at a by

mult, 0 = dimxg(,,) 0, ® Ky,
O9(a)
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where Ky, denotes the field of fractions of g, . Then
mult, 6 = dimc0,/my,)-O, (by [31, Ch. 6, Thm. A.10] and [40, App. 6,
Thm. 3]). Let d denote the number of points in a generic fiber of 0.
Then, for all beN', Y mult,0=d (Weil's formula [31, Ch.6,

aed™ !
(A8). v
COROLLARY 14.5. — For all ae M, mi*! < myy- 0,.

Let X be an irreducible germ at a, of a closed analytic subset of
M;. In order to prove Theorem 14.2, it suffices to find (a germ at a,
of) a proper closed analytic subset Y of X, and a function ¢/ = £(k)
from N to itself, such that, for ae X — Y in some neighborhood of
ay, £/(k,a) < /(k) for all ke N. (We use the same symbol for a germ
at a, and a suitable representative of the germ in some neighborhood.)

>

Put 0 =noe: M; > N'. (Clearly, Mj c Mjc M*; 0 is the

restriction to M;, of the mapping M - N’ induced by 6.) Then 0 is
finite.

LEMMA 14.6. — There exists (a germ at a, of) a proper analytic
subset Y' of X and, for all i = 1, ..., s, a positive integer d;, such that :

DY =Xn07'0(Y));
(2) mult ;0 = d; for all a= (d',...,a)eX - Y".

Proof. — Let aeM. By Remark 144 and Corollary 14.5,
mult, 6 = dimc0,/mé*! — dimemg,y- 0,/mé*'. With respect to local
coordinates x = (x;,...,X,) in M, the vector space Mgy, -0,/mi*! is
generated by the equivalence classes modulo mé*!  of
(x—a)*-(8;(x)—9;(a)), where j=1,...,m and aeN", |a|] < d. Thus
dimemgg, - 0,/mé*" is the rank of a matrix whose entries are analytic
functions in a. (Its columns are the partial derivatives through order d
of the (x—a)*-(8;(x)—0;(a)) with respect to x, evaluated at x = a.)
Therefore, mult, 8 is (analytic) Zariski (upper-) semicontinuous. The
result follows since 0 is finite. a

Remark 14.7. — Let a; = (aj,...,a})eM;. Suppose that
{a}, ...,a}} contains r distinct elements c', ..., ", where ¢ is repeated
W times, j=1,...,r, and }:u" = 5. Choose connected open neighbo-
rhoods U of ¢d'in M, j=1,...,r, and V of 0(a;) in N, such that
the U are mutually disjoint and 8(U’) = V for each j. Put U = u U.
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Then :
(1) Since 8|U is finite, Z mult, 0 is constant on V.

aeUnB™ 1(b)
(2) If a = (a, ..., a) is sufficiently close to a, in M;, then {a', . ..,ad"}
contains | elements of U/, for eachj.

CoroLLARY 14.8. — Let Y' be as in Lemma 14.6. There exists r < s
and a surjection o of {1,...,s} onto {1,...,r} satisfying the following
conditions: Let M, — M| denote the embedding given by
@,...,a) - (@®",...,a°"). Then:

) X e M.

Q@ Ifa=@,....,.aheX —Y and i #j, then a # .

Proof. — 1t follows from Lemma 14.6 and Remark 14.7 that, for
each i and j, {a= (d',...,a)eX-Y : a=d} is open in X — Y'.
Clearly, it is closed. Since X — Y’ is connected, the result follows. O

Let Y’ be as in Lemma 14.6. According to Corollary 14.8, we can
assume, in our proof of Theorem 14.2, that if a = (a',...,a)eX — Y’
and i #j, then a' # @' .

For each a=(d',...,a)eX - Y, put &, = él(Oa,» and E, =
{E—)l @ai/me(ai)'wai' Then &, is an @y,-module via the homomorphism
l(é;‘;).s,vgs: Oy = (—SBl 0,, and E, is a vector space over C. Clearly, E,
identifies with 3"",‘/_:119(,)- F..

Replacing M, if necessary, by a smaller neighborhood of
{ad, ...,a}}, we can assume there exist )y, ..., ;e O(M)and a, e X — Y’
such that the m; induce a basis of E, . (We can, for example, choose
Ny ..., MNe to be polynomial with respect to local coordinates in a

neighborhood of each a;.) By Lemma 14.6, dimcE, = Y d; is constant
i=1

on X — Y'. Thus there is (a germ at a, of) a proper analytic subset

Y of X such that Y =« Y and the m; induce a basis of E,, for all

aeX — Y. Since 0 is finite, we can assume that Y = X n 07'(0(Y)).

Lemma 149. — For each aeX — Y, my, ..., N, induce a free set
of generators of the module %, over Oy,.
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Proof. — Let a=(a',...,a)eX — Y. By Nakayama’s lemma,

Ny, ..., No induce a set of generators of %, over Uy, . By Remark 14.4,

o = dimcE, = ) mult ;0 = ) dimgy , 0, ® 0y, Kew, Where Ky, is the
i=1 i=1

field of fractions of Oy,,. Thus ¢ = dimKe(')gf’,®ae(_)Ko(,,, as required.

O
CoroLLARY 14.10.

— Put ¢£,(k) = (d+1)(k+1) — 1, where keN.
Let a=(a',....,a0eX —Y and let Hjelyy, j=1,...,0. If

g:i(H.i)‘ﬁ,-.ai :xl(km'@ =1,
j=1

Q

.., S, then each H;e m§(,)+ (g
Proof. — If ae M, then, by Corollary 14.5, mi*' < my, 0, . Therefore,

s
for all a=(d,...,a)eM;, @my . @ai < M+ F., where
i=1

F, = @@ai. The result follows from Lemma 14.9. O
i=1

LeEmMA 14.11. — Let fe O(M). Then :

(M) If a=(@d',...,a)eX — Y, there exist unique h;,€ Oy,
j=

1, ...,0, such that, for each i=1,...,s, fa,- = Y0%(h.) i
j=1

(2) For each j =1, ...,c and BeN", let h(a) = Dh;,(8(a)), where
aeX — Y. Then W e #(X;Y).

Proof. — (1) By Lemma 14.9.

) If aeM, let O,: 05, — O, denote the module homomorphism
over 0F defined by ©,(g) = ) 0X(g):-M., where g =(g,...,8)

j=1

s

€08s. If a=(d',...,a)eM, c M}, let ©,:05, - ® O, denote
i=1
the composition of @ © ; with the diagonal injection Ugu) — @ Og)-
i=1 i=1

Suppose that ae X — Y. Acording to (1), (fa,)lg,-gs = @,(h,), where
hy = (hyq, ...,hs,). We use the formalism of 8.2 and 8.3, where p = 1,
=0, B=0, ®, is replaced by @,, etc. For each ZeN, let ‘F,

(respectively, “H,) denote the image of (j‘"a,-)ls,-gs (respectively, of h,) by
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the lower (respectively, upper) horizontal arrow in the left-hand diagram
of (8.2.6); thus, ‘F, = A,,-‘H,. Recall that ‘H, is the element of
® p<0%, induced by (DPh,00,)5<,. Write ‘H, = (Hg,.)p<c.1<j<o» Where
each Hy;,€ Ox,.

Let ke N and let £ = £,(k). Then
Adp/'k(X)D/,k,. <F, = Crias *H,.

Let e(k) denote the number of pairs (B,j)e N™ x {1,...,c} such that
IBl < k (e(k) is the number of columns of C,;,). By Corollary 14.10
and Lemma 8.1.1 (2), rank C¥,(a) = e(k). Then, by Cramer’s rule, for
all (B,j))eN" x{1,...,0}, Bl < k, we obtain {y;, 0s;€ O(U) (U is a
product coordinate neighborhood of a, in M?) such that, if aeX - Y,
then wy;(a) # 0 and Hy,, = {y;./®p, ., as required. O

We can now complete the proof of Theorem 14.2. Since the projection
of Z onto N’ is finite, then, by the finite coherence theorem of Grauert
and Remmert [32, Ch.IV, Thm.7], we can assume there exist
Eb ..., &, e ON) satisfying the following condition: For all
beZ and Ge®,, there exist G, ..., G,e (bn(b) such that

p
G- Y #¥Gy)-8» € Fz,-0,, where S, denotes the sheaf of germs
h=1

of analytic functions which vanish on Z.

Let aeX —Y, a=(d',...,a). By Lemma 14.11 (1), there exist
unique p X q matrices Cy,, h=1,...,p, j=1,...,0, and unique
p * r matrices D,,, 7, j=1,...,0, all with entries in 0y, such
that, for all i =1, ...,s,

Ma

(€000 Ay = ¥ A +(Co,),

—.
I

Nyai® Bai ﬁj,,,i . (D{j,aOGai) .

-~

I
M

By Lemmas 14.11 (2) and 7.2 (3) and Remark 7.6, there exists A€ N
satisfying the following condition: Let aeX — Y. Suppose that

P
Geli, h=1,....,p, Hely,, /=1,...,0, and Y, Cy, G, +
h=1

(o]
Y D,,-,,-H,em";(’;)*-@z(_), j=1,...,0. Then there exist G} e (AO‘;(') and
£=1
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H}e@;m such that Y Cy,-G,+ Y D,,-H, =0, j=1,...,0, and
h 4 °

k M k D
G;, - G;, € me(.) * (OZ(.) 3 H( - H; € mo(.) * @;(‘) .

Let (k) = £,(k+L), ke N. We claim that /(k,a) < Z(k) for all
aeX — Y and keN: Let aeX — Y and let Ge@‘;(‘). Suppose that

A,+(Gog,) + B,-H em/®*'. 0", where H'e @, i=1,...,s. There

‘exist Gy, ...,G,e O such that G — ‘h; Ehow* (Cioftem) € Fz.0m)* Od -

Also, there exist unique H,, ...,Hse &'x-) such that H'=
Zﬁ/.a,»(H,o@n,-), i=1,...s. Thus, for eachi=1,...,s,
13

o P o .
Aai'(Go(bai) + Bai'Hi = Z "'Ij‘ai'<<z Chja- Gy + Z D/j..'H/)Oeai)'
j=1 h=1 =1

By Corollary 14.10, Y C,; G, +), D,,-‘,-H,emﬁ(‘;)“‘-@g(.), j=1,...,0.
h 14

Thus there exist Gi,...,G,e®_  and Hj, ...,H e, such

that ) Cy,- G, + Y.D,,-H, = 0, j=1,..., 0, and each
h 13

Y k+1, Mq
G, — Gjemygg, (90(,).

p
Put G, = Z &h,(p(a) . (G;’,Oﬁ@(.)) . Then Aai . (G’O(bai)
h=1

R - k+1, 7 : :
elmB,, i=1,...,s, and G — G emg- 04, as claimed. This

completes the proof of Theorem 14.2. a

Remark 14.12. — (1) Let a=(d',...,a)eX — Y. Let Ge 03,
and let He ®@,, H = (H', ..., H). Let f = ®,(G) + B,H)e ® @";
i=1 i=1

ie, f=(f',....f"), where each f'= A ;-(Gop,) + B,-H'. Suppose
that f‘e 0%,i=1,...,s. Then, for all k € N, there exists g € 0%, and
he @ 07, such that f= ®,(g) + By(h), g— Gemfy-0i,, and

i=1

S ~ . .
h— He® m:i-(ﬁz,-: We use the notation introduced above. Let

i=1

Gl’ ceey Gp € (‘Dg(') Such that G - ;Eh,w(-) . (Ghoft¢(‘)) € jz'o(.) * @g(.) 5 and

let H,, ...,H,€ Oy such that H' = YA, ;-(Ho8,), i=1,...,s. By
e
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Lemma 149, Y'C,; .-G, + Y D,;,-H, € 04> J =1, ...,0. By Krull’s
h 4

theorem, there exist g, ..., g, € (93(') and hy, ..., h; € O such that
Zchj,l'gh + ZD{j‘a'h{ = Zchj‘n'Gh + ZD/,‘,-'H(,
h 3 h ¢

. k M k 7
=1,...,0, and each g, — Ghemo(,)-(@gm, h, — H, € mgg,y- O4y. Put

g8 = Z&h.w(l)' (ghoﬁqr(l)) ) hi = Zﬁ/'ai' (hIOGai) > i = 1a cees S, and
h '3

h=(H, ... k).
(2 Let a=(a',...,a)eX —Y. Then #,={Ge0i,: ®(G)
e Im B,} is generated by %, N 0l (cf. Corollary 12.17).

Remark 14.13. — Let X be an analytic space over K. It follows
from theorems of Buchsbaum and FEisenbud [9, Thms. 1.2, 2.1] and
[37, 1.5.1] that {xe X : O, is Cohen-Macauley} is open in X. (We are
grateful to David Eisenbud for the reference.) We say that X is Cohen-
Macauley if, for all xeX, Ox, is a Cohen-Macauley ring. Thus, a
Cohen-Macauley real analytic space admits a Cohen-Macauley complexi-
fication.

Our proof of Theorem 14.2 extends to the case that M is a Cohen-
Macauley analytic space with essentially no change: We can assume
that K = C. The equalities of Remark 14.4 remain valid. In Lemma 14.11,
we can assume that M is embedded in an open subspace W of C",
and that Oy = Oy/L-0y, where L is a 1 x r matrix with entries in
O(W); the same proof goes through using the formalism of 8.2, 8.3
with B = L rather than B = 0.

N.B. : Bibliography published in the first issue of volume 37 (1987).
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