EDWARD BIERSTONE
P. D. MILMAN

Relations among analytic functions. II

<http://www.numdam.org/item?id=AIF_1987__37_2_49_0>
RELATIONS AMONG ANALYTIC FUNCTIONS II

by E. BIERSTONE (¹) and P. D. MILMAN (²)

Contents (*)

CHAPTER II. - Differentiable functions.

10. Ideals generated by analytic functions.
11. Modules over a ring of composite differentiable functions.

CHAPTER III. - Semicontinuity results.

12. Algebraic morphisms.
13. Regular mappings.
14. The finite case.

(*) Chapters 0 et 1 published in the first issue of volume 37 (1987).

(¹) Research partially supported by NSERC operating grant A9070.
(²) Supported by NSERC University Research Fellowship and operating grant U0076.

Key-words: Morphism of analytic spaces - Module of formal relations - Hilbert-Samuel function - Diagram of initial exponents - Zariski semicontinuity - Division and composition of \(\psi^* \) functions.
CHAPTER II
DIFFERENTIABLE FUNCTIONS

10. Ideals generated by analytic functions.

We give an elementary proof of the theorem of Malgrange [27, Ch. VI]. Let N be a real analytic manifold. Put $\mathcal{O} = \mathcal{O}_N$. Let A be a $p \times q$ matrix of real analytic functions on N, and let $A^*: \mathcal{C}^\infty(N)^q \to \mathcal{C}^\infty(N)^p$ denote the $\mathcal{C}^\infty(N)$-homomorphism defined by multiplication by A.

Theorem 10.1. $A^* \mathcal{C}^\infty(N)^q = (A^* \mathcal{C}^\infty(N)^q)^{\simeq}$.

Remark 10.2. Let $Z \subset Y$ be closed subanalytic subsets of N. Suppose that $f \in \mathcal{C}^\infty(N;Z)^p$ and, for all $a \in Y$, there exists $G_a \in \hat{\mathcal{O}}_a$ such that $f_a = A_a \cdot G_a$. The following proof shows, moreover, that there exists $g \in \mathcal{C}^\infty(N;Y)^q$ such that $f - A \cdot g \in \mathcal{C}^\infty(N;Y)^q$ (cf. [7, Thm. 0.1.1]).

Proof of Theorem 10.1. Let \mathcal{A} denote the sheaf of submodules of \mathcal{C}^p generated by the columns $\varphi^1, \ldots, \varphi^q$ of A. Let \mathcal{B} be the subsheaf of \mathcal{C}^q of (germs of) relations among the columns of A. Then \mathcal{B} is coherent.

We can assume that N is an open subset of \mathbb{R}^n. If $a \in N$, we identify $\hat{\mathcal{O}}_a$ with $\mathbb{R}[\![y]\!]$, $y = (y_1, \ldots, y_n)$. By Lemma 7.2 and Remark 7.3, we can suppose there is a filtration of N by closed analytic subsets,

$$N = X_0 \supset X_1 \supset \cdots \supset X_{r+1} = \emptyset,$$

such that, for each $k = 0, \ldots, r$:

1. $X_k - X_{k+1}$ is smooth.
2. $\mathfrak{M}(\mathcal{A}_a)$ and $\mathfrak{M}(\mathcal{B}_a)$ are constant on $X_k - X_{k+1}$. We write $\mathfrak{M}_k(\mathcal{A}) = \mathfrak{M}(\mathcal{A}_a)$ and $\mathfrak{M}_k(\mathcal{B}) = \mathfrak{M}(\mathcal{B}_a)$, $a \in X_k - X_{k+1}$.
3. Let (β_i, j_i), $i = 1, \ldots, t$, denote the vertices of $\mathfrak{M}_k(\mathcal{A})$. Then, for each i, there exists ψ^i in the submodule of $\mathcal{C}^\infty(X_a)[[y]]^p$ generated by
RELATIONS AMONG ANALYTIC FUNCTIONS

51

(the elements induced by) the φ' (cf. Remark 7.3), such that, for all $a \in X_k - X_{k+1}$, $v(\varphi'(a; \cdot)) = (\beta_i, j_i)$ and $\psi'_a \in \mathcal{A}_a$, where $\psi'_a(y) = \psi'(a; y)$.

(4) There exist σ' in the submodule of $\mathcal{O}(X_k) [[y]]^t$ induced by $\mathcal{B}(N)$ such that the $v(\sigma'(a; \cdot))$ are the vertices of $\mathcal{R}_k(\mathcal{A})$, for all $a \in X_k - X_{k+1}$.

Fix k. Let $\{\Delta_i, \Delta\}$ denote the decomposition of $N^n \times \{1, \ldots, p\}$ determined by the vertices (β_i, j_i) of $\mathcal{R}_k(\mathcal{A})$, as in § 6. Let $a \in X_k - X_{k+1}$. By the formal division algorithm (Theorem 6.2) and Remark 6.7, there exist unique $r_i^a \in \mathcal{O}_a^{\sigma}$ and $q_{i, \alpha}^a \in \mathcal{O}_a$, $\ell = 1, \ldots, t$, such that $\text{supp } r_i^a \subset \Delta$, $(\beta_i, j_i) + \text{supp } q_{i, \alpha}^a \subset \Delta_i$, and

\begin{equation}
(10.3) \quad y^{\beta_i, j_i} = \sum_{\ell=1}^{t} q_{i, \alpha}^a(y) \psi'_a(y) + r_i^a(y).
\end{equation}

Put $\theta_i^a(y) = y^{\beta_i, j_i} - r_i^a(y)$, $i = 1, \ldots, t$; then the $\theta_i^a \in \mathcal{A}_a$ (cf. Corollary 7.7). The coefficients $\theta_i^a(a)$ of $\theta_i^a(y) = \sum_{\beta} \theta_{\beta, j_i}^a(a) y^{\beta, j_i}$, as well as the coefficients of the $q_{i, \alpha}^a$, are analytic on $X_k - X_{k+1}$, and extend to X_k as quotients of analytic functions by products of powers of the $\psi_{\beta, j_i}^a(a)$, where $\psi'_a(y) = \sum_{\beta} \psi_{\beta, j_i}^a(a) y^{\beta, j_i}$. There exist analytic functions θ^i defined in a neighborhood of $X_k - X_{k+1}$, whose power series expansions at each $a \in X_k - X_{k+1}$ are the θ_i^a (cf. Corollary 7.7(3)).

Suppose that $f \in (A \cdot \mathcal{C}^\infty(N)^q)^-$ and that f is flat on X_{k+1}. It suffices to find $h \in \mathcal{C}^1(N ; X_{k+1})^q$ such that $f - A \cdot h \in \mathcal{C}^1(N ; X_k)^q$.

Let $a \in X_k - X_{k+1}$. Then $\hat{f}_a \in \mathcal{A}_a$. By the formal division algorithm, there are unique $G_{i, \alpha} \in \mathcal{O}_a$, $i = 1, \ldots, t$, such that $(\beta_i, j_i) + \text{supp } G_{i, \alpha} \subset \Delta_i$ and

\begin{equation}
(10.4) \quad \hat{f}_a = \sum_{i=1}^{t} G_{i, \alpha} \theta_i^a.
\end{equation}

Put $G_{i, \alpha} = 0$ if $a \in X_{k+1}$.

We claim there exist $g_i \in \mathcal{C}^1(N ; X_{k+1})$ such that $G_{i, \alpha} = g_i a$ for all $a \in X_k$. Write $G_{i, \alpha} = \sum_{\beta} G_{i, \beta} a y^{\beta}$. By the formal division algorithm and Łojasiewicz's inequality [27, IV.4.1], each $G_{i, \beta}$ is the restriction to X_k of a \mathcal{C}^∞ function which is flat on X_{k+1}. Let $a \in X_k - X_{k+1}$. Since f is \mathcal{C}^∞ and the θ^i are analytic, then, regarding both a and y as variables
in \(N \), we have

\[
\frac{\partial f_\lambda(y)}{\partial a_j} = \frac{\partial f_\lambda(y)}{\partial y_j},
\]

(10.5)

\[
\frac{\partial \theta_\lambda^i(y)}{\partial a_j} = \frac{\partial \theta_\lambda^i(y)}{\partial y_j},
\]

\(j = 1, \ldots, n \) ("Taylor expansion commutes with differentiation"). If \(\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n \), write \(D_{\lambda,a} = \sum \lambda_i \partial \partial a_j \); \(D_{\lambda,a} \) is the directional derivative with respect to the \(a \) variables in the direction \(\lambda \). If \(D_{\lambda,a} \) is tangent to \(X_k - X_{k+1} \) at \(a \), then \(D_{\lambda,a} G_{i,a}(y) \) is well-defined, and, by (10.4) and (10.5), \(\sum_{i=1}^{r} (D_{\lambda,a} G_{i,a} - D_{\lambda,y} G_{i,a}) \cdot \theta_\lambda^i = 0 \). For each \(i \), \((\beta_0, j) + \text{supp} (D_{\lambda,a} G_{i,a} - D_{\lambda,y} G_{i,a}) \subseteq \Delta_i \) (where \(\text{supp} \) is with respect to \(y \)). Therefore, by the uniqueness of formal division, for each \(i = 1, \ldots, t \),

\[
D_{\lambda,a} G_{i,a} = D_{\lambda,y} G_{i,a}.
\]

Choose local coordinates \((u, v) = (u_1, \ldots, u_m, v_1, \ldots, v_{n-m})\) near \(a \in X_k - X_{k+1} \) such that \(X_k - X_{k+1} \) is given by \(v = 0 \). Write \(G_{i,a} \) as

\[
G_{i,a}(u, v) = \sum_{\beta \in \mathbb{N}^{n-m}} \left(\sum_{\alpha \in \mathbb{N}^m} G_{i,a}^{\alpha, \beta}(u) \frac{u^\alpha}{\alpha!} \right) \frac{v^\beta}{\beta!}.
\]

Then (10.6) implies that \(\sum_{\alpha} G_{i,a}^{\alpha, \beta}(a) u^\alpha / \alpha! \) is the formal Taylor series of \(G^0, \beta \) at \(a \). By Whitney's extension theorem [27, I.4.1] and Hestenes's lemma [37, IV.4.3], there exists \(g_i \in \mathscr{R}(N; X_{k+1}) \) such that \(G_{i,a} = \hat{g}_i(a) \), for all \(a \in X_k \), as claimed.

To finish the proof, we must express \(f \) in terms of the columns \(\varphi^j \) of \(A \). By (3) and (10.3), \(\theta^{i}(\lambda) = \sum y_{j,i,a}(y) \varphi^{i}(y), \ i = 1, \ldots, t \), where \(\psi^i(y) = \varphi^i(a + y), \ \xi_{j,i,a} \in \mathcal{O}_a \), and the coefficients \(\xi_{j,i,a}(y) = \sum_{\beta} \xi_{j,i,a}^{\beta}(y) y^{\beta} \) are quotients of analytic functions by products of powers of the \(\psi_{j,i,a}(a) \). Put \(\xi_{i,a} = (\xi_{i1,a}, \ldots, \xi_{iq,a}) \). By the formal division algorithm and Remark 6.7, there exist unique \(\eta_{i,a}(y) \in \mathcal{O}_a^q \) such that \(\xi_{i,a} - \eta_{i,a} \in \mathcal{B}_a \) and \(\text{supp} \eta_{i,a} \cap \mathcal{B}_k(\mathcal{A}) = \emptyset \). Write \(\eta_{i,a} = (\eta_{i1,a}, \ldots, \eta_{iq,a}) \) and \(\eta_{j,i,a}(y) = \sum_{\beta} \eta_{j,i,a}^{\beta}(a) y^{\beta}, \ j = 1, \ldots, q \). By (4), the \(\eta_{j,i,a}(a) \) extend to \(X_k \) as
quotients of analytic functions. By the uniqueness of formal division,
\[\eta_{\gamma, a}(b - a + \gamma) = \eta_{\gamma, a}(\gamma), \]
for \(b \) in some neighborhood of \(a \) in \(X_k - X_{k+1} \)
(cf. the proof of Corollary 7.7 (3)). Thus the \(\eta_{\gamma, a} \) are the formal power
series expansions at \(a \) of analytic functions \(\eta_{\gamma} \) defined in a neighborhood
of \(X_k - X_{k+1} \).

If \(a \in X_k - X_{k+1} \), then
\[\hat{f}_a = \sum_i G_{i,a} \theta_a^i = \sum_i \eta_{\gamma, a} G_{i,a} \varphi_a. \]
Put \(H_{j,a} = \sum_i \eta_{\gamma, a} G_{i,a} \) if \(a \in X_k - X_{k+1} \), and \(H_{j,a} = 0 \) if \(a \in X_{k+1} \), \(j = 1, \ldots, q \). Then
there exist \(h_j \in \mathcal{O}(N ; X_{k+1}) \) such that \(H_{j,a} = h_j \) for all \(a \in X_k \), \(j = 1, \ldots, q \). Thus,
\[f - A \cdot h \in \mathcal{O}(N ; X_k)^p, \]
where \(h = (h_1, \ldots, h_q) \).

11. Modules over a ring
of composite differentiable functions.

Let \(K = \mathbb{R} \) or \(\mathbb{C} \). Let \(M \) and \(N \) denote analytic manifolds (over \(K \)),
and let \(\varphi : M \to N \) be an analytic mapping. Let \(A \) and \(B \) be \(p \times q \)
and \(p \times r \) matrices of analytic functions on \(M \), respectively. We use
the notation of 8.2. If \(a \in M \), let \(\mathcal{R}_a = \{ G \in \mathcal{O}_{\varphi(a)} : \varphi_a(G) \in \text{Im } \hat{B}_a \} \).

Let \(\mathcal{B} \subset \mathcal{O}_M^q \) denote the sheaf of \(\mathcal{O}_M \)-modules generated by the
columns of \(B \). Let \(U \) be a coordinate neighborhood of some point in
\(M \), with coordinates \(x_1, \ldots, x_m \), say. By Theorem 7.4, the diagram of
initial exponents \(\mathcal{R}(\mathcal{B}_a) \in \mathbb{N}^m \times \{1, \ldots, p\} \) is Zariski semicontinuous on
\(U \). Thus, after perhaps shrinking \(U \), there is a filtration by closed
analytic subsets, \(U = X_0 \supset X_1 \supset \ldots \supset X_{r+1} = \emptyset \), such that \(\mathcal{R}(\mathcal{B}_a) \)
is constant on each \(X_\lambda - X_{\lambda+1} \). Let \(b \in N \). The following proposition
shows that \(\mathcal{R}_a \) is constant on every connected component of
\((X_\lambda - X_{\lambda+1}) \cap \varphi^{-1}(b), \lambda = 0, \ldots, t \).

Proposition 11.1. — Let \(U \) be a local coordinate chart in \(M \). Let \(b \in N \) and let \(S \) be a locally closed semianalytic subset of \(U \) such that
\(S \subset \varphi^{-1}(b) \). Suppose that \(\mathcal{R}(\mathcal{B}_a) \) is constant on \(S \). Let \(f \in \mathcal{O}(U)^p \) and let
\(G \in \mathcal{O}_a \). Then
\[\mathcal{H} = \{ a \in S : \hat{f}_a - \varphi_a(G) \in \text{Im } \hat{B}_a \} \]
is open and closed in \(S \).

Proof. — We can assume that \(U \) (respectively, \(N \)) is an open
neighborhood of the origin in \(K^m \) (respectively, \(K^n \)), and that \(\varphi(0) = 0 \)
and \(b = 0 \). We identify (the components of) \(\varphi \) and \(f \) and (the entries
of A and B with their convergent power series expansions at 0. If \(x = (x_1, \ldots, x_m) \) and \(y = (y_1, \ldots, y_n) \), then

\[
f(x + y) - A(x + y) \cdot G(\varphi(x + y) - \varphi(x)) = \sum_{\alpha \in \mathbb{N}^m} \frac{D^\alpha f(x)}{\alpha!} y^\alpha - A(x + y) \cdot \sum_{\beta \in \mathbb{N}^n} \frac{D^\beta G(0)}{\beta!} \left(\sum_{\alpha > 0} \frac{D^\alpha \varphi(x)}{\alpha!} y^\alpha \right)^\beta,
\]

where \(\alpha \) (respectively, \(\beta \)) denotes a multiindex in \(\mathbb{N}^m \) (respectively, \(\mathbb{N}^n \)).

Thus

\[
f(x + y) - A(x + y) \cdot G(\varphi(x + y) - \varphi(x)) = \sum_{\alpha \in \mathbb{N}^m} \frac{H_\alpha(x)}{\alpha!} y^\alpha,
\]

where the \(H_\alpha \) converge in a common neighborhood of 0 (which we can take to be \(U \)). (For all \(\alpha \in \mathbb{N}^m \), each component of \(H_\alpha(x) - D^\alpha f(x) \) is a finite linear combination of certain products of derivatives of the components of \(\varphi \) times derivatives of the entries of \(A \).)

Let \(\mathcal{R} = \mathcal{R}(\mathcal{M}_a) \), \(a \in S \), and let \((\alpha, j_i), i = 1, \ldots, k \), denote the vertices of \(\mathcal{R} \). For each \(a \in S \), let \(g_\alpha'(y) \in \hat{\mathcal{B}}_a = K[[y]]^p \), \(i = 1, \ldots, k \), denote the standard basis of \(\hat{\mathcal{B}}_a \), where in \(g_\alpha' = y^{j_1} \). Then each \(g_\alpha'(y) = \sum_{\alpha, j} g_{\alpha, j}(a) y^{j} \) is convergent, and each \(g_{\alpha, j}(a) \) is analytic on \(S \) (Corollary 6.8).

Let \(a \in S \) and let \(h_a(y) = \sum_a H_\alpha(a) y^\alpha/\alpha! \). By Theorem 6.2, there exist unique \(q_{i, a}(y) \in \hat{\mathcal{B}}_a \) and \(r_a(y) \in \hat{\mathcal{B}}_a^p \) such that \((\alpha, j_i) + \text{supp } q_{i, a} \subset \Delta_i \), \(\text{supp } r_a \subset \Delta \) (where \(\Delta_i, \Delta \) are as in § 6), and

\[
(11.2) \quad h_a(y) = \sum_{i=1}^{k} q_{i, a}(y) g_{\alpha, j_i} + r_a(y).
\]

Write \(r_a(y) = \sum_{\alpha, j} r_{\alpha, j}(a) y^{j} \). Then each \(r_{\alpha, j}(a) \) is analytic on \(S \) (cf. Remark 6.5). By (11.2), \(h_a \in \text{Im } \hat{\mathcal{B}}_a \) if and only if each \(r_{\alpha, j}(a) = 0 \); i.e., \(\mathcal{H} \) is closed.

Since \(f(y) - A(y) \cdot G(\varphi(y)) \in \hat{\mathcal{B}}_0 = K[[y]]^p \), there exist unique \(q_i(y) \in \hat{\mathcal{B}}_0 \) such that \((\alpha, j_i) + \text{supp } q_i \subset \Delta_i \) and \(f(y) - A(y) \cdot G(\varphi(y)) = \sum_{i=1}^{k} q_i(y) g_\alpha(y) \). Consider the identity

\[
(11.3) \quad f(x + y) - A(x + y) \cdot G(\varphi(x + y)) = \sum_{i=1}^{k} q_i(x + y) g_\alpha(x + y).
\]
Suppose that $0 \in S$. Let $\mathcal{I} \subseteq \mathcal{O}_0 = K(x)$ denote the ideal of germs of analytic functions at 0 which vanish on S. Write $\mathcal{O}_{S,0} = \mathcal{O}_0 / \mathcal{I}$ and $\hat{\mathcal{O}}_{S,0} = \hat{\mathcal{O}}_0 / \mathcal{I} \cdot \hat{\mathcal{O}}_0$. We expand each term of (11.3) as a power series in y with coefficients in $\hat{\mathcal{O}}_0 = K[[x]]$, and take the induced power series in y with coefficients in $\hat{\mathcal{O}}_{S,0}$. Since each component of ϕ vanishes on S, the left-hand side of (11.3) gives the same result as reducing the coefficients of $\sum H_\alpha(x)y^\alpha/\alpha!$ modulo \mathcal{I}; write $h_\alpha(y)$ for the resulting element of $\mathcal{O}_{S,0}[[y]]^p$. Likewise, write $q_\alpha(x,y)$ and $g_\alpha(x,y)$ for the elements of $\hat{\mathcal{O}}_{S,0}[[y]]$ and $\hat{\mathcal{O}}_{S,0}[[y]]^p$ induced by $q_\alpha(x+y)$ and $g_\alpha(x+y)$, respectively. Thus,

$$(11.4) \quad h_\alpha(y) = \sum_{i=1}^k q_{\alpha,i}(y)g_\alpha^i(y).$$

Since $(\alpha_i,j_i) + \text{supp } q_i \subseteq \Delta_i$, then $(\alpha_i,j_i) + \text{supp } q_{i,x} \subseteq \Delta_i$. Clearly, in $g_\alpha^i(y) = y^{\alpha_i/j_i}$.

On the other hand, by the formal division algorithm, there are unique $Q_{\alpha,i}(y) \in \hat{\mathcal{O}}_{S,0}[[y]]$ and $R_\alpha(y) \in \hat{\mathcal{O}}_{S,0}[[y]]^p$ such that $(\alpha_i,j_i) + \text{supp } Q_{i,x} \subseteq \Delta_i$, $\text{supp } R_x \subseteq \Delta$, and

$$(11.5) \quad h_\alpha(y) = \sum_{i=1}^k Q_{\alpha,i}(y)g_\alpha^i(y) + R_\alpha(y).$$

Since the coefficients of $h_\alpha(y)$ belong to $\mathcal{O}_{S,0}$, so do those of $Q_{i,x}(y)$ and $R_\alpha(y)$ (cf. Remark 6.5); moreover, all coefficients can be evaluated in a common neighborhood of 0 in S.

Comparing (11.4) and (11.5), we get $R_\alpha(y) = 0$. But from (11.2) and (11.5), $R_a(y) = r_a(y)$ for $a \in S$ sufficiently close to 0. Therefore, all $r_a(a)$ vanish on S near 0; i.e., \mathcal{H} is open.

Corollary 11.6. — If ϕ is proper, then (locally in N), there is a bound s on the number of distinct submodules \mathcal{R}_a of $\hat{\mathcal{O}}_b^q$, where $a \in \phi^{-1}(b)$.

Proof. — Let U, X_0, \ldots, X_{t+1} be as above. Suppose that U is relatively compact and each X_λ is semianalytic in M. Then, for each $\lambda = 0, \ldots, t$, there is a bound on the number of connected components of $(X_\lambda - X_{\lambda+1}) \cap \phi^{-1}(b)$ [11], [12], [20, Thm. 2.5]. The result follows from Proposition 11.1.

Remark 11.7. — Suppose ϕ is proper. Then (locally in N), there is a bound s' on the number of connected components of a fiber $\phi^{-1}(b)$. If $B = 0$, then Corollary 11.6 is satisfied with $s = s'$.
In the remainder of this section, we assume that $K = \mathbb{R}$. Let $\varphi^* : \mathcal{C}^\infty(N) \to \mathcal{C}^\infty(M)$ denote the ring homomorphism induced by φ, and let $\Phi : \mathcal{C}^\infty(N)^a \to \mathcal{C}^\infty(M)^p$ denote the module homomorphism over φ^* defined by $\Phi(g) = A \cdot (g \circ \varphi)$, where $g \in \mathcal{C}^\infty(N)^a$. Let $B : \mathcal{C}^\infty(M)^p \to \mathcal{C}^\infty(M)^p$ denote the $\mathcal{C}^\infty(M)$-homomorphism induced by multiplication by the matrix B.

Let $(\Phi \mathcal{C}^\infty(N)^a + B \cdot \mathcal{C}^\infty(M))^p = \{ f \in \mathcal{C}^\infty(M)^p : \text{for all } b \in \varphi(M), \text{there exists } G_b \in \mathcal{C}^\infty(N)^a \text{ such that } f_a - \hat{G}_b(G_a) \in \text{Im } \hat{B}_a, \text{ for all } a \in \varphi^{-1}(b) \}$.

Theorem 11.8. — Suppose that φ is proper. Then each of the equivalent conditions of Theorem 8.2.5 implies that

$$\Phi \mathcal{C}^\infty(N)^a + B \cdot \mathcal{C}^\infty(M)^p = (\Phi \mathcal{C}^\infty(N)^a + B \cdot \mathcal{C}^\infty(M)^p)^p.$$

Remark 11.9. — Let Z be a closed subanalytic subset of N. Our proof of Theorem 11.8 will show that each of the equivalent conditions of Theorem 8.2.5 implies the following stronger result: If $f \in (\Phi \mathcal{C}^\infty(N)^a + B \cdot \mathcal{C}^\infty(M)^p)^p$ and $f_a \in \text{Im } \hat{B}_a$ for all $a \in \varphi^{-1}(Z)$, then there exists $g \in \mathcal{I}(N;Z)^a$ and $h \in \mathcal{C}^\infty(M)^p$ such that $f = \Phi(g) + B \cdot h$.

Remark 11.10. — In the case that $A = I$ and $B = 0$, it is enough to assume that φ is semiproper [5, Rmk. 3.5]. The following example shows that «semiproper» is not sufficient in general: Let $M = M_1 \cup M_2$ be the disjoint union of $M_1 = \mathbb{R}^2$ and $M_2 = \mathbb{R}^2$. Let $N = \mathbb{R}^2$. Define $\varphi : M \to N$ by $\varphi(x,y) = (x,y)$ if $(x,y) \in M_1$, $\varphi(x,y) = (x,xy)$ if $(x,y) \in M_2$. Let $p = q = 1$ and let $A(x,y) = 0$ on M_1, $A(x,y) = 1$ on M_2. Take $B = 0$. Define $f \in \mathcal{C}^\infty(M)$ by $f(x,y) = 0$ on M_1 and $f(x,y) = ye^{-1/2y^2}$ on M_2. Let (u,v) denote the coordinates of N. Then f is flat on $\varphi^{-1}(\{u = 0\})$, and outside $\varphi^{-1}(\{u = 0\})$, $f = \Phi(g)$, where $g(u,v) = (v/u)e^{-1/2v^2}$. Hence $f \in (\Phi \mathcal{C}^\infty(N))^p$. Clearly, $f \notin \Phi \mathcal{C}^\infty(N)$. This example satisfies the conditions of Theorem 8.2.5 because $\varphi|M_2$ is generically a submersion (cf. § 13).

Remark 11.11. — The assertion that $\Phi \mathcal{C}^\infty(N)^a + B \cdot \mathcal{C}^\infty(M)^p = (\Phi \mathcal{C}^\infty(N)^a + B \cdot \mathcal{C}^\infty(M)^p)^p$ is local in N. Hence we can assume that N is an open subset of \mathbb{R}^n and, by Corollary 11.6, that there is a bound s on the number of distinct submodules $\mathcal{R}_a \subset \mathcal{C}^\infty$, where $a \in \varphi^{-1}(b)$, $b \in N$. We will prove Theorem 11.8 using the conditions of Theorem 8.2.5 with this s.

We will also use the following:
Remark 11.12. - Let X be a germ at the origin of a closed analytic subset of \mathbb{R}^n. Let X^C denote the complexification of X, and let Sing X^C denote (the germ of) the singular points of X^C. The real part Σ of Sing X^C is (a germ of) a proper analytic subset of X. There exist $f_i(x) \in \mathbb{R}\{x\} = \mathbb{R}\{x_1, \ldots, x_m\}, 1 \leq i \leq k$, such that the complexifications $f_i(z)$ of the $f_i(x)$ generate the ideal in $C[z] = C[z_1, \ldots, z_m]$ of convergent power series which vanish on X^C. Then, for all $a \in X - \Sigma$, $I_{X,a}$ is generated by the f_i (where we have used the same symbol for a germ at the origin and a representative of the germ in a suitable neighborhood, and where I_X denotes the sheaf of germs of real analytic functions vanishing on X).

Proof of Theorem 11.8. - We make the assumptions of Remark 11.11. If $b \in \phi(M)$, then there exist $a^1, \ldots, a^e \in \phi^{-1}(b)$ such that $\bigcap_{a^i \in \phi^{-1}(b)} R_a = \bigcap_{i=1}^s R_d$. If $a \in M^\varphi$, $a = (a^1, \ldots, a^e)$, we put $R_a = \bigcap_{i=1}^s R_d$. Since the

...
flat on $\varphi^{-1}(Y_{\mu+1})$. By induction, we can assume that f is flat on $\varphi^{-1}(Y_\mu)$.

Let $X = X_\mu - \varphi^{-1}(Y_\mu)$. If $X = \emptyset$, we can take $g = 0$ and $h = 0$. Suppose $X \neq \emptyset$. Then $\varphi|_X : X \to \mathbb{N} - Y_\mu$ is proper. Let $a \in X$, $a = (a_1, \ldots, a_s)$, and let $b = \varphi(a)$. By (3) and the formal division algorithm (Theorem 6.2), there is a unique $G_b \in \partial^\beta$ such that

$$\text{supp } G_b \cap \mathcal{R}_\mu = \emptyset,$$

and $\tilde{f}_a - \tilde{g}_a(G_b) \in \text{Im } \tilde{B}_d$, $i = 1, \ldots, s$. Then, by (4), for all $a \in \varphi^{-1}(b)$, $\tilde{f}_a - \tilde{g}_a(G_b) \in \text{Im } \tilde{B}_d$.

Write $G_b = (G_{1,b}, \ldots, G_{q,b})$. $G_{j,b} = \sum_{\beta \in \mathbb{N}^n} G^\beta_{j,b} y^\beta \in \partial^\beta = \mathbb{R}[[y]]$, where $y = (y_1, \ldots, y_n)$. Then (11.13) is equivalent to: $D^\beta G_{j,b} = 0$ for all $(\beta, j) \in \mathcal{R}_\mu$.

Lemma 11.14. - For each $(\beta, j) \in \mathbb{N}^n \times \{1, \ldots, q\}$, there exists $g^\beta_j \in C^\infty(X)$ such that:

(i) g^β_j extends continuously to zero on $\bar{X} - X$.

(ii) For all $a \in X$, $g^\beta_{j,a} = \iota^*_a \Phi^*_a(D^\beta G_{j,\varphi(a)})$, where $\iota^*_a : \partial^\beta_{M^\phi,a} \to \partial^\beta_{X,a}$ is induced by the inclusion $\iota : X \to M^\phi$.

It follows from (ii) and an estimate of Glaeser [16, §§4, 5] (or [37, pp. 180-181]) that, for each $j = 1, \ldots, q$, there exists $g^\beta_j \in C^\infty(N - Y_\mu)$ such that $\hat{g}^\beta_{j,b} = G_{j,b}$ for all $b \in \varphi(X) = Y_{\mu+1} - Y_\mu$. By (i), for all $(\beta, j) \in \mathbb{N}^n \times \{1, \ldots, q\}$, $D^\beta g^\beta_{j,\varphi(X)}$ extends continuously to zero on Y_μ. Since $Y_{\mu+1}$ is subanalytic, it follows that there exist $g_j \in C^\infty(N)$ such that g_j is flat on Y_μ and $\hat{g}^\beta_{j,b} = G_{j,b}$, for all $b \in \varphi(X)$. Put $g = (g_1, \ldots, g_q)$. Then $(f - \Phi(g))_a \in \text{Im } \tilde{B}_a$ for all $a \in \varphi^{-1}(Y_{\mu+1})$. By Theorem 10.1 (and Remark 10.2), there exists $h \in C^\infty(M^\phi)$ such that $f_\varphi - \Phi(g) - B \cdot h$ is flat on $\varphi^{-1}(Y_{\mu+1})$, as required.

Proof of Lemma 11.14. - If $(\beta, j) \in \mathcal{R}_\mu$, then $D^\beta G_{j,b} = 0$, for all $b \in \varphi(X)$. Hence it is enough to prove the assertion for $(\beta, j) \notin \mathcal{R}_\mu$. Let $a \in X$, $a = (a_1, \ldots, a_s)$. We have $\tilde{f}_{a,i} - \tilde{A}_{a,i}(G_{\varphi(a)} \Phi^*_a) \in \text{Im } \tilde{B}_{d,i}$, $i = 1, \ldots, s$; i.e., $(\tilde{f}_{a,i})_{1 \leq i \leq s} = \Phi^*_a(G_{\varphi(a)}) \in \text{Im } \tilde{B}_{a,i}$.

For each $\ell \in \mathbb{N}$, let $'F_a$ (respectively, $'G_a$) denote the image of $(\tilde{f}_{a,i})_{1 \leq i \leq s}$ (respectively, of $G_{\varphi(a)}$) by the lower (respectively, upper) horizontal arrow in the completion of the left-hand diagram (8.2.6); thus,

$$'F_a - \tilde{A}_{a,i}.'G_a \in \text{Im } \tilde{B}_{a,i}.$$
Recall that \(\hat{G}_a \) is the element of \(\bigoplus_{\beta \in \mathbb{N}^n} \hat{\mathcal{O}}_{X,a} \) induced by \((D^\theta G_{\psi(a)} \hat{\phi}_a)_{\beta \in \ell} \). Write \(\hat{G}_a = (G^\beta_a)_{\beta \in \ell, 1 \leq j \leq q} \), where each \(G^\beta_{j,a} \in \hat{\mathcal{O}}_{X,a} \) and \(G^\beta_a = (G^\beta_{j,a})_{1 \leq j \leq q} \). Then \(G^\beta_{j,a} = 0 \) for all \((\beta,j) \in \mathfrak{N}_a \).

We use the notation of 8.2, 8.3. Let \(k \in \mathbb{N} \). According to Theorem 8.2.5. (1), there exists \(\ell = \ell(k) \in \mathbb{N} \) such that \(\ell(k,a) \leq \ell \) for all \(a \in X \). Let \(\rho_{r,k}(X) = \max_{a \in X} \rho_{r,k}(a) \) and let \(\sigma_{r,k}(X) = \max_{a \in X} \sigma^\ell_{r,k}(a) \).

Put \(Y_{r,k} = \{ a \in X : \rho_{r,k}(a) < \rho_{r,k}(X) \} \) and \(Z_{r,k} = \{ a \in X : \sigma^\ell_{r,k}(a) < \sigma_{r,k}(X) \} \). Then \(Y_{r,k} \) and \(Z_{r,k} \) are proper analytic subsets of \(X \). Let \(a \in X \). Define \(T^X_{r,k}(a) \) and \(\hat{T}_{r,k,a} \) as in 8.3. From (11.15):

\[
\text{ad} \sigma_{r,k}(X) \hat{S}_{r,k,a} \circ \text{Ad}^\rho_{r,k}(X) \hat{D}_{r,k,a} \cdot \hat{F}_a = \hat{T}_{r,k,a} \cdot \hat{G}_a,
\]

where \(\hat{S}_{r,k,a} = \text{Ad}^\rho_{r,k}(X) \hat{D}_{r,k,a} \circ \hat{B}_{r,k,a} \).

Let \(e(k) \) denote the number of exponents \((\beta,j) \in \mathbb{N}^n \times \{1, \ldots, q\} \) such that \((\beta,j) \notin \mathfrak{N}_a \) and \(|\beta| \leq k \). Suppose \(a \in X - (Y_{r,k} \cup Z_{r,k}) \). By the formal division algorithm (Theorem 6.2) and Remarks 8.2.4 and 8.3.1, rank \(T^X_{r,k}(a) = e(k) \); moreover, if \(V_a(k) \) denotes the subspace

\[
\{ G = (G^\beta_{j,a})_{\beta \in \mathbb{N}^n, 1 \leq j \leq q} \in \bigoplus_{\beta \in \mathbb{N}^n} (\mathcal{O}_{X,a}/m_{X,a} \cdot \hat{\mathcal{O}}_{X,a})^q : G^\beta_{j,a} = 0 \text{ if } (\beta,j) \notin \mathfrak{N}_a \},
\]

then rank \(T^X_{r,k}(a) \mid V_a(k) = e(k) \).

By the induction hypothesis and Cramer’s rule, there is a minor \(\delta = \delta_a \) of order \(e(k) \) of \(T^X_{r,k} \) such that \(\delta \) is not identically zero on \(X \) and such that, for all \(a \in X \) and \((\beta,j) \notin \mathfrak{N}_a, |\beta| \leq k \),

\[
(11.16) \quad \delta_a \cdot G^\beta_{j,a} = (\xi^\beta_{j,a})^\wedge_a,
\]

where \(\xi^\beta_{j,a} \in \mathcal{C}^\infty(X) \) is the restriction to \(X = X_a - \varphi^{-1}(Y_a) \) of a \(\mathcal{C}^\infty \) function on \(U_a \) which is flat on \(\varphi^{-1}(Y_a) \). The minor \(\delta \) is the restriction to \(X \) of an analytic function defined on \(U_a \) (which we also denote \(\delta \)).

Suppose \((\beta,j) \notin \mathfrak{N}_a, |\beta| \leq k \). By Whitney’s extension theorem [27, I.4.1], there exists \(\eta^\beta_{j,a} \in \mathcal{C}^\infty(U_a) \) such that \(\eta^\beta_{j,a} \) is flat on \(W_a - X \) and \(\eta^\beta_{j,a} \mid X = \xi^\beta_{j,a} \). Then, by (11.16) and (5) above, for all \(a \in U_a \), \(\eta^\beta_{j,a} \) belongs to the ideal in \(\mathcal{O}_{U_a} \) generated by \(\delta_a \) and the \(\delta_{\mu,a} \). By Theorem 10.1, there exists \(h^\beta_{j,a} \in \mathcal{C}^\infty(U_a) \) such that \(\eta^\beta_{j,a} - \delta \cdot h^\beta_{j,a} \) belongs to the ideal generated by the \(\delta_{\mu,a} \) in \(\mathcal{C}^\infty(U_a) \). Then \(h^\beta_{j,a} \) vanishes on \(X - X \) and, if \(g^\beta_{j,a} = h^\beta_{j,a} \mid X \), then \(g^\beta_{j,a} = G^\beta_{j,a} \) for all \(a \in X \), as required.
CHAPTER III

SEMICONTINUITY RESULTS

12. Algebraic morphisms.

Let $K = \mathbb{R}$ or \mathbb{C}. Let $K[x]$ (respectively, $K[[x]]$) denote the ring of polynomials (respectively, formal power series) in $x = (x_1, \ldots, x_m)$.

Definition 12.1. Let U be an open subset of K^m. An analytic function $f \in \mathcal{O}(U)$ is Nash if it is algebraic over the ring $K[x]$ of polynomials in the coordinates $x = (x_1, \ldots, x_m)$ of K^m; i.e., there is a nonzero polynomial $P(x, y) \in K[x, y]$ such that $P(x, f(x)) = 0$ for all $x \in U$. Let $N(U)$ denote the ring of Nash functions on U.

We can define a category of Nash manifolds and Nash mappings using, as local models, open subsets U of K^m, $m \in \mathbb{N}$, together with the rings $N(U)$.

Theorem 12.2. Let M and N denote Nash manifolds, and let $\varphi : M \to N$ be a Nash mapping. Let A and B be $p \times q$ and $p \times r$ matrices, respectively, whose entries are Nash functions on M. We use the notation of 8.2, 8.4. Let $s \in \mathbb{N}$. Assume that N is an open subset of K^s. Then the diagram of initial exponents $\mathcal{N}_s = \mathcal{N}(\mathcal{R}_s)$ is Zariski semicontinuous on M^p.

Remarks 12.3. (1) Our proof of Theorem 12.2 together with Proposition 9.6 in fact establishes 12.2 under the following more general hypothesis: Let M and N denote analytic manifolds. Let $\varphi : M \to N$ be an analytic mapping, and A, B matrices of analytic functions on M, satisfying the following condition: For every $a \in M$, there are (analytic) coordinate neighborhoods U of a in M and V of $\varphi(a)$ in N, such that $\varphi(U) \subseteq V$ and both the components of $\varphi|U$ and the entries of $A|U$ and $B|U$ belong to $N(U)$.

(2) In the special case that M and N are algebraic manifolds, φ is a regular (rational) mapping, and A, B are matrices of regular functions on M, our proofs actually show that \mathcal{N}_s is Zariski semicontinuous in the algebraic sense; i.e., for each $a \in M^p$, $\{x \in M^p : \mathcal{N}_s \geq \mathcal{N}_s\}$ is a closed algebraic subset of M^p.

To prove Theorem 12.2, we will use a version of « Artin approximation with respect to nested subrings » (cf. [2], [3], [33]) :

Definition 12.4. — A formal power series $f(x) \in K[[x]]$ is algebraic if it is algebraic over $K[x]$. The algebraic elements of $K[[x]]$ form a subring which we denote $K\langle x \rangle$.

Clearly, $K\langle x \rangle \subset K\{x\}$, the ring of convergent power series. Let $(x) = (x_1, \ldots, x_m)$ denote the ideal in $K[[x]]$ generated by x_1, \ldots, x_m.

Remark 12.5 [3]. — Let $f_i(x) \in K[[x]]$. Then $f_i(x)$ is algebraic if and only if there exist $r \in \mathbb{N}$, $f_i(x) \in K[[x]]$, $i = 2, \ldots, r$, and $F_j(x,y) \in K[x,y]$, $j = 1, \ldots, r$ where $y = (y_1, \ldots, y_r)$, such that :

1. $F(x,f(x)) = 0$, where $f = (f_1, \ldots, f_r)$ and $F = (F_1, \ldots, F_r)$;

2. $\det \left(\frac{\partial F_i}{\partial y_j} \right)(0,f(0)) \neq 0$.

Theorem 12.6. — Let

$$f(x,y,u,v) = 0$$

be a system of equations in $x = (x_1, \ldots, x_m)$, $y = (y_1, \ldots, y_n)$, $u = (u_1, \ldots, u_p)$ and $v = (v_1, \ldots, v_q)$, where $f = (f_1, \ldots, f_r)$ and each $f_j \in K\langle x, y, u, v \rangle$. Assume that f is linear with respect to v; i.e.,

$$f(x,y,u,v) = \sum_{i=0}^{q} v_i g_i(x,y,u),$$

where $v_0 = 1$ and each $g_i \in K\langle x, y, u \rangle$. Suppose that (12.7) admits a solution $u = \hat{u}(x) \in K[[x]]^p$, $v = \hat{v}(x,y) \in K[[x,y]]^q$, where $\hat{u}(0) = 0$. Then, for all $t \in \mathbb{N}$, (12.7) has a solution $u = u(x) \in K\langle x \rangle^p$, $v = v(x,y) \in K\langle x, y \rangle^q$ such that $u(x) - \hat{u}(x) \in (x)^t K[[x]]^p$ and $v(x,y) - \hat{v}(x,y) \in (x,y)^t K[[x,y]]^q$.

Remark 12.8. — The analogue of Theorem 12.6 for convergent power series is false : Let $f(x) = f(x_1, x_2)$ and $\varphi_i(x)$, $i = 1, 2, 3$, be as in Example 2.8. Then the equation $f(x) - g(y) = \sum_{i=1}^{3} h_i(x,y)(y_i - \varphi_i(x))$ admits a formal solution $g(y)$, $h_i(x,y)$, $i = 1, 2, 3$, but no such convergent solution.
LEMMA 12.9. — Theorem 12.6 holds under the stronger assumption that each $f_i(x,y,u,v) \in K[x,y,u,v]$. (In this case, it is unnecessary to assume $u(0) = 0$.)

Proof. — For convenience, we make the following change of notation: v will mean (v_0, v_1, \ldots, v_q), where $v_0 = 1$. We also put $\hat{v}(x,y) = (\hat{v}_0(x,y), \ldots, \hat{v}_q(x,y))$, where $\hat{v}_0(x,y) = 1$. Let A denote the localization of the ring $K[[x,y]]$ at the ideal generated by x and y. Let \hat{A} denote the completion of A; of course, $\hat{A} = K[[x,y]]$.

Each $g_i(x,y,\hat{u}(x)) \in A$. Since $v = \hat{v}(x,y)$ is a solution of the system

$$\sum_{i=0}^{q} v_i g_i(x,y,\hat{u}(x)) = 0,$$

then, by Krull's theorem, there is a solution $v = \hat{v}(x,y)$, where $\hat{v}_0 = 1$ and each $\hat{v}_i(x,y) \in A$. Clearly, \hat{v} can be chosen to approximate v to any given order.

We can write $\hat{v}(x,y) = \hat{w}(x,y)/\hat{w}_0(x,y)$, where $\hat{w} = (\hat{w}_0, \ldots, \hat{w}_q)$, each $\hat{w}_i \in K[[x,y]]$ and $\hat{w}_0(0,0) \neq 0$. Then $\sum_i \hat{w}_i(x,y)g_i(x,y,\hat{u}(x)) = 0$. Write each \hat{w}_i and g_i as a polynomial in y_1, \ldots, y_n:

$$\hat{w}_i(x,y) = \sum_{\alpha} \hat{w}_i(\alpha)(x)y^\alpha \in K[[x,y]]$$

and

$$g_i(x,y,u) = \sum_{\alpha} g_{i\alpha}(x,u)y^\alpha \in K[x,u][y]^r,$$

where α denotes a multiindex in N^n. Then $u = \hat{u}(x)$, $w_{i\alpha} = \hat{w}_{i\alpha}(x)$ is a formal solution of the system of polynomial equations

$$\sum_{i=0}^{q} \sum_{\alpha+\beta=\gamma} \hat{w}_{i\alpha}g_{i\beta}(x,u) = 0, \quad \gamma \in N^n.$$

By Artin's theorem [2, Thm. 1.10], there is an algebraic solution $u = u(x)$, $w_{i\alpha} = w_{i\alpha}(x)$ which approximates the given formal solution to any specified order.

Put $w_i(x,y) = \sum_{\alpha} w_{i\alpha}(x)y^\alpha$ and $v(x,y) = w(x,y)/w_0(x,y)$, where $w = (w_0, \ldots, w_q)$. Then $u = u(x)$, $v = v(x,y)$ is an algebraic solution of (12.7). Clearly, the solution can be chosen to approximate $\hat{u}(x)$, $\hat{v}(x,y)$ to any specified order.

Proof of Theorem 12.6. — We make the same notational changes as in Lemma 12.9: v will mean $v = (v_0, v_1, \ldots, v_q)$, where $v_0 = 1$, etc. Write $g_i = (g_{i1}, \ldots, g_{iq})$, $i = 0, \ldots, q$, where each $g_{iy} \in K[x,y,u]$. By Remark 12.5, there exist $s \in N$, $s > q$, as well as $g_{iy}(x,y,u) \in K[x,y,u]$, $i = 0, \ldots, q$, $j = 1, \ldots, r$, and $G_{k\ell}(x,y,u,z) \in K[x,y,u,z]$.

RELATIONS AMONG ANALYTIC FUNCTIONS

$k = 0, \ldots, s$, $\ell = 1, \ldots, r$, where $z = (z_y)$, $i = 0, \ldots, s$, $j = 1, \ldots, r$, such that:

1. $G(x, y, u, g(x, y, u)) = 0$, where $g = (g_{ij})$, $G = (G_{kr})$;
2. $\det \left(\frac{\partial G}{\partial z} \right)(0, g(0)) \neq 0$.

By the implicit function theorem,

$$z - g(x, y, u) + g(0) = c(x, y, u, z)G(x, y, u, g(0) + z),$$

where $c(x, y, u, z) = (c_{ijk}(x, y, u, z))$ is a matrix whose rows are indexed by (i, j) and whose columns are indexed by (k, ℓ). Each entry $c_{ijk}(x, y, u, z) \in K \langle x, y, u, z \rangle$. Then, for each $j = 1, \ldots, r$,

$$\sum_{i=0}^{q} v_i g_{ij}(x, y, u)$$

$$= \sum_{i=0}^{q} v_i (g_{ij}(0) + z_{ij}) - \sum_{i=0}^{q} \sum_{k=1}^{r} v_i c_{ijk}(x, y, u, z)G_{kr}(x, y, u, g(0) + z).$$

Consider the system of polynomial equations

$$(12.10) \quad \sum_{i=0}^{q} v_i (g_{ij}(0) + z_{ij}) = \sum_{k=1}^{r} w_{jk} g_{kj}(x, y, u, g(0) + z),$$

$j = 1, \ldots, r$, where u, v and $w = (w_{jk})$ are the unknowns. Then (12.10) admits a formal solution $u = \hat{u}(x)$, $v = \hat{v}(x, y)$ and $w_{jk} = \tilde{w}_{jk}(x, y, z) = \sum_{i=0}^{q} \hat{v}_i (x, y) c_{ijk}(x, y, \hat{u}(x), z)$. Let $t \in \mathbb{N}$. By Lemma 12.9, there exist $u = u(x) \in K \langle x \rangle^p$, $v = v'(x, y, z) \in K \langle x, y, z \rangle^{q+1}$ and $w_{jk} = w_{jk}(x, y, z) \in K \langle x, y, z \rangle$ such that $v_0'(x, y, z) = 1$, $u(x) - \hat{u}(x) \in (x)^t K[[x]]^p$, $v'(x, y, z) - \hat{v}(x, y) \in (x, y, z)^t K[[x, y, z]]^{q+1}$, and

$$(12.11) \quad \sum_{i=0}^{q} v_i'(x, y, z) (g_{ij}(0) + z_{ij}) = \sum_{k=1}^{r} w_{ij} g_{kj}(x, y, u(x), g(0) + z),$$

$j = 1, \ldots, r$. Substitute $z_{ij} = g_{ij}(x, y, u(x)) - g_{ij}(0)$ into (12.11), to get

$$\sum_{i=0}^{q} v_i(x, y) g_i(x, y, u(x)) = 0,$$

where $v_i(x, y) = v_i'(x, y, g(x, y, u(x)) - g(0))$, $i = 0, \ldots, q$. ⊓⊔
Remark 12.12. — Let \(f_i(x) \in \mathbb{C}\langle x \rangle = \mathbb{C}\langle x_1, \ldots, x_m \rangle \). Let \(f_i(x) \), \(i = 2, \ldots, r \), and \(F_j(x, y) \), \(j = 1, \ldots, r \), \(y = (y_1, \ldots, y_r) \), be as in Remark 12.5. Put \(Z = \{(x, y) \in \mathbb{C}^{m+r} : F(x, y) = 0\} \). We can assume that the projection \(\pi(x, y) = x \) of \(Z \) onto \(\mathbb{C}^m \) is finite. The smooth points of \(Z \) which are not critical points of \(\pi \) project onto the complement of a proper algebraic subset \(V \) of \(\mathbb{C}^m \). Clearly, \(f_i \) extends to \(\mathbb{C}^m - V \) as a multivalued holomorphic function, whose various determinations are algebraic at every point of \(\mathbb{C}^m - V \). By differentiating the system of equations \(F(x, f(x)) = 0 \) with respect to \(x_j \), we can see that the partial derivative \(\partial f_i / \partial x_j \) also extends to \(\mathbb{C}^m - V \) as a multivalued holomorphic function whose various determinations are algebraic at every point.

Proof of Theorem 12.2. — By Lemma 9.5, we can assume that \(M \) is connected. Let \(a_0 \in M \cap U \), \(a = (a^1, \ldots, a^s) \). Let \(\Phi_\ast : \mathbb{C}_d(\Phi_{\ast}(a)) \to \mathbb{C}_d(\Phi_{\ast}(a)) \) and \(B_\ast : \mathbb{C}_d(\Phi_{\ast}(a)) \to \mathbb{C}_d(\Phi_{\ast}(a)) \), as well as \(\hat{\Phi}_\ast \) and \(\hat{B}_\ast \), be as in 8.2. Let \(G \in \mathbb{C}_d(\Phi_{\ast}(a)) \) and \(H \in \mathbb{C}_d(\Phi_{\ast}(a)) \). Put \(f = \Phi_\ast(G) + \hat{B}_\ast(H) \in \mathbb{C}_d(\Phi_{\ast}(a)) \), \(f = (f^1, \ldots, f^r) \). Suppose each \(f^i \in \mathbb{C}_d(\Phi_{\ast}(a)) \) is algebraic. Let \(t \in \mathbb{N} \). Then there exist \(g \in \mathbb{C}_d(\Phi_{\ast}(a)) \) and \(h \in \mathbb{C}_d(\Phi_{\ast}(a)) \) such that \(g \) and \(h \) are algebraic, \(f = \Phi_\ast(g) + \hat{B}_\ast(h) \), and \(g - G \in m_{\Phi_{\ast}(a)}^{1} \cdot \mathbb{C}_d(\Phi_{\ast}(a)) \), \(h - H \in m_{\Phi_{\ast}(a)}^{1} \cdot \mathbb{C}_d(\Phi_{\ast}(a)) \).

Proof. — Write \(H = (H^1, \ldots, H^r) \). Then

\[
(12.14) \quad f^i(x) = \hat{A}_{d}(x) \cdot G(\Phi_{\ast}(x) - \varphi(a^i)) + \hat{B}_{d}(x) \cdot H^i(x),
\]

\(i = 1, \ldots, s \). In other words, for each \(i = 1, \ldots, s \), there is a \(p \times n \) matrix \(Q^i(x, y) \) with entries in \(\mathbb{K}[[x, y]] \) such that

\[
(12.15) \quad f^i(x) - \hat{A}_{d}(x) \cdot G(y) - \hat{B}_{d}(x) \cdot H^i(x) = Q^i(x, y) \cdot (y - \Phi_{\ast}(x) + \varphi(a^i)).
\]
In this system of equations, $G(y)$ and the $H_i(x), Q^x(y)$ are the «unknowns». Since A, B and φ are algebraic, then, by Theorem 12.6, there is an algebraic solution $g(y), h^i(x,y), q^x(y)$ of (12.15); i.e.,

\begin{equation}
(12.16) \quad f^i(x) - \hat{A}_{d}(x) \cdot g(y) - \hat{B}_{d}(x) \cdot h^i(x,y) = q^x(x,y) \cdot (y - \hat{\varphi}_{d}(x) + \varphi(a^i)),
\end{equation}

\[i = 1, \ldots, s, \] such that $g(y) - G(y) \in (y)^r \cdot K[[y]]^q$ and each $h^i(x,y) - H^i(x) \in (x,y)^r \cdot K[[x,y]]^r$. Substitute $y = \hat{\varphi}_{d}(x) - \varphi(a^i)$ back into (12.16), for each i, to see that $g(y), h^i(x) = \hat{h}^i(x,\hat{\varphi}_{d}(x) - \varphi(a^i))$ is a solution of (12.14); clearly $h^i(x) - H^i(x) \in (x,y)^r \cdot K[[x,y]]^r$.

\begin{corollary}
Corollary 12.17. \quad \mathcal{R}_a = \{ G \in \hat{\Phi}_{a}(G) : \Phi_a(G) \in \text{Im} \hat{B}_a \} is generated by algebraic elements.
\end{corollary}

Proof. \quad Let (β,j) be a vertex of $\mathfrak{N}_a = \mathfrak{N}(\mathcal{R}_a)$. By Lemma 12.13, there exists $g \in \mathcal{R}_a$ such that g is algebraic and in $g = j^{\beta,j}$.

We now complete the proof of Theorem 12.2. We can assume that $K = C$. Let X denote an irreducible germ at a_0 of a closed analytic subset of M'_a. We can assume that X is a closed analytic subset of U and that its smooth points are connected. Let \mathfrak{N}_X denote the generic diagram of initial exponents (Definition 8.4.3). By Proposition 8.4.6(1), it suffices to find a proper closed analytic subset W of X such that $\mathfrak{N}_a = \mathfrak{N}_X$ for all $a \in X - W$.

Let $(\beta_\ell,k_\ell), \ell = 1, \ldots, t,$ denote the vertices of \mathfrak{N}_X. Let $k = k(X)$ as in Definition 4.4.1, so that each $|\beta_\ell| \leq k$. Let D_k be as in (3.3.2) and let $Z \subset X$ be as in Remark 8.4.4. By Lemma 8.4.5, $\mathfrak{N}_a = \mathfrak{N}_X$ for all $a \in D_k \cap (X - Z)$.

Let $a_1 \in D_k \cap (X - Z), \ a_i = (a^1_i, \ldots, a^t_i)$. Put $b_1 = \varphi(a_i)$. Let $G'(y) = y^{\beta_\ell,k_\ell} - r'(y), \ell = 1, \ldots, t,$ denote the standard basis of \mathcal{R}_a, so that $\text{supp} r' \cap \mathfrak{N}_X = \emptyset$; for each ℓ. By Corollaries 6.8 and 12.17, each $G'(y)$ is convergent. Thus, for b in some neighborhood of b_1, we can substitute $b - b_1 + y$ into G', and expand in powers of y:

\[G'(b - b_1 + y) = (b - b_1 + y)^{\beta_\ell,k_\ell} - r'(b - b_1 + y) = y^{\beta_\ell,k_\ell} - r'(y), \]
where \(\text{supp } r_i(y) \cap \mathfrak{M}_X = \emptyset \). For \(a \) in a sufficiently small neighborhood of \(a_i \) in \(M_v \), put \(G'_i(y) = G'(\phi(a) - b_1 + y) \). Then \(G'_i(y) = y^{b_{\ell},k_\ell} - r'_i(y) \), where \(r'_i = r'_{\phi(a)} \). Clearly, \(G'_i \in \mathfrak{R}_a \). If \(a \in X - Z \), then \(\mathfrak{N}_a \subset \mathfrak{M}_X \) by Proposition 8.4.6.(2), and it follows that in \(G'_i = y^{b_{\ell},k_\ell} \). In particular, \(\mathfrak{N}_a = \mathfrak{M}_X \) in a neighborhood of \(a_i \) in \(X \).

By Lemma 12.13, for each \(\ell = 1, \ldots, t \), there exist \(g' \in \hat{\mathcal{O}}^q_{\phi(a_i)} \), \(h_\ell \in \bigoplus \hat{\mathcal{O}}'_{a_i} \), \(h_\ell = (h_{1,\ell}, \ldots, h_{s,\ell}) \), such that \(g' \) and each \(h_\ell \) are algebraic, in \(g' = y^{b_{\ell},k_\ell} \), and \(\Phi_{a_i}(g') = B_{a_i}(h_\ell) \). In particular, \(g' \in \mathfrak{R}_a \). For each \(\ell = 1, \ldots, t \), put

\[
G'(v; y) = \sum_{\beta \in \mathbb{N}^n} (D^\beta g'(v)) \frac{y^\beta}{\beta!} \in \hat{\mathcal{O}}_{h_1}[[y]]^q,
\]

\[
H^i_\ell(u; x) = \sum_{x \in \mathbb{N}^m} (D^x h_\ell(x)) \frac{x^u}{u!} \in \hat{\mathcal{O}}_{a_i}[[x]]', \quad i = 1, \ldots, s,
\]

where \(u = (u_1, \ldots, u_m) \) and \(v = (v_1, \ldots, v_n) \). By the formal division algorithm (cf. Remark 6.5),

\[
(12.18) \quad y^{b_{\ell},k_\ell} = \sum_{j=1}^{t} Q_j(v; y) G'(v; y) + R'(v; y),
\]

\(\ell = 1, \ldots, t \), where, for each \(\ell \),

\(Q_\ell(v; y) \in \hat{\mathcal{O}}_{h_\ell}[[y]] \), \quad \(R'(v; y) \in \hat{\mathcal{O}}_{h_1}[[y]]^q \), \quad \text{supp } R'(v; y) \cap \mathfrak{M}_X = \emptyset,

and the coefficients of \(Q_\ell \) and \(R' \) (as elements of \(\hat{\mathcal{O}}_{h_\ell} \)) are algebraic. (They are linear combinations of the coefficients of the \(G'(v; y) \) divided by products of powers of the \(D^b g'_{\ell}(v) \), where \(g' = (g'_1, \ldots, g'_t) \).)

For each \(\ell = 1, \ldots, t \), write

\[
R'(v; y) = \sum_{\beta \neq \mathfrak{R}_X} \bar{R}_{\beta,j}(v) y^{\beta,j}.
\]

It follows from Remark 12.12 that there exist :

(1) A proper algebraic subset \(V \) of \(\mathbb{N} \) such that \(b_1 \notin V \), and, for each \(i = 1, \ldots, s \), a proper algebraic subset \(W^i \) of \(U^i \) such that \(a_i^j \notin W^i \).
(2) For each $\ell = 1, \ldots, t$ and $(\beta, j) \notin N_X$, an (a priori, multivalued) analytic function $p_{\beta, j}^\ell$ defined on $N - V$, such that $\hat{R}_{\beta, j}^\ell(v)$ is the formal Taylor expansion $(\hat{R}_{\beta, j}^\ell)^\prime\left(v\right)$ of some branch $R_{\beta, j}^\ell$ of $p_{\beta, j}^\ell$ at b_1. Likewise, for each $\ell = 1, \ldots, t$, multivalued analytic functions defined on $N - V$ (respectively, multivalued analytic functions defined on $U^i - W^i$, $i = 1, \ldots, s$) which extend the coefficients of Q_ℓ (respectively, the coefficients of H_i, $i = 1, \ldots, s$).

For each $\ell = 1, \ldots, t$, write $r^\ell_\alpha(y) = \sum_{(\beta, j) \notin N_\alpha} r^\ell_{\beta, j}(a) y^{\beta, j}$. We claim that, for a in a sufficiently small neighborhood of a_1 in $X - Z$,

$$r^\ell_{\beta, j}(a) = R^\ell_{\beta, j}(\phi(a)),$$

for all ℓ, β, j. Indeed, if a belongs to a suitable neighborhood of a_1, then $R^\ell_{\beta, j}(\phi(a)) = \hat{R}_{\beta, j}^\ell(\phi(a) - b_1)$ and $G^\ell(\phi(a) - b_1; y) = g^\ell(\phi(a) - b_1 + y) \in R_*$. Thus $y^{\beta, \ell} - R^\ell(\phi(a) - b_1; y) \in R_*$. Moreover, $\text{supp} R^\ell(\phi(a) - b_1; y) \cap N_X = \emptyset$.

For a close enough to a_1 in $X - Z$, $N_* = N_X$, so that

$$G^\ell(y) = y^{\beta, \ell} - R^\ell(\phi(a) - b_1; y),$$

by uniqueness of the standard basis; hence (12.19).

Let $W = X \cap (\phi^{-1}(V) \cup \bigcup_{i=1}^s (\mu^i)^{-1}(W^i))$, where $\mu^i : M^i_0 \to M$ denotes the projection $\mu^i(x) = x^i$, $x = (x^1, \ldots, x^s)$. Then W is a closed analytic subset of X, and $a_1 \notin W$. By (12.19) and (2) above, the coefficients $r^\ell_{\beta, j}(a)$ of each $G^\ell_\alpha(y) = y^{\beta, \ell} - r^\ell_\alpha(y)$, as well as the coefficients of the Q_ℓ composed with ϕ, and the coefficients of the H_i, can be analytically continued (as multivalued functions) throughout $X - W$. By continuity and (12.18), if $a \in W$, then any analytic continuation of (the coefficients of) $G^\ell_\alpha(y)$ to a results in an element of R_*. If $a \in X - (Z \cup W)$, then $N_* \subset N_X$; it follows from uniqueness of the standard basis that any analytic continuation of $G^\ell_\alpha(y)$ to a gives the same result, and that $N_* = N_X$. \qed
13. Regular mappings.

Let $K = \mathbb{R}$ or \mathbb{C}.

Theorem 13.1. Let M and N be analytic manifolds (over K) and let $\varphi : M \to N$ be an analytic mapping. Suppose that φ is regular (as in 2.7). Let $s \in N$. For each $a \in M_s$, let H_a denote the Hilbert-Samuel function of the ring $\mathcal{O}_{\varphi(a)}/\mathcal{R}_a$, where $\mathcal{R}_a = \bigcap_{i=1}^s \ker \varphi_a^*$, $a = (a^1, \ldots, a^s)$. Then H_a is Zariski semicontinuous on M_s.

Remark 13.2 (Tougeron). If $s = 1$, the uniform Chevalley estimate (8.2.5(1)) can be proved using results of [39].

Remark 13.3. Let V be an analytic manifold, and let Z be a closed analytic subset of V. We denote by \mathcal{I}_Z the subsheaf of ideals of \mathcal{O}_V of germs of analytic functions which vanish on Z. Suppose that $\dim V = n$ and that Z has pure dimension $n - 1$. Let $b \in V$. Then $\mathcal{I}_{Z,b}$ is a principal ideal. Let μ be as in Remark 6.10(2); we call $\mu_Z(b) = \mu$ the multiplicity of Z at b. Thus $\mu_Z(b)$ is the largest $\mu \in \mathbb{N}$ such that $\mathcal{I}_{Z,b} \subseteq m_b^\mu$, where m_b is the maximal ideal of $\mathcal{O}_{V,b}$.

Proof of Theorem 13.1. By Lemma 9.5, we can assume that the generic rank $r_1(a)$ of φ near a is constant on M; say $r_1(a) = n - k$, $a \in M$. Let $a_0 \in M_0$, $a_0 = (a^1_0, \ldots, a^s_0)$. Put $b_0 = \varphi(a_0)$. We can assume that N is an open subset of K^n and $b_0 = 0$. Since φ is regular, then, after replacing M and N by suitable neighborhoods of $\{a^1_0, \ldots, a^s_0\}$ and b_0 (respectively) if necessary, there is a closed analytic subset Z of N of dimension $n = k$, such that $\varphi(M) \subseteq Z$ and $\mathcal{I}_{Z,0} = \bigcap_{i=1}^s \ker \varphi_{a^i_0}$.

The result is trivial if $k = 0$. Suppose that $k = 1$. We can assume that $K = \mathbb{C}$ and that Z has pure dimension $n - 1$. Since Z is coherent, the multiplicity of Z is Zariski semicontinuous, by Theorem 7.4 and Remark 6.10. Let $\eta : Z' \to Z$ denote the normalization of Z. Since η is finite, it follows that (after shrinking N if necessary) there is a filtration of Z by closed analytic subsets,

$$Z = Z_0 \supseteq Z_1 \supseteq \ldots \supseteq Z_{t+1} = \emptyset,$$
such that, for each \(i = 0, \ldots, t \):

1. \(Z_i - Z_{i+1} \) is smooth and connected.

2. Let \(Z'_i = \eta^{-1}(Z_i) \). Then \(\eta'(Z'_i - Z'_{i+1}) : Z'_i - Z'_{i+1} \to Z_i - Z_{i+1} \) is a smooth covering projection.

3. The multiplicity of \(Z \) is constant on \(Z_i - Z_{i+1} \).

It follows from (2) that, for each \(i \), there are finitely many analytic sets \(Z_y \) defined in a neighborhood of \(Z_i - Z_{i+1} \), such that, for all \(b \in Z_i - Z_{i+1} \), the germs \(Z_{y,b} \) of the \(Z_y \) at \(b \) are the distinct irreducible components of \(Z_b \). Then, by (3), for each \(i \) and \(j \), the multiplicity of \(Z_{y,b} \) is constant on \(Z_i - Z_{i+1} \).

Let \(X_i = \varphi^{-1}(Z_i) \), \(i = 0, \ldots, t \). Suppose that \(a = (a^1, \ldots, a^{t}) \in X_i - X_{i+1} \). Then, for each \(\ell = 1, \ldots, s \), there is a \(j \) such that \(\text{Ker } \varphi^*_i = \mathcal{I}_{Z_{y,b}(a)} \). It follows that \(\text{Ker } \varphi^*_x = \mathcal{I}_{Z_{y,b}(a)} \) for \(x = (x^1, \ldots, x^t) \) in some neighborhood of \(a \) in \(X_i - X_{i+1} \). Therefore, by Remark 6.10, the Hilbert-Samuel function \(H_\bullet \) is constant on each connected component of \(X_i - X_{i+1} \). By Proposition 8.3.7, \(H_\bullet \) is Zariski semicontinuous on \(M^t \). This completes the proof in the case \(k = 1 \).

In general, by the representation theorem for germs of analytic sets [32, Ch. III], we can assume:

1. There is a neighborhood \(V' \) of \(0 \) in \(K^{n-k} \) such that \(N = V' \times K \subset K^{n-k} \times K^k \).

2. Let \(y = (y_1, \ldots, y_n) \) denote the coordinates in \(K^n \). Then, for each \(i = 1, \ldots, k \), there is a monic polynomial \(P_i \in \mathcal{O}(V')[Y_{n-i+1}] \) such that \(P_i \) vanishes on \(Z \).

3. Let \(d_i = \text{degree } P_i \), \(i = 1, \ldots, k \). Put \(P = P_k \) and \(d = d_k \). Let \(\Delta(y_1, \ldots, y_{n-k}) \) denote the discriminant of \(P \). Then \(\Delta \) is not identically zero and, for all \(j = 1, \ldots, d \) and all \(\alpha = (\alpha_1, \ldots, \alpha_d) \in N^k \) with \(0 \leq \alpha_i < d_i, i = 1, \ldots, k \), there exists \(v_{\alpha} \in \mathcal{O}(V') \) such that

\[
Q_\alpha = \Delta \cdot y_{n-k+1}^{\alpha_{n-k+1}} \cdots y_n^{\alpha_n} - \sum_{j=1}^{d} v_{\alpha_j} \cdot y_{n-k+1}^{d-j}
\]

vanishes on \(Z \).

Suppose \(a = (a^1, \ldots, a^t) \in M^t \) and \(b = \varphi(a) \), \(b = (b_1, \ldots, b_n) \). Set \(b' = (b_1, \ldots, b_{n-k}) \). Suppose \(G \in \mathcal{O}_{b'} = K[[y]] \). Then, by the formal Weierstrass division theorem, there exist \(G_{\alpha} \in \mathcal{O}_{b'}, 0 \leq \alpha_i < d_i, \)
\[G = \sum_{0 < n_i < d_i} G_i \cdot y^2_{n-k+1} \cdots y^2_{n} \in (P_i) \cdot \mathcal{O}_b, \]

where \((P_i)\) denotes the ideal of \(\mathcal{O}_b\) generated by the \(P_i\). By (3), there exist \(H_j \in \mathcal{O}_{b^j}, j = 1, \ldots, d\), such that

\[\Delta_p \cdot G - \sum_{j=1}^{d} H_j \cdot y^{d-1}_{n-k+1} \in (P_i, Q_i) \cdot \mathcal{O}_b. \]

Let \(\pi : N \to V = V' \times K\) denote the projection \(\pi(y_1, \ldots, y_n) = (y_1, \ldots, y_{n-k+1})\). Put \(\psi = \pi \circ \phi\). Then \(\psi\) is regular and has generic rank \(n-k\). If \(G \in \bigcap \ker \mathcal{O}_{a^*}\), then \(H = \sum_{j=1}^{d} H_j \cdot y^{d-1}_{n-k+1} \in \bigcap \ker \mathcal{O}_{a^*}\). It follows from the case \(k = 1\) and Theorems 8.2.5 and 9.1, that there is a neighborhood \(U'\) of \(a_0\) in \(M_{\phi}\) and a filtration of \(U'\) by closed analytic sets, \(U' = Y_0 \supset Y_1 \supset \ldots \supset Y_{t+1} = \emptyset\), such that, for each \(\lambda = 0, \ldots, t\), there exist finitely many \(h_{\lambda \mu} \in \mathcal{M}(Y_{\lambda}; Y_{\lambda+1})[[y_1, \ldots, y_{n-k+1}]]\) such that the \(h_{\lambda \mu}(a; y_1, \ldots, y_{n-k+1})\) generate \(\bigcap_{\lambda = 1}^{s} \ker \mathcal{O}_{a^*}\), \(a = (a^1, \ldots, a^r) \in Y_{\lambda} - Y_{\lambda+1}\).

Then by Proposition 9.4, there is a neighborhood \(U\) of \(a_0\) in \(M_{\phi}\) and a filtration of \(U\) by closed analytic sets, \(U = X_0 \supset X_1 \supset \ldots \supset X_{r+1} = \emptyset\), such that, for each \(\lambda = 0, \ldots, r\), there exist finitely many elements \(g_{\lambda \mu} \in \mathcal{M}(X_{\lambda}; X_{\lambda+1})[[y]]\) such that the \(g_{\lambda \mu}(a; y)\) generate \(\bigcap_{\lambda = 1}^{s} \ker \mathcal{O}_{a^*}\), for all \(a = (a^1, \ldots, a^r) \in X_{\lambda} - X_{\lambda+1}\).

Therefore, by Lemma 7.2 (2) and Proposition 8.3.7, the Hilbert-Samuel function \(H_a\) is Zariski semi-continuous on \(M_{\phi}\). \(\square\)

14. The finite case.

Let \(K = R\) or \(C\). Let \(M\) and \(N\) denote analytic manifolds (over \(K\)) and let \(\phi : M \to N\) be an analytic mapping. If \(a \in M\), then \(\mathcal{O}_a\) is an \(\mathcal{O}_{\phi(a)}\)-module via the homomorphism \(\phi_a^* : \mathcal{O}_{\phi(a)} \to \mathcal{O}_a\).
DEFINITION 14.1. - We say that \(\varphi \) is locally finite if, for every \(a \in M \), \(\mathcal{O}_a \) is a finitely generated \(\mathcal{O}_{\varphi(a)} \)-module. (This definition extends to morphisms of (possibly singular) analytic spaces.)

THEOREM 14.2. - Let \(M \) and \(N \) be analytic manifolds, and let \(\varphi : M \to N \) be a locally finite analytic mapping. Let \(A \) and \(B \) be \(p \times q \) and \(p \times r \) matrices of analytic functions on \(M \), respectively. We use the notation of 8.2. Let \(s \in N \). Then there is a uniform Chevalley estimate (8.2.5(1)) on \(M_s \).

Theorem 14.2 extends to the case that \(M \) is a (possibly singular) analytic space which is Cohen-Macauley: see Remark 14.13 after the proof.

Proof of Theorem 14.2. - We can assume that \(K = \mathbb{C} \) and that \(N \) is an open neighborhood of 0 in \(\mathbb{C}^n \). By Lemma 9.5, we can assume that \(M \) has pure dimension \(m \). Let \(a_0 = (a_1, \ldots, a_0) \in M_r \). Shrinking \(N \) and replacing \(M \) by an appropriate neighborhood of \(\{a_0, \ldots, a_0\} \), we can assume that \(\varphi \) is proper and that \(Z = \varphi(M) \) is a closed analytic subset of \(N \), each irreducible component of which contains \(\varphi(a_0) \).

Suppose that \(\varphi(a_0) = 0 \) in \(N \subseteq \mathbb{C}^n \). Since \(\dim Z = m \), we can assume that \(N = N' \times N'' \subseteq \mathbb{C}^m \times \mathbb{C}^{n-m} \) and that the projection \(\pi : N \to N' \) induces a finite (i.e., proper and locally finite) mapping of \(Z \) onto \(N' \). Let \(\theta = \pi \circ \varphi \), \(\theta = (\theta_1, \ldots, \theta_m) \). Let \(a \in M \) and let \(m_{\theta(a)} \cdot \mathcal{O}_a \) denote the ideal in \(\mathcal{O}_a \) generated by \(m_{\theta(a)} \) (via the homomorphism \(\theta_a^* \)). Since \(\theta \) is finite, \(\dim \mathcal{O}_a/m_{\theta(a)} \cdot \mathcal{O}_a < \infty \).

LEMMA 14.3. - Let \(\ell = \dim \mathcal{O}_a/m_{\theta(a)} \cdot \mathcal{O}_a \). Then \(m_a^{\ell+1} \subset m_{\theta(a)} \cdot \mathcal{O}_a \).

Proof. - If \(j \geq 1 \) and \(m_{\theta(a)} \cdot \mathcal{O}_a + m_j = m_{\theta(a)} \cdot \mathcal{O}_a + m_j^{-1} \), then, by Nakayama’s lemma, \(m_{\theta(a)} \cdot \mathcal{O}_a = m_{\theta(a)} \cdot \mathcal{O}_a + m_j \), so that \(m_j = m_{\theta(a)} \cdot \mathcal{O}_a \). Suppose \(m_j^{\ell+1} \not\subset m_{\theta(a)} \cdot \mathcal{O}_a \). Then, for all \(j \leq \ell + 1 \),

\[
\dim \mathcal{O}_a/(m_{\theta(a)} \cdot \mathcal{O}_a + m_j^{\ell+1}) > \dim \mathcal{O}_a/(m_{\theta(a)} \cdot \mathcal{O}_a + m_j^\ell).
\]

Therefore, \(\dim \mathcal{O}_a/m_{\theta(a)} \cdot \mathcal{O}_a \geq \dim \mathcal{O}_a/(m_{\theta(a)} \cdot \mathcal{O}_a + m_j^{\ell+2}) > \ell \); a contradiction.

Remark 14.4. - We define the multiplicity \(\text{mult}_a \theta \) of \(\theta \) at \(a \) by

\[
\text{mult}_a \theta = \dim_{K_{\theta(a)}} \mathcal{O}_a \otimes_{\mathcal{O}_{\theta(a)}} K_{\theta(a)}.
\]
where \(K_{\theta(a)} \) denotes the field of fractions of \(\mathcal{O}_{\theta(a)} \). Then \(\text{mult}_a \theta = \dim c \mathcal{O}_a / \mathfrak{m}_{\theta(a)} \cdot \mathcal{O}_a \) (by \([31, \text{Ch. 6, Thm. A.10}]\) and \([40, \text{App. 6, Thm. 3}]\)). Let \(d \) denote the number of points in a generic fiber of \(\theta \). Then, for all \(b \in N' \), \(\sum_{a \in \theta^{-1}(b)} \text{mult}_a \theta = d \) (Weil's formula \([31, \text{Ch. 6, (A.8)]})

Corollary 14.5. - For all \(a \in M \), \(m_a^{d+1} \subset \mathfrak{m}_{\theta(a)} \cdot \mathcal{O}_a \).

Let \(X \) be an irreducible germ at \(a_0 \) of a closed analytic subset of \(M_{\theta} \). In order to prove Theorem 14.2, it suffices to find (a germ at \(a_0 \) of) a proper closed analytic subset \(Y \) of \(X \), and a function \(\ell = \ell(k) \) from \(N \) to itself, such that, for \(a \in X - Y \) in some neighborhood of \(a_0 \), \(\ell(k, a) \leq \ell(k) \) for all \(k \in N \). (We use the same symbol for a germ at \(a_0 \) and a suitable representative of the germ in some neighborhood.)

Put \(\theta = \pi \circ \phi : M_{\theta} \to N' \). (Clearly, \(M_{\theta}^i \subset M_\theta^i \subset M^i \); \(\theta \) is the restriction to \(M_{\theta}^i \) of the mapping \(M_\theta^i \to N' \) induced by \(\theta \).) Then \(\theta \) is finite.

Lemma 14.6. - There exists (a germ at \(a_0 \) of) a proper analytic subset \(Y' \) of \(X \) and, for all \(i = 1, \ldots, s \), a positive integer \(d_i \), such that:

1. \(Y' = X \cap \theta^{-1}(\theta(Y')) \);
2. \(\text{mult}_a \theta = d_i \) for all \(a = (a_1, \ldots, a^i) \in X - Y' \).

Proof. - Let \(a \in M \). By Remark 14.4 and Corollary 14.5, \(\text{mult}_a \theta = \dim c \mathcal{O}_a / \mathfrak{m}_a^{d+1} - \dim c \mathfrak{m}_{\theta(a)} \cdot \mathcal{O}_a / \mathfrak{m}_a^{d+1} \). With respect to local coordinates \(x = (x_1, \ldots, x_m) \) in \(M \), the vector space \(\mathfrak{m}_{\theta(a)} \cdot \mathcal{O}_a / \mathfrak{m}_a^{d+1} \) is generated by the equivalence classes modulo \(\mathfrak{m}_a^{d+1} \) of \((x-a)^\alpha \cdot (\theta_j(x) - \theta_j(a)) \), where \(j = 1, \ldots, m \) and \(\alpha \in N^m \), \(|\alpha| \leq d \). Thus \(\dim c \mathfrak{m}_{\theta(a)} \cdot \mathcal{O}_a / \mathfrak{m}_a^{d+1} \) is the rank of a matrix whose entries are analytic functions in \(a \). (Its columns are the partial derivatives through order \(d \) of \((x-a)^\alpha \cdot (\theta_j(x) - \theta_j(a)) \) with respect to \(x \), evaluated at \(x = a \).) Therefore, \(\text{mult}_a \theta \) is (analytic) Zariski (upper-) semicontinuous. The result follows since \(\theta \) is finite.

Remark 14.7. - Let \(a_1 = (a_1^1, \ldots, a_1^i) \in M_{\theta}^i \). Suppose that \(\{a_1^1, \ldots, a_1^i\} \) contains \(r \) distinct elements \(c^1, \ldots, c^r \), where \(c^j \) is repeated \(\mu_j \) times, \(j = 1, \ldots, r \), and \(\sum \mu_j = s \). Choose connected open neighborhoods \(U_j \) of \(c^j \) in \(M \), \(j = 1, \ldots, r \), and \(V \) of \(\theta(a_1) \) in \(N' \), such that the \(U_j \) are mutually disjoint and \(\theta(U_j) = V \) for each \(j \). Put \(U = \cup U_j \).
Then:

1. Since $\theta|U$ is finite, $\sum_{a \in U \cap \theta^{-1}(b)} \text{mult}_a \theta$ is constant on V.

2. If $a = (a^1, \ldots, a^s)$ is sufficiently close to a_i in M^i, then $\{a^1, \ldots, a^s\}$ contains μ_i elements of U^i, for each j.

Corollary 14.8. Let Y' be as in Lemma 14.6. There exists $r \leq s$ and a surjection σ of $\{1, \ldots, s\}$ onto $\{1, \ldots, r\}$ satisfying the following conditions: Let $M^i_\sigma \to M^i$ denote the embedding given by $(a^1, \ldots, a^s) \to (a^{\sigma(1)}, \ldots, a^{\sigma(s)})$. Then:

1. $X \subset M^i$.

2. If $a = (a^1, \ldots, a^s) \in X - Y'$ and $i \neq j$, then $a^i \neq a^j$.

Proof. It follows from Lemma 14.6 and Remark 14.7 that, for each i and j, $\{a = (a^1, \ldots, a^s) \in X - Y' : a^i = a^j\}$ is open in $X - Y'$. Clearly, it is closed. Since $X - Y'$ is connected, the result follows.

Let Y' be as in Lemma 14.6. According to Corollary 14.8, we can assume, in our proof of Theorem 14.2, that if $a = (a^1, \ldots, a^s) \in X - Y'$ and $i \neq j$, then $a^i \neq a^j$.

For each $a = (a^1, \ldots, a^s) \in X - Y'$, put $\mathcal{F}_a = \bigoplus_{i=1}^s \mathcal{O}_{a^i}$ and $E_a = \bigoplus_{i=1}^s \mathcal{O}_{a^i}/m_{\theta(a^i)} \cdot \mathcal{O}_{a^i}$. Then \mathcal{F}_a is an $\mathcal{O}_{\theta(a)}$-module via the homomorphism $(\theta(a^i))_{1 \leq i \leq s} : \mathcal{O}_{\theta(a)} \to \bigoplus_{i=1}^s \mathcal{O}_{a^i}$, and E_a is a vector space over \mathbb{C}. Clearly, E_a identifies with $\mathcal{F}_a/m_{\theta(a)} \cdot \mathcal{F}_a$.

Replacing M, if necessary, by a smaller neighborhood of $\{a^1_0, \ldots, a^s_0\}$, we can assume there exist $\eta_1, \ldots, \eta_s \in \mathcal{O}(M)$ and $a_i \in X - Y'$ such that the η_i induce a basis of E_{a_1}. (We can, for example, choose η_1, \ldots, η_s to be polynomial with respect to local coordinates in a neighborhood of each a^i_0.) By Lemma 14.6, $\dim_{\mathbb{C}} E_a = \sum_{i=1}^s d_i$ is constant on $X - Y'$. Thus there is (a germ at a_0 of) a proper analytic subset Y of X such that $Y' \subset Y$ and the η_i induce a basis of E_a, for all $a \in X - Y$. Since θ is finite, we can assume that $Y = X \cap \theta^{-1}(\theta(Y))$.

Lemma 14.9. For each $a \in X - Y$, η_1, \ldots, η_s induce a free set of generators of the module \mathcal{F}_a over $\mathcal{O}_{\theta(a)}$.
Proof. — Let \(a = (a_1, \ldots, a^s) \in X - Y \). By Nakayama’s lemma, \(\eta_1, \ldots, \eta_\sigma \) induce a set of generators of \(\mathcal{F}_a \) over \(\mathcal{O}_{\theta(a)} \). By Remark 14.4,
\[
\sigma = \dim \mathcal{E}_a = \sum_{i=1}^s \text{mult}_i \theta = \sum_{i=1}^s \dim \mathcal{K}_{\theta(a)} \mathcal{O}_{\theta(a)} \mathcal{E}_{\theta(a)}, \quad \text{where } \mathcal{K}_{\theta(a)} \text{ is the field of fractions of } \mathcal{O}_{\theta(a)}. \]
Thus \(\sigma = \dim \mathcal{K}_{\theta(a)} \mathcal{E}_{\theta(a)} \), as required.

COROLLARY 14.10. — Put \(\ell(k) = (d+1)(k+1) - 1 \), where \(k \in \mathbb{N} \). Let \(a = (a^1, \ldots, a^s) \in X - Y \) and let \(H_j \in \varnothing_{\theta(a)}, \ j = 1, \ldots, \sigma \). If
\[
\sum_{j=1}^\sigma \theta_d^\ast (H_j) \cdot \hat{\eta}_{j,a} \in \mathfrak{m}_{d^s}^{\ell(k)+1} \cdot \varnothing_{d^s}, \quad i = 1, \ldots, s, \ \text{then each } H_j \in \mathfrak{m}_{d^s}^{\ell(k)+1} \cdot \varnothing_{\theta(a)}.
\]

Proof. — If \(a \in M \), then, by Corollary 14.5, \(\mathfrak{m}_{d^s}^{\ell(k)+1} \subset \mathfrak{m}_{\theta(a)} \mathcal{O}_a \). Therefore, for all \(a = (a^1, \ldots, a^s) \in M^s \), \(\oplus \mathfrak{m}_{d^s}^{\ell(k)+1} \cdot \varnothing_{d^s} \subset \mathfrak{m}_{\theta(a)} \mathcal{F}_a \), where \(\mathcal{F}_a = \oplus \varnothing_{d^s} \). The result follows from Lemma 14.9.

LEMMA 14.11. — Let \(f \in \mathcal{O}(M) \). Then:

(1) If \(a = (a^1, \ldots, a^s) \in X - Y \), there exist unique \(h_{j,a} \in \mathcal{O}_{\theta(a)}, \ j = 1, \ldots, \sigma \), such that, for each \(i = 1, \ldots, s \), \(f_a = \sum_{j=1}^\sigma \theta_d^\ast (h_{j,a}) \cdot \hat{\eta}_{j,a} \).

(2) For each \(j = 1, \ldots, \sigma \) and \(\beta \in \mathbb{N}^m \), let \(h_\beta^j(a) = D_\beta h_{j,a}(\theta(a)) \), where \(a \in X - Y \). Then \(h_\beta^j \in \mathcal{M}(X;Y) \).

Proof. — (1) By Lemma 14.9.

(2) If \(a \in M \), let \(\Theta_a : \mathcal{O}_{\theta(a)} \to \mathcal{O}_a \) denote the module homomorphism over \(\theta_a^\ast \) defined by \(\Theta_a(g) = \sum_{j=1}^\sigma \theta_a^\ast (g_j) \cdot \hat{\eta}_{j,a} \), where \(g = (g_1, \ldots, g_\sigma) \in \mathcal{O}_{\theta(a)} \). If \(a = (a^1, \ldots, a^s) \in M^s \), let \(\Theta_a : \mathcal{O}_{\theta(a)} \to \bigoplus_{i=1}^s \mathcal{O}_{d^s} \) denote the composition of \(\bigoplus \Theta_{d^s} \) with the diagonal injection \(\mathcal{O}_{\theta(a)} \to \bigoplus_{i=1}^s \mathcal{O}_{\theta(a)} \).

Suppose that \(a \in X - Y \). According to (1), \((\hat{f}_{d^s})_{1 \leq i \leq s} = \Theta_a(h_a) \), where \(h_a = (h_{1,a}, \ldots, h_{\sigma,a}) \). We use the formalism of 8.2 and 8.3, where \(p = 1 \), \(q = \sigma \), \(B = 0 \), \(\Phi_a \) is replaced by \(\Theta_a \), etc. For each \(\ell \in \mathbb{N} \), let \(\mathcal{F}_a \) (respectively, \(\mathcal{H}_a \)) denote the image of \((\hat{f}_{d^s})_{1 \leq i \leq s} \) (respectively, of \(h_a \)) by
the lower (respectively, upper) horizontal arrow in the left-hand diagram
of (8.2.6); thus, \({\mathcal F}_s = A_{,s} \cdot {\mathcal H}_s \). Recall that \({\mathcal H}_s \) is the element of
\(\oplus_{\beta \in \mathbb{C}^\infty} \mathcal{C}_\alpha^\infty \) induced by \((D^\beta_{\mathcal{H}_s} \circ \partial_{\mathcal{H}_s})_{\beta \in \mathcal{C}_\alpha^\infty} \). Write \({\mathcal H}_s = (H_{\beta,i,a})_{\beta \in \mathcal{C}_\alpha^\infty, 1 \leq i \leq \sigma} \), where
each \(H_{\beta,i,a} \in \mathcal{O}_{X,a} \).

Let \(k \in \mathbb{N} \) and let \(\ell = \ell_1(k) \). Then
\[
\text{Ad}^{\mathcal{P},k(x)}D_{\ell,k,a} \cdot {\mathcal F}_s = C_{\ell,k,a} \cdot {\mathcal H}_s.
\]
Let \(e(k) \) denote the number of pairs \((\beta, j) \in \mathbb{N}^m \times \{1, \ldots, \sigma\}\) such that
\(|\beta| \leq k \) (\(e(k) \) is the number of columns of \(C_{\ell,k,a} \)). By Corollary 14.10
and Lemma 8.1.1 (2), \(\text{rank} C_{\ell,k,a} = e(k) \). Then, by Cramer's rule,
for all \((\beta, j) \in \mathbb{N}^m \times \{1, \ldots, \sigma\}\), \(|\beta| \leq k \), we obtain \(\zeta_{\beta,j} \), \(\omega_{\beta,j} \in \mathcal{C}(U) \) (\(U \) is a
product coordinate neighborhood of \(a_0 \) in \(M^0 \)) such that, if \(a \in X - Y \),
then \(\omega_{\beta,j}(a) \neq 0 \) and \(H_{\beta,j,a} = \frac{\zeta_{\beta,j,a}}{\partial_{\beta,j,a}} \), as required. \(\square \)

We can now complete the proof of Theorem 14.2. Since the projection
of \(Z \) onto \(N' \) is finite, then, by the finite coherence theorem of Grauert
and Remmert [32, Ch. IV, Thm. 7], we can assume there exist
\(\xi_1, \ldots, \xi_\rho \in \mathcal{O}(N) \) satisfying the following condition: For all
\(b \in Z \) and \(G \in \mathcal{O}_b \), there exist \(G_1, \ldots, G_\rho \in \mathcal{O}_{\pi(b)} \) such that
\(G - \sum_{h=1}^\rho \hat{\pi}_h^* (G_h) \cdot \xi_{h,b} \in \mathcal{I}_{Z,b} \cdot \mathcal{O}_b \), where \(\mathcal{I}_Z \) denotes the sheaf of germs
of analytic functions which vanish on \(Z \).

Let \(a \in X - Y \), \(a = (a^1, \ldots, a^\sigma) \). By Lemma 14.11 (1), there exist
unique \(p \times q \) matrices \(C_{h,a} \), \(h = 1, \ldots, \rho \), \(j = 1, \ldots, \sigma \), and unique
\(p \times r \) matrices \(D_{\ell,j,a} \), \(\ell = 1, \ldots, \sigma \), all with entries in \(\mathcal{O}_{\theta(a)} \), such that,
for all \(i = 1, \ldots, s \),
\[
(\xi_{h,\theta(a)} \circ \partial_{\theta(a)}) \cdot A_{d} = \sum_{j=1}^\sigma \hat{\eta}_{j,d}^* \cdot (C_{h,a} \circ \partial_{\theta(a)}),
\]
\[
\hat{\eta}_{\ell,d}^* \cdot B_{d} = \sum_{j=1}^\sigma \hat{\eta}_{j,d}^* \cdot (D_{\ell,j,a} \circ \partial_{\theta(a)}).
\]
By Lemmas 14.11 (2) and 7.2 (3) and Remark 7.6, there exists \(\lambda \in \mathbb{N} \)
satisfying the following condition: Let \(a \in X - Y \). Suppose that
\(G_h \in \mathcal{O}_{\theta(a)}^\mathcal{P} \), \(h = 1, \ldots, \rho \), \(H_{\ell} \in \mathcal{O}_{\theta(a)}^\mathcal{P} \), \(\ell = 1, \ldots, \sigma \), and \(\sum_{h=1}^\rho C_{h,a} \cdot G_h + \sum_{\ell=1}^\sigma D_{\ell,j,a} \cdot H_{\ell} \in m_{\theta(a)}^{k+\gamma} \cdot \partial_{\theta(a)}^\mathcal{P} \), \(j = 1, \ldots, \sigma \). Then there exist \(G_h' \in \mathcal{O}_{\theta(a)}^\mathcal{P} \) and
such that $\sum_{h}^{\sigma} C_{h_j, a} \cdot G_{h} + \sum_{r}^{\eta} D_{r_j, a} \cdot H_{r} = 0$, $j = 1, \ldots, \sigma$, and

$$G_{h} - G_{h} \in m_{\theta(a)}^{k} \cdot \hat{\theta}_{\theta(a)}^{q}, \quad H_{r} - H_{r} \in m_{\theta(a)}^{k} \cdot \hat{\theta}_{\theta(a)}^{q}.$$

Let $\ell(k) = \ell_{1}(k + \lambda)$, $k \in \mathbb{N}$. We claim that $\ell(k, a) \leq \ell(k)$ for all $a \in X - Y$ and $k \in \mathbb{N}$: Let $a \in X - Y$ and let $G \in \hat{\theta}_{\theta(a)}^{q}$. Suppose that $A_{d_{r}} \cdot (G \circ \hat{\theta}_{d_{r}}) + B_{d_{r}} \cdot H_{r} \in m_{\theta(a)}^{k} \cdot \hat{\theta}_{\theta(a)}^{q}$, where $H_{r} \in \hat{\theta}_{\theta(a)}^{q}$, $i = 1, \ldots, s$. There exist $G_{1}, \ldots, G_{p} \in \hat{\theta}_{\theta(a)}^{q}$ such that $G - \sum_{h}^{\sigma} \hat{\theta}_{\theta(a)}^{q}(G_{h}) \in \mathcal{I}_{\phi(a)} \cdot \hat{\theta}_{\theta(a)}^{q}$.

Also, there exist unique $H_{1}, \ldots, H_{\sigma} \in \hat{\theta}_{\theta(a)}^{q}$ such that $H_{1} = \sum_{h}^{\sigma} \hat{\theta}_{\theta(a)}^{q}(H_{r} \circ \hat{\theta}_{d_{r}})$, $i = 1, \ldots, s$. Thus, for each $i = 1, \ldots, s$,

$$A_{d_{r}} \cdot (G \circ \hat{\theta}_{d_{r}}) + B_{d_{r}} \cdot H_{r} = \sum_{j=1}^{\sigma} \hat{\theta}_{\theta(a)}^{q} \left(\left(\sum_{h=1}^{\sigma} C_{h_j, a} \cdot G_{h} + \sum_{r=1}^{\eta} D_{r_j, a} \cdot H_{r} \right) \circ \hat{\theta}_{d_{r}} \right).$$

By Corollary 14.10, $\sum_{h=1}^{\sigma} C_{h_j, a} \cdot G_{h} + \sum_{r=1}^{\eta} D_{r_j, a} \cdot H_{r} \in m_{\phi(a)}^{k} \cdot \hat{\theta}_{\theta(a)}^{q}$, $j = 1, \ldots, \sigma$. Thus there exist $G_{1}, \ldots, G_{p} \in \hat{\theta}_{\theta(a)}^{q}$ and $H_{1}, \ldots, H_{\sigma} \in \hat{\theta}_{\theta(a)}^{q}$ such that $\sum_{h=1}^{\sigma} C_{h_j, a} \cdot G_{h} + \sum_{r=1}^{\eta} D_{r_j, a} \cdot H_{r} = 0$, $j = 1, \ldots, \sigma$, and each $G_{h} - G_{h} \in m_{\phi(a)}^{k+1} \cdot \hat{\theta}_{\theta(a)}^{q}$. Put $G' = \sum_{h=1}^{\sigma} \hat{\theta}_{\theta(a)}^{q}(G_{h}) \cdot \hat{\theta}_{\theta(a)}^{q}$. Then $A_{d_{r}} \cdot (G \circ \hat{\theta}_{d_{r}})$

$\in \text{Im} \hat{\theta}_{d_{r}}$, $i = 1, \ldots, s$, and $G - G' \in m_{\phi(a)}^{k+1} \cdot \hat{\theta}_{\theta(a)}^{q}$, as claimed. This completes the proof of Theorem 14.2. □

Remark 14.12. - (1) Let $a = (a_{1}, \ldots, a_{t}) \in X - Y$. Let $G \in \hat{\theta}_{\phi(a)}^{q}$ and let $H \in \bigoplus_{i=1}^{s} \hat{\theta}_{d_{i}}^{q}$, $H = (H_{1}, \ldots, H_{t})$. Let $f = \Phi_{a}(G) + \hat{\Phi}_{a}(H) \in \bigoplus_{i=1}^{s} \hat{\theta}_{d_{i}}^{q}$; i.e., $f = (f_{1}, \ldots, f_{s})$, where each $f_{i} = A_{d_{i}} \cdot (G \circ \hat{\theta}_{d_{i}}) + B_{d_{i}} \cdot H_{i}$. Suppose that $f_{i} \in \hat{\theta}_{d_{i}}^{q}$, $i = 1, \ldots, s$. Then, for all $k \in \mathbb{N}$, there exists $g \in \mathcal{O}_{\phi(a)}^{q}$ and $h \in \bigoplus_{i=1}^{s} \mathcal{O}_{d_{i}}^{q}$ such that $f = \Phi_{a}(g) + \hat{\Phi}_{a}(h)$, $g \in m_{\phi(a)}^{k+1} \cdot \hat{\theta}_{\phi(a)}^{q}$, and $h - H \in \bigoplus_{i=1}^{s} m_{d_{i}}^{k} \cdot \hat{\theta}_{d_{i}}^{q}$. We use the notation introduced above. Let $G_{1}, \ldots, G_{p} \in \hat{\theta}_{\theta(a)}^{q}$ such that $G - \sum_{h=1}^{\sigma} \hat{\theta}_{\theta(a)}^{q}(G_{h}) \in \mathcal{I}_{\phi(a)} \cdot \hat{\theta}_{\theta(a)}^{q}$, and let $H_{1}, \ldots, H_{\sigma} \in \hat{\theta}_{\theta(a)}^{q}$ such that $H' = \sum_{i=1}^{\sigma} \hat{\theta}_{\theta(a)}^{q}(H_{r} \circ \hat{\theta}_{d_{r}})$, $i = 1, \ldots, s$. By
Lemma 14.9, \(\sum_{h} c_{h_i} \cdot G_{h_i} + \sum_{\ell} d_{\ell_i} \cdot H_{\ell_i} \in \mathcal{O}_0^{r(a)} \), \(j = 1, \ldots, \sigma \). By Krull's theorem, there exist \(g_1, \ldots, g_p \in \mathcal{O}_0^{q(a)} \) and \(h_1, \ldots, h_s \in \mathcal{O}_0^{r(a)} \) such that
\[
\sum_{h} c_{h_i} \cdot G_{h_i} + \sum_{\ell} d_{\ell_i} \cdot H_{\ell_i} = \sum_{h} c_{h_i} \cdot G_{h_i} + \sum_{\ell} d_{\ell_i} \cdot H_{\ell_i},
\]
j = 1, \ldots, \sigma, and each \(g_h - G_h \in m_{0(a)}^{k}, \partial_{0(a)}, h_r - H_r \in m_{0(a)}^{k}, \partial_{0(a)} \). Put
\[
g = \sum_{h} z_{0,0} (g_h \circ \hat{\theta}_{0(a)}), \quad h_i = \sum_{\ell} \hat{h}_{\ell_i,a_i} (h_r \circ \hat{\theta}_{a_i}), \quad i = 1, \ldots, s,
\]
and \(h = (h^1, \ldots, h^s) \).

(2) Let \(a = (a^1, \ldots, a^s) \in \mathcal{X} - \mathcal{Y} \). Then \(\mathcal{R}_a = \{ G \in \partial_{\Phi(a)}^q : \Phi_\mathcal{a}(G) \in \mathcal{I}_a \} \) is generated by \(\mathcal{R}_a \cap \mathcal{O}_{\Phi(a)}^q \) (cf. Corollary 12.17).

Remark 14.13. Let \(\mathcal{X} \) be an analytic space over \(K \). It follows from theorems of Buchsbaum and Eisenbud [9, Thms. 1.2, 2.1] and [37, I.5.1] that \(\{ x \in \mathcal{X} : \mathcal{O}_{X,x} \text{ is Cohen-Macauley} \} \) is open in \(\mathcal{X} \). (We are grateful to David Eisenbud for the reference.) We say that \(\mathcal{X} \) is Cohen-Macauley if, for all \(x \in \mathcal{X} \), \(\mathcal{O}_{X,x} \) is a Cohen-Macauley ring. Thus, a Cohen-Macauley real analytic space admits a Cohen-Macauley complexification.

Our proof of Theorem 14.2 extends to the case that \(M \) is a Cohen-Macauley analytic space with essentially no change: We can assume that \(K = \mathbb{C} \). The equalities of Remark 14.4 remain valid. In Lemma 14.11, we can assume that \(M \) is embedded in an open subspace \(\mathcal{W} \) of \(C^r \), and that \(\mathcal{O}_M = \mathcal{O}_W/L \cdot \mathcal{O}_W' \), where \(L \) is a \(1 \times r \) matrix with entries in \(\mathcal{O}(W) \); the same proof goes through using the formalism of 8.2, 8.3 with \(B = L \) rather than \(B = 0 \).

Manuscrit reçu le 16 décembre 1985.

E. Bierstone and P. D. Milman,
University of Toronto
Dept. of Mathematics
Toronto, Canada M5S 1A1.