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BOUNDED ANALYTIC SETS IN BANACH SPACES

by Volker AURICH

0. Introduction.

If / : E -> F is a holomorphic Fredholm map between Banach spaces
then it is well known that the fibers are finite dimensional analytic subsets.
Assume that / satisfies some a priori estimates such that the fibers are
bounded. In the case E = C" the maximum principe implies the finiteness
of each fiber. If E is infinite dimensional the fibers need not be compact
and therefore we cannot use the same reasoning. And indeed, there are
Banach spaces which contain bounded closed complex submanifolds
isomorphic to the open unit disk [2].

In the present paper we investigate the more general question :

If X is a non discrete reduced complex space and E is a complex
Banach space when does there exist a holomorphic embedding <S): X -> E
with bounded image €>(X) ?

This question can be considered under various aspects which involve on
the one hand the linear geometry of E and on the other hand intrinsic
properties of the complex structure of X which are stronger than Stein-
ness. Our results are the following:

a) If E has the Radon-Nikodym property then there does not exist a
bounded holomorphic embedding X -> E of a reduced complex space X
with positive dimension into E.

b) A reduced complex space X can be embedded holomorphically and
boundedly into some Banach space if and only if its Caratheodory
pseudometric Cx is a complete metric which induces the topology of X and
if X has local coordinates by globally holomorphic bounded functions.

Key-words : Bounded SF-analytic subsets of Banach spaces - Radom-Nikodym property -
Caratheodory metric - H-completeness.
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c) Certain combined conditions on X and E guaranteee that there is
a bounded holomorphic embedding X -> E. They are certainly too
restrictive to be necessary, but using a) one can conclude that the dual of a
closed subalgebra A of H°°(X) (the bounded holomorphic functions on
X) does not have the Radon-Nikodym property whenever X has positive
dimension and a modified Caratheodory metric c^ is a complete metric
inducing the topology of X .

These results hold partially also for certain infinite dimensional analytic
spaces X instead of complex spaces X , namely the SF-analytic spaces
(see section 5. for a definition and its motivation). In particular the results
hold for complex Banach manifolds X .

I want to thank M. Schottenloher and P. Wojtaszczyk for fruitful
discussions.

1. Preliminaries.

An analytic subset X of a complex Banach manifold 0 is a closed
subset such that for every x e X there exists a neighborhood U^ in Q
and a holomorphic map /„: U^ -> F^ into a Banach space F^ with
X n U^ = /^(O). An analytic set X will be called finite dimensional if it
lies locally in a finite dimensional complex submanifold. Observe that in
case Q is a Banach space E this does not mean that X lies locally in a
finite dimensional linear subspace of E , for example the image of the map
1> considered at the beginning of the third section is a onedimensional
complex submanifold of. CQ which meets every finite dimensional linear
subspace in only finitely many points. An analytic set is finite dimensional if
and only if it is locally a fiber of a holomorphic Fredholm map (this is a
map whose differentials are Fredholm operators). Henceforth a finite
dimensional analytic set will always be considered as a reduced complex
space by endowing it with the reduced structure.

In the following four sections all complex spaces considered will be
reduced and locally finite dimensional.

A map /: X -> E from a complex space X into a complex Banach
space E is called holomorphic iff it has locally a holomorphic extension to
any manifold in which X can locally be embedded. According to [4] / is
already holomorphic if no / is holomorphic for every n in a a(E',E) —
dense subspace of E'; in particular if E is a dual F' then it is enough to
check that p, o f is holomorphic for every ^ e F.
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We call a map / proper if it is continuous and if the inverse image of
every compact set is compact; a continuous map /: X -^ Y between
metrizable spaces is proper iff for every sequence in X without cluster
point the image sequence does not converge. A holomorphic map
/: X -^ E is called an immersion if its differentials are injective and an
embedding if /(X) is a finite dimensional analytic subset and if / maps X
biholomorphically onto the complex space /(X). The implicite function
theorem implies that / is an embedding if and only if it is an injective
proper holomorphic immersion.

2. Conditions for E not containing bounded analytic sets
of positive dimension.

The key to nonexistence criteria is the maximum principle. Applying it
to the continuous linear functionals one concludes that every compact finite
dimensional analytic subset of a Banach space is finite. In order to exclude
the existence of non compact but bounded finite dimensional analytic
subsets of positive dimension it would be enough to know that sufficiently
many holomorphic functions attain a maximum on such subsets. A
statement of this kind can be derived from a theorem proved by Huff and
Morris [11] in a completely different context.

2.1. THEOREM (Huff-Morris). - A real Banach space E has the Radon-
Nikodym property (RNP for short) if and only if for every closed bounded
nonempty subset A c E the set of all continuous linear forms attaining a
maximum on A is norm-dense in E'.

The RNP has been studied intensively; in [6] a list of equivalent
properties is compiled. Among the Banach spaces with RNP there are the
reflexive spaces, the separable duals, <fi(r) and the Hardy spaces H^D)
for 1 ̂  p < oo, but not the following ones: Li(n) (^ not purely
atomic), Co, c, ̂ , L^[0,l], H^D) and ^(K) (K infinite compact)
[6, p. 218].

2.2. THEOREM. — If a complex Banach space E has the RNP then
there does not exist a non constant proper holomorphic map <I>: X -> E
from an irreducible complex space X of positive dimension into E such that
<D(X) is bounded.

Proof. — Suppose that we could find such a map 0 and assume
0 6 0(X). Let G be the closure of the complex linear subspace spanned



232 VOLKER AURICH

by <D(X). Then G has also the RNP since the RNP is inherited by
closed linear subspaces. According to 2.1. we can find a continuous R-
linear form n : G -^ R , n ^ 0 , which attains its maximum on <D(X)..
Let p* be the complexification. Then n* o 0 is holomorphic on X and
its real part attains its maximum. Hence H* o 0 is constant and e>(X) is
contained in the proper subspace Ker ^i* of G. This contradicts the
definition of G . q.e.d.

2.3. COROLLARY. — Every bounded closed finite dimensional analytic
subset of a Banach space mth RNP is discrete (but of course not always
finite).

The Banach spaces which do not contain bounded finite dimensional
subsets of positive dimension are not yet characterized. It is unlikely that
the RNP is characteristic. A strictly weaker condition, the analytic Radon-
Nikodym property, guarantees already that there are no bounded finite
dimensional subsets isomorphic to the open unit disk [2].

2.4. COROLLARY. — Let E be a complex Banach space mth RNP, Y a
complex Banach manifold, and f '. E -> Y a holomorphic Fredholm map mth
bounded fibers. If f is surjective or if the index of f is 0 then f is open.

Proof. — By 2.3. the fibers are discrete, and by lemma 3.4. in [1]
ind / < 0. If ind / < 0 then /(E) is the set of critical values of / and
the Sard-Smale theorem [20] implies that /(E) is meager, hence / is not
surjective. Therefore ind / = 0. The openness of / follows now from
theorem 3.5. in [1]. q.e.d.

3. Conditions for X being embedded boundedly.

A simple example for a bounded embedding is the map

0>: D ^ c o , z ^ (z"),^

where D is the open unit disk in C and CQ is the Banach space of all
complex null sequences endowed with the supremum norm [2]. Whereas 0
depends on the special shape of the unit disk there is for every complex
space X a canonical map / which is a candidate for a bounded
embedding. Denote by H^X) the Banach space of all bounded holomor-
phic functions on X with the supremum norm and let ^ : X -> H°°(X)'
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be the map which assigns to every x e X the evaluation homomorphism x
defined by x(h): = h(x) for /i6H°°(X). Then ^ is holomorphic and
/(X) is contained in the unit sphere of H°°(X)'.

Remember the definition of the Caratheodory pseudometric

cx(x,y) := sup {p(h(x)My)) : h e H^X),!!^^ 1}, x, y e X ,

where p is the Poincare metric in the unit disk D i.e. the integrated form
of the hyperbolic differential metric ( l — \ z \ 2 ) ~ 2 d z d z .

3.1. THEOREM. — For every connected complex space X the following
properties are equivalent :

(i) There exists a Banach space E and an injective proper holomorphic
map <I> : X -^ E with bounded image <D(X).

(ii) The canonical map 7 : X -» H°°(Xy is injective and proper.
(iii) The Caratheodory pseudometric Cx is a sequentially complete metric

which induces the topology of X.

3.2. Supplement. — The equivalences remain true if we replace in (i)
and (ii) the term « injective proper holomorphic map » by « embedding »
and if we add in (iii) that X is H^X^regular i.e. for each x e X there
exists a holomorphic map / : X -> F into some Banach space F such that
/(X) is bounded and /1 U -> V is an embedding of a suitable
neighborhood U of x into a domain V of F.

Before going into the proof let us recall some properties of Cx
[8,9, 13, 19]. The Poincare metric p can be expressed as

p(z,w) = T w—z
1 —wz

with T(() : = . log _ = tanh ~1 (t) for t e [0,1 [, in particular

p(0,w) = T(|w|) ^ |w|, and T : [0,1[ -> [0,oo[ is strictly increasing. By the
Schwarz lemma every holomorphic map / : D -> D is a contraction with
respect to p. Hence the automorphisms are isometries and CD = p.
Because Aut D acts transitively on D we get

(1) cx(xj0 = sup p(0,AOO) = sup T(|^)|) = r(sup \h(y)\)

where all the suprema are taken for. h e H°°(X), \\h\\ ^ 1, h(x) = 0. For
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every connected complex space X the Caratheodory pseudometric Cx is
finite and continuous [12, 19]. Any holomorphic map between complex
spaces is a contraction with respect to the Caratheodory pseudometrics.

Proof of 3.1. — (ii) ==> (i) is trivial.

(1) => (iii): Since <D(X) is bounded there is r > 0 such that
||<D(x) - 0(^)|| ^ r for all x , y e X . Equation (1) implies

(2) cx(x,y) ^ sup{|M}01:^H-(X),p||^U(x)=0}

^supf|^((D^)-(D(x)) | :^ieE / , | |^l | |^^l

=^||(D(30-0(x)||.

Hence the injectivity of 0 implies that Cx is a metric. Because
0|X -> <I>(X) is topological (2) shows also that the topology induced by
Cx is finer than the original one of X. On the other hand Cx is
continuous, hence both topologies coincide.

In order to prove the sequential completeness of Cx let (Xn)n be a
Cauchy sequence for Cx. The inequality (2) implies that (C)(x^))^ is a
Cauchy sequence in the norm topology of E and therefore converges to a
point a e E. The set K : = {a} u {^(x,,): n e N} is compact, and since 0
is proper O'^K) is also compact. Hence (x^)n contains a convergent
subsequence (z^, z^-> z . Because Cx is continuous (z^ converges also
in the Cx-topology towards z, and because (x^)n is a Cauchy sequence it
converges towards z as well.

(iii) ==> (ii): To prove the injectivity let x, y e X, x ^ y . Because Cx
is a metric c^(x,y) does not vanish and there must exist an /ieH°°(X)
with h(x) + h(y). Hence /(x) + ̂ (y). To show the properness of 7
suppose that (Xn)n ls a sequence without cluster points in X. Because Cx
induces the topology of X the sequence (x^)n cannot be a Cauchy
sequence for Cx. Therefore we may assume that Cx(x^,x^+i) ^ e for a
suitable e > 0 and all n e N . With the use of equation (1) we obtain

llx0cn)-x0cn+i)ll = sup {|/i(^) - A(x^)l ̂  e H°° (X), \\h\\^l}
^ sup {1^)1 i/ie-H^X),11^11 ^ l,/i(x^)=0}
= T'^CxOc^^-n))

^T-^C)

>0.

Hence (^>(Xn))n does not converge. q.e.d.
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Proof of 3.2. - (ii) ==> (i) and (i) => (iii) are trivial.

To prove (iii) => (ii) we have to show that ^ is an immersion. Let
xeX and ^ be a tangent vector in x. The derivation T| := D/(x)^ is
the derivative in direction of a vector ^eH°°(X)'. If MeH°°(X)" is
represented by /leH^X) then u(e) = r\(u) = ^(uo ̂ ) = ̂ {h) since
u°l(y)=h(y) for every yeX. Now suppose ^eKerD^(x) and let
/: X -> F be a bounded holomorphic map which is an embedding near
x . For each v e F' putting h: = v o / we get h e H°° (X) and
^(vo/) = T|(M) = 0, hence ^ = 0. q.e.d.

3.3. Remarks. — a) Concerning property (iii) in 3.1.

Obviously Cx does not always induce the topology of X e.g. c^
vanishes. Even if Cx is a metric this is not always true [19, p. 255, Rem. 5].
There are, however, some useful sufficient conditions. Cx induces the
topology of X if X is a relatively compact domain in a Stein space [19,
p. 222, Prop. 6] or if Cx is a strongly complete metric in the sense that
every closed ball {yeX: Cx(x,y)^r} with x e X , r > 0, is compact in
the original topology of X [19, Cor. 4]. Examples for the second case are
generalized analytic polyhedra [13], in particular all domains whose
boundary points have peak functions.

b) Concerning property (ii) in 3.1.

A complex space is holomorphically convex (holomorphically
separable) iff the canonical map \|/: X -^ C^, x ^ (f(x))^^ is
proper (injective) where C^ carries the product topology. H^X)'
endowed with the weak-*-topology o can be considered as a linear
subspace of C^. Therefore it is seductive to conjecture that
X:X-^(H°°(Xy,a) is proper iff X is H°°-convex i.e. iff the H^-hull
ft°°(K):= { x e X i l f c O O I ^ I I A I l K ^ e H ^ X ) } of each compact K c= X is
again compact. But this is wrong ! / : X -> (H°°(X)',a) cannot be proper
whenever X is not compact, for the spectrum of H^X) is a weakly
compact subset of H^X)' and contains ^ (X). Also H°°-convexity and
strong completeness of Cx do not coincide [19]. But if we define H°°-
completeness in analogy to holomorphic completeness by
5C: X -> (H°°(Xy, norm top.) being injective and proper then 3.1. states
that X is H^-complete if and only if the uniformity induced by Cx is
sequentially complete and compatible with the topology of X. This
statement corresponds to the fact that X is holomorphically complete
if and only if the (^-uniformity is sequentially complete and compatible
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with the topology of X [10, p. 104; 18]. The ^-uniformity is the
coarsest uniformity such that all holomorphic functions are uniformly
continuous.

4. Conditions for (X, E) admitting a bounded embedding X -̂  E.

Let X be a complex space and F c= H°°(X) a linear subspace. Define

cS(x,}Q:= sup {p(A(x),/i(30):/ieF, \\h\\^l} for x , y e X .

c^ is a pseudometric which is coarser than Cx, hence it is finite and
continuous in the topology of X.

F is called Aut D-invariant iff Aut D acts from left on the unit ball of
F i.e. iff for every h € F, \\h\\ ^ 1, and every y e Aut D also y o h e F.
For Aut D-in variant subspaces F equality (1) generalizes to

(3) c^x,y)=x(sup{\h(y)\:he¥,\\h\\^l,h(x)=0}).

P. Woitasczcyk informed us of the following result.

4.1. PROPOSITION. — A closed linear subspace F of H^X) is Aut D-
invariant if and only if it is a subalgebra.

Proof (due to Woitasczcyk). — Let F be Aut D-invariant. Because

ab = . ((a -h b)2 — a2 — b2) it is enough to show that f2 e F for each

/ e F. Define M : = {(p e A(D): (p o / e F for every / e F} where A (D)
is the disk algebra. M is a closed linear subspace of A(D) and contains
\|/: = ido. The Aut D-invariance of F implies that M is Moebius-
invariant in the sense that (p o y e M for every (p € M and every
y € Aut D. The classification of Moebius-in variant subspaces of ^(D) in
[14, 16] shows that M = A(D). Hence \|/2 e M and therefore f2 e F for
each / e F.

To prove the converse implication observe that each y e Aut D is
holomorphic in a neighborhood of D, hence the power series expansion

oo

Y(2) = Z V" converges uniformly in D. If F is a subalgebra then
k n=o

^ an(f(z))"€¥ for every f e e N and /eF, and since F is closed one
n=o
obtains y o / e F for every / e F.
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4.2. PROPOSITION. - Let X be a complex space, G a complex Banach
space, and T:G-^H°°(X) a continuous linear map. Suppose that
F := T(G) 15 Aut D-invariant and that c^ is a complete metric inducing
the topology of X. Then the map <D := T* o ^ : X -^ H^X)' -> G' is
infective, proper, and holomorphic, and 0(X) is bounded.

Proof. - For x e X and g e G one gets
^Mfe) = tW(T(g)) = T(g)(x). <D is holomorphic since 7 and T* are
holomorphic. <1>(X) is bounded because

||a>(x)|| = sup {|<D(x)te)|: g e G, \\g\\ ̂  1}
= sup {|T(^)(x)|:^eG, ||̂ 1}
< sup {\\T(g)\\:geG, \\g\\^l}
=1|T||.

^> is injective : Let x, y e X, x + y . Because c5c is a metric there are
/eF, geG with f=rT(g) and /(x)^/(^). This implies

W(g) = T(^)(x) = f(x) ̂  f(y) = T(g)(y) = <!>(y)(g).

C> is proper : Let (x^ be a sequence without cluster points in X. Then
(Xn)n does not contain a Cauchy sequence and we may assume
cS(x^,x^+i) ^ e for a suitable e > 0 and every n e N . With the use of
(3) we obtain

||<D^)-0(x^O|||[T||-1

^ sup {\T(g)(x^-T(g)(x^,)\:geG, \\g\\ ̂ ||T||-1}
^sup{|T(^)(x„)|:geG,||^||^||T||-l,T(g)(x^O=0}
= T '(^(X^X^O)

^T-^E)
> 0.

Hence (0(x^ does not converge, q.e.d.

Notice that the Aut D-invariance of F may not be omitted. Put
X : = D, F : = G : == span {id^} , T : = inclusion. Then c^ coincides with
the Poincare metric p and consequently all assumptions of 4.2. are
satisfied. But 0 is the inclusion of D into G' ^ C and hence 0 is not
proper.

4.3. COROLLARY. — Let X be a complex space of positive dimension and
F a closed subalgebra of H°°(X) such that c^ is a complete metric inducing
the topology of X. Then F' does not have the Radon-Nikodym property.
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Proof. - Because of 4.1. the assumptions in 4.2. are fulfilled, and 4.2.
yields a proper holomorphic mapping <I>: X -> ¥ ' with bounded image.
2.2. excludes that F' has the RNP.

5. Infinite dimensional X.

For infinite dimensional Banach spaces E it is natural to ask when they
contain infinite dimensional bounded analytic subsets X. In this generality
the question is as difficult as uninteresting because arbitrary analytic sets
can be very pathological. We recall Douady's construction in [7] which
yields compact analytic sets which are finite dimensional topological
manifolds but do not possess any complex manifold point. Thus, in order
to obtain some kind of analytic geometry in Banach spaces one has to
impose regularity conditions on the analytic sets. In [1, 3] we introduced the
SF-analytic sets. An SF-analytic subset of a Banach manifold is a closed
subset which is locally a fiber of a holomorphic semi-Fredholm map; this is
a map whose differentials are semi-Fredholm operators i.e. kernel and
image are complemented and kernel or cokernel are finite dimensional.
Such mappings occur e.g. in bifurcation problems of Fredholm maps. The
SF-analytic sets are precisely the analytic sets which are locally contained
in some complex submanifold (with complemented tangent spaces) where
they are finitely defined in the sense of Ramis [15] i.e. they are locally the
common zero set of finitely many holomorphic functions. Hence SF-
analytic sets have the same good local properties as the finitely defined
analytic sets [15] but the global behavior can differ. Finite dimensional
analytic sets are SF-analytic, hence SF-analytic sets can be bounded and
non discrete whereas finitely defined analytic subsets of an infinite
dimensional Banach space are never bounded [15, p. 73]. We list some
essential properties of SF-analytic sets.

5.1. LEMMA. — Let X be an S¥-analytic subset of a complex Banach
manifold ft.

a) X is locally an analytically ramified finitely sheeted covering of a
domain in a Banach space. In particular the regular points are dense and X
has the usual decomposition in irreducible components.

b) X is locally connected by complex arcs i.e. for every xeX there are
arbitrarily small neighborhoods U such that for every y e U there exists a
holomorphic map y from the open unit disk D into ft mth
x , y e y ( D ) c= X.
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c) If X is irreducible then every non constant holomorphic function on X
is open.

d) Every bounded family of holomorphic functions on X is
equicontinuous.

Proof. - a) [15, 1, 3], b) follows from a) [1, 3] and c) from b).
According to a hint of W. Kaup d) can be derived from a); by using
symmetric functions one reduces d) to the well-known analogous statement
where X is a domain in a Banach space.

A map / : X -> Y between SF-analytic subsets of Banach manifolds 0
and S is called holomorphic if it has locally holomorphic extensions /* to
open subsets of the embedding manifolds. Hence its differentials can be
defined as the restrictions Df(x) := Df*(x)\rT^X -> TyY where the
tangent spaces are defined by T\X : = [u e T^Q : u e Ker Dh(x) for every
holomorphic function germ h which vanishes on X}.

An SF-analytic subset of a Banach manifold with the reduced structure
and the above defined holomorphic maps will be called an SF— analytic
space. It is not known whether every complex space is SF-analytic, but at
least every Stein space is SF-analytic even if its global dimension is not
finite [17]. Define an embedding as in the first section and call a
holomorphic map an immersion iff its differentials are injective and have
complemented images. Then a map / : X -^ E from an SF-analytic space
X into a Banach space E is an embedding if and only if it is an injective
proper immersion.

Because of 5.1.c) theorem 2.2. holds for SF-analytic spaces X instead of
complex spaces X. In particular one obtains

5.2. COROLLARY. — Every bounded S¥-analytic subset of a Banach space
mth Radon-Nikodym property is discrete.

Whereas every real differentiable Hilbert manifold can be embedded
boundedly into ^ [5, th. 2.7.] corollary 5.2. implies that no complex
Hilbert manifold at all is realizable as a bounded closed complex
submanifold of ^2 In contrast to that we have the following example.

5.3. Example. — The open unit ball B in ^ is isomorphic to a
bounded closed complex submanifold in ^.

Proof. - Let E := {(^), e^ : sup {||aJ, : n eN}<oo} be the ^-
sum of countably many copies of £ ̂ . Choose a bijection a : N -> N2. a
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induces an isometry T : E -> ̂ . The map 0 : D -> ̂  » z -)> (^n ls an

embedding and 0(D) lies in the open unit ball of ^ (c^ section 3.).
Define g : B -^ E by^(x):= (O(x^)^N and put v|/ := J o g . Then v|/ is
holomorphic, injective and proper, and the differentials of \|/ are injective.
Thus it remains to show that the differentials have complemented images.
ImDv|/(x) is the ^-sum of !„:= ImD^>(x^). Because each !„ is one
dimensional there exist continuous projections K^ '. ^oo "̂  In wlt^
[|7cJ| = 1. The product of these projections can be restricted to E and
yields a continuous projection E -> Im D\|/(x). q.e.d.

In order to extend the result of the last two sections to SF — analytic
spaces X define the Caratheodory pseudometrics Cx and Cx in the same
way as above. They have the same properties as for complex spaces X. In
particular equation (1) holds as well. Let us mention explicitly only two
properties.

5.4. LEMMA. — For every connected SF— analytic space X the
Caratheodory pseudometric Cx is finite and continuous.

Proof. — Let x, y G X. Apply 5.1.b) to obtain XQ , . . . , x^+1 e X,
OQ , . . . , a^ e D, and holomorphic maps y ^ : D -> X such that
Y k ( 0 ) = ^ k » 7k(ak)=^k+l. XQ=X, x ^ = y . Then

Cx(x,y)^ ^ Cx(Xfc,x^i)^ ^ ^x(Yk(0),Yfc(afc))
k=0 k=0

^ ^ CD(O, ̂ ) < f p(0, a,) < oo .
k=0 k=0

Hence Cx is finite.

Because of 5.1.d) the family [he H°°(X): ||A||^1, h(xo)=0} is
equicontinuous in XQ e X. Equation (1) in the third section implies that
the map X\—>C^(XQ,X) is continuous. Because every pseudometric
satisfies \d(xo,yo)-d(x,y)\ ^ d(xo,x) 4- d(yo,y) the continuity of Cx
follows, q.e.d.

Let us note that Cx induces the topology of X if X is a bounded
domain in a Banach space [8, 9] and that because of 5.1.d) the canonical
map ^:X -> H^Xy is continuous. Now we have all tools to see that the
proof of (ii) o (iii) in 3.1. holds verbally for SF-analytic spaces X instead
of complex spaces X.
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5.5. THEOREM. — Let X be a connected SF-analytic space. Then
%: X -> H°°(X)' 15 injective and proper if and only if Cx is a complete metric
which induces the topology of X.

In order to establish the other results of sections 3 and 4 two essential
items are still missing, namely that the canonical map % is holomorphic
and that their differentials have complemented kernels and images.
Whereas for finite dimensional X Bungart showed that weak
holomorphicity implies holomorphicity [4] an analogous result for SF-
analytic spaces X is not known except for Banach manifolds X. And even
for Banach manifolds X we do not know whether the images of D^(x) are
always complemented. Hence we can state only the following proposition.

5.6. PROPOSITION. — The theorems 3.1., 4.2., and 4.3. hold also for
complex Banach manifolds X instead of complex spaces X.

If, however, a Banach manifold X is modelled in a reflexive Banach
space we are able to show that the H°°-regularity of X implies that
ImD/(x) is always complemented. Therefore we obtain

5.7. PROPOSITION. — The supplement 3.2. holds for connected complex
Banach manifolds X which are modelled in a reflexive Banach space E.

Proof. — We have only to show that Im D^(x) is complemented if X
is H^-regular. Let x e X . Then there exists a neighborhood U of x, a
biholomorphic map (p : U -+ W onto a domain W in E, and a bounded
holomorphic map / : X -> F into a Banach space F such that /1 U -> V
is an embedding into an open subset V of F. Let 7* := 5co(p~ 1 and
/* : = / o (p~ 1 , y : = (p(x), and identify the tangent space TyW with E.
Then D^*(y) maps each eeE onto the derivative r| in the direction e

at x i.e. r|eH°°(Xy is defined by r[(h):=-j-ho^)~l(y+te)\,=o. Let

E : = Im D7(x) = Im D^*(y). Since /1 U is an embedding
IV* 00 : E -> F maps E isomorphically onto a complemented subspace
of F. Hence the adjoint D/*(^y : F' -^ E' has a section a : E' -> F'.
Because /(X) is bounded we get To/eH^X) for every reF' and we
can define ^H^Xy^E" by p(n)(v) := H(a(v) of) for HeH°°(Xy
and v e E'. Since E is reflexive the canonical map J : E -> E" is an
isomorphism and with e := J ' 1 ^ ^ ) ) we obtain p(|Li)(v) = v(e). Now
define n:= D^(y)oJ-1 o p : H°°(Xy ^ E" ^ E - ^ E .
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7t is a continuous linear map. In order to prove that 71 is a projection
onto E we show n \ E = idg. Let r| e E be the derivative in direction
eeE i.e. r| = D%*(y)e. Then

P0l)(v) = r|(a(v)o/) = ̂ (a(v)o/*(3; + te))\^

= a(v)oDf*(y)(e) = D/'W(a(v))(^) == v(^)

for every veE\ hence J'^Ol)) = e and thus 7t(r|) = r|. q.e.d.
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