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CONSTRUCTION TECHNIQUES
FOR SOME THIN SETS

IN DUALS OF COMPACT
ABELIAN GROUPS

by D.J. HAJELA

1. Introduction.

In this note we give construction techniques for A(p) sets in
various groups. As a consequence we are able to recapture previous
results on these sets (see e.g. [2], [4], [6], [23]) as well as prove some
new results. In particular we show that in the dual of any compact
abelian group there exists a A(4) set which is not A (4 + e) for
any e > 0.

We now describe the contents of this note more fully. Let us
recall the definition of a A(p) set for G a compact abelian group :
If F = {7,^=1 C G* (G* is the dual group of G) then F is
a A(p) set if there exists a constant Ap ^ > 0 such that,

n

J. '''" ^(^ ̂  A?^ S ;̂
/==1

V0) (1.1)

for some 0 < q < p , for all n e N and all (a,)^ EC". By an
application of Holder's inequality it is easily seen that if the above
holds for some 0 < q <p then it holds for all 0 < r < p (see
[23]).

In section 2 we show that in the dual of the Cantor group D*
(where D == {— l , !}*^) there exist A(p) sets which are not
A(p -+- e) for any e > 0, where p = 2k and 2 < k E N . Some of
the results in this section follow from more general results in the
following sections, but we have given proofs specifically adapted
to D. This is because the construction in D is particularly

Keyword: A(p) sets.
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revealing and shows some of the basic ideas used in other constructions.
Essential to the construction for D are some ideas from coding theory
and in particular it was some remarks of Johnson, Schectman, and
Wilson (unpublished) in the p = 4 case that led us to general case
for D and subsequently to other groups.

In section 3 some preliminary results used for the rest of the
paper are proved. In particular the study of A(p) sets for general
compact abelian groups is reduced to the study of A(p) sets in a few
special groups, namely in the dual groups Z , Z ( p ^ ) ̂  Z(^) ^ . . .
(for an increasing sequence of primes (?„)), Z(p00) = U Z(p")

n>Q
(p a prime) and Z (p) 0 Z(p) ^ Z(p) 0 . . . . This is effected by
using the results of [6], where this type of idea was used in showing
that there are sets which are A(p) for all 1 < p < °° but which
are not Sidon sets.

In section 4 we give construction for Z and Z ( p ^ ) ^ Z(p^) 0 . . .
While constructions for these two groups areknown(see [23], [6])
we give a construction based on a theorem of Bose and Chowla [5]
(which was used to assert the existence of finite projective planes).
In this section we also generalize a method of Erdos (see [7])
which shows that with respect to a certain biased coin tossing
measure on the space of integer sequences almost all sequences have
a prescribed rate of growth and that an arbitrary integer can be
written in a bounded number of ways as a sum of elements of a given
random integer sequence. This result easily yields that for p = 2k,
2 < k E N almost all integer sequences are A(p) but not
A(p + e). We also give in this section a more precise version of the
growth of the A (4) constant of the squares than in [23]. It is
somewhat surprising that the sequence constructed in the p = 4
case above are like squares, since the squares are not A(4).

In section 5 we turn to the dual group Z(p) ^ Z(p) 9 . . .
for p > 2. It is shown that for p > k > 2 there are A(2k) sets
which are not A(2k -+- e) for any e > 0 by using certain classical
facts about symmetric polynomials. For k > p we don't have a
construction but it is shown that one possible approach is to reduce
the problem to one about counting rational points in a certain
variety. This problem in algebraic geometry however appears to be
rather delicate. The results of section 2 along with those in section 5
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constitute a strong form of a solution to a problem in Lopez and
Ross's book "Sidon Sets", page 171 (see [19]).

In section 6 we turn to construction in Z(p°°) = U Z i p " ) .
w > o

It is shown that there are A (4) sets which are not A (4 + e) for all
6 > 0 . One also obtains construction for A(2k) sets (k>2).
The main idea here is that one may reduce to a well known theorem
ofTuran's in extremal graph theory.

In connection with the above results, one should mention a
result of Pisier (unpublished). His result is: Given A C G^, I A | = n
and given 6 > 0 3 B C A, |B | > n^2-8 with \(B) < C^ (where
Cg doesn't depend on n and ^(B) is the A(4) constant of B).
The interest in such a statement is that the A (4 + e) constant of
B should be large by suitably choosing 5(e). One should therefore
be able to glue such B's together to find bad A (4) sets. The problem
of course is that one doesn't obtain A(4) sets which are A(4 + e )
for all e > 0. Also the proof is limited to A(4) sets. Let us finally
point out that the gluing process could be non-trivial as will be seen
in section 6.

We will use standard notations and any notation not mentioned
in the paper may be found in [22], [27] and [18]. Let us just mention
that |S| denotes the cardinality of a set S and [x] denotes the
greatest integer function for x E R .

We wish to thank P. Deligne, J. Foumier, W. Johnson, G.
Pisier, D. Ray-Chaudhuri, K. Ross and G. Schectman for useful
comments and communications.

2. Construction in the dual of the Cantor group.

In this section we construct a A (2k) set in D* which is not
A(2k -he) , for all e > 0, 2 < k G N , where D = {- 1 , l}^ is
the Cantor group. Recall that the set of characters for D is the
Fourier —Walsh system : For x = (;c^) E D we let e^ : D —> { — 1,1}
be defined by e^(x) = x^ where fcE N , k > 1 . Then an element
of the dual group D* of D consists of finite products of the e^.
Given a finite subset A of N let us write, W^ = n e .

/eA
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2.7 Preliminaries.
To construct A(p) sets which are not A(p + e) we shall use

the proposition below which states that among certain tuples of O's
and I ' s one can find a large set of tuples whose elements when added
together have distinct sums.

PROPOSITION 2.1.1. -Let 2 < w € N and let n G N such that
n >[log2 m + 1] + 1 . Then among the 2^ tuples of O's and
I ' s ie. {0,1}^ one can find a subset A C {0,1}^ vw'rA the
following properties:

1) | A | == 2"
2) z^r fc e N , l < k < w W /6?r { c ^ , . . . , c^} c A r̂i

{^+1. • • • ^2k} c A w^ {c i , . . . , c^} n {c^,,.., c^} = 0 .
Then c^ + . . . 4- c^ ^ c^ + . . . + c^ (the addition of two tuples
is performed coordinatewise modulo 2).

Proof - Let GF(2") denote the Galois field of 2" elements
where n is chosen so that n > [log^ m + 1] 4- 1 and m is fixed.
Regarding GF(2") as a vector space over GF(2) we have that dim
GF(2") = n. So let [ x ^ , . . . , x^} C GF(2") be a basis for GF(2")
over GF(2). To xeGF(2n) we associate the n-tuple of O's and

n

\'s(a\,. . . , a\) where ^ = L a\ x ^ . In what follows we will always
1=1

maintain the order of the x / s in any expansion of a given element
of GF(2"). In a similar fashion associate to each odd power

n

x^-1 of x its ^-tuple ( a ^ , . . . , ^ ) i.e. x^'1 = S flf ;c, for
i= i

1 < k < m. Finally associate to x the mn tuple of 0'5 and 1 ' s
a(x)= ( a ; , . . . , ^ , . . . , ^ , . . . , ^ , . . , , 0 7 , . . . , ^ ) . We claim
that A = {a(x) |x eGF(2M)} has the desired properties. Clearly
I A | = 2" because the first n coordinates of a(x) are the basis
expansion for x . To see the second property let { y ^ , . . . , y ^ } C A
and [Yk+i, • • • , y^c} c A where the two sets are disjoint (note
that the condition n > [log^ m -»- 1] -t- 1 assures us that such sets
do exist for all \<k<m). Pick z/GGF(2") so that a(z ,)=j / , ,
1 < i < 2k. Now suppose that:
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k 2k

S Yi= S y , .
1=1 i=fc+l

(2.1.1)

Then by virtue of a(z,) = 3^ we have that:

227"1 + + 727"1 = 72/-l 4- -4- 72f~lZ^ -r . . . -r Z^ - Z .̂n -1- . . . -h Z^ (2.1.2)

for 1 < / < f c . Now since GF(2") has characteristic 2 the above
condition forces:

y/ -(- -L y/ = -/ -L J. -7Z. -̂ . . . -T £, . ^I.-L, ^ . . . • Z^ for 1 <f <2k- 1. (2.1.3)

This follows by taking 1 < / < 2k — 1, writing it as / = 27 / ' where
/' is odd and raising equation (2.1.2) corresponding to / ' to the
^th power. Letting M, = (1 ,z,,. . . , zf~1) for 1 < i < 2k the
last equation in turn forces {u^^ to be linearly dependent. So,

^-1

det Z2 72fc~l
z; • • • zf = 0.

^Tk ^ " '
-2^-1
z^

But the above is the Van der Monde determinant and is so also
n (z, — z.) ̂  0 since the z, are distinct. This contradiction means

i>J
that A has the second property, n

Remarks. —2.1 .1) Notice that the above type of result is the
best possible of its kind in the sense that if one is given a set S with
a binary operation + , which has the closure property with respect
to S, then for the maximal subset A C S with the second property
in the above proposition one has Bin |A|/ | S j^ < 1 (as
| s | —> oo). in the proposition the set A has

( A | = T = | {0,1}^ j^ .
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2.1.2) In view of the remark above it follows that the result
in the proposition doesn't generalize to the characteristic p case
(p > 2) with the above proof. To see this fix 1 < m E N and choose
a prime p > 2m — 1. In order for the above proof to work and
to choose a maximal subset (as in the above remark) one must choose
exponents k, , . . . , k^_, E N , 2 < k, <. . . < k^_, s.t. the

\ 2fc

conditions i x^' == ^ x^i f == i , . . . , ̂  - i , k fixed,
i=l i=k+l ?

k < m and the condition ^ + . . . 4- ̂  = x^i + . . . 4- x^ for
x,EGF(7/1) force the conditions

k 2k

I x/ = S x/ 7 = = 1 , . . . , 2fc- 1.
1=1 j = f c + i

If k = m for example this is clearly not automatic (since
p > 2m — 1). In some sense what is special about the p = 2 case
is that any 7 < 2w — 1 can be written as 7 = 2^\ with
7\ = 1 (mod 2) and all the odd exponents have already been chosen
so that the conditions are forced.

2.1.3) For fields whose characteristic is not 2 an alternative
approach is discussed in section 5. As an example of one case in the
non characteristic 2 situation, pick a prime p > 2 . Set

A = {GC.^IJCGGFO^)}
(here we expand x and x2 in tuple fashion regarding GF(p") as
a vector space over GF(p)). Then | A | = p" while

| { 0 , l , . . . , p - l}2"!^3"
and if a , b , c , d are A (all distinct) then a + b ̂  c 4- d . To see
this simply observe that x + y = w -t- z and ;c2 + >/2 = w2 -h z2

have no solution with {x , y ,w ,z} CGF(pn) and with x , y , w , z
being distinct.

2.1.4) With m = 2 in proposition 2.1.1 the proof shows that
A = {(x ,x3) | x G GF(2")} works. This case corresponds to a standard
construction in coding theory (see remark 2.1.5).

2.1.5) We finally point out that the construction in the proof
of the proposition is the same type of construction as that of certain
well known cyclic codes (particularly BCH codes) (see [26]). This
resemblance was pointed out to us by D.K. Ray - Chaudhuri.
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2.2 The Construction..

To begin with we set up a correspondance between certain subsets
of the Walsh functions and the sets constructed in the proposition.
Fix 2 < m € N and choose any n > [log^w + 1] + 1 . Let
W^ be the Walsh functions generated by e ^ , . . . , e^. For W^ ^ W^
construct the following tuple of O's and I ' s (of length mn) :

, - ( 1 if ie A
sw*(')= J O i f , < ; A ,

Note that given W^WpGW^, and their associated tuples S^
and S^B the tuple for W^ W^ ,S^WB = SWA + ^B (Mod 2)-
By the construction in proposition 2.1.1 it follows that we can find
a set A^ of Walsh functions satisfying the following properties :

1) A^CW^

2) IA^I=2"
3) If WA^ A^ , ? = 1, . . . , 2k are distinct Walsh functions

k 2k
then n WA.^= n WA. provided that A: < m .

,=1 ! i=k+l l

Now pick ^ so that n^ = min {27 | 27 > [log^ m + 1] + 1}.
Now define ^4.1 = 2^. for / > 1 ,7 G N . Finally put E = U A^..

/ > i /

Note that A^^ .CA^^ .^^ , by the construction and because
GF(2"/+1) DGF(2n/) as a subfield because ^l^.+i . We will show
that :

1) E is a A(2m) set
2) E is not a A(2m 4- e) set for all e > 0.
We show (2) first. This easily follows from some material in

section 3. We choose to give however a different proof than is usual
by using some well-known techniques from the local theory of
Banach spaces. Fix e > 0 and put p = 2m + e. Then [W^l
(closed linear span of W^. in p-norm) is isometric to /2W/W , for
a fixed / > 1. This is because of the obvious fact that if D^. is
the set of dyadic intervals of length 2-w/w on [0,1] and I^D^.
then Xi E V^mn^p (of course here we are looking upon the e^ ' s
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as Rademacher functions on [0,1]) . Let Xp(A^.) be the
constant of equivalence between the Lp and L^ norms on
^mn^p' If E is a h(pY set then Xp(A^.)<A where A is the
A(p) constant of E. Now dim [A .̂]p = 2"7. It is a well known
fact that the maximal dimension of Hilbertian subspaces which are
uniformly enbeddable in ^nfm is less than 2"7. It follows
\ ̂ wn? —> + °° as / —> + oo . This is a contradiction. We give
a more precise computation of Xp(A^.) below. The proof here is
easily adapted from [10].

PROPOSITION 2.2.1. -For any m > 1, / > 1 and e > 0 we
have that Xp(A^.) > c(p) \ A .̂ ̂ -^P ^here p = 2m + e and
c(p) = l/p17^ .

Proo/ - Let v^, . . . , H^ be the Walsh functions in
^mn^ = 2 7). For any choice of scalars (0?^ ^ we have,

(2i'.,'i)«,' ir» fc

/=1

S ^.w, <X,(A^)(^ |a,|2)1/2 . (2.2.1)

Let 0,)^=i be the Rademacher functions and let (x^^C /2W7W

be vectors which correspond to Wj under the isometry between
[W^]p and ^m . Let x, = (x,^,)^, where n = 2"^ . By the

left hand side of (2.2.1) and Khinchin's inequality we have,
r 1 k llp

k^ <J, ^ .,(r)x, rfr

fc
n /l! V P

= S J, L ^^',i dt
i= i ° /= i

n k
<B,£(2l.,,|').»

1=1 /=1
(2.2.2)

where Bp is the upper Khinchin constant. By dualizing the right
hand side of (2.2.1) we get that,



CONSTRUCTION OF Ap SETS 145

k

(Sl^J^/^X^A^.). (2.2.3)

By plugging (2.2.3) into (2.2.2) and using that Bp < p172 (for p > 2)
it follows that,

^ < B^ X^(A^) = B,^ X^(A^.) < p V 2 ̂  ^(A^.).

It follows that: \ (A .̂) > c(p) | A .̂ l^-m/p ^

We show next that X^ (A^,^.) < c where c = c(.m). It follows
immediately that X^ (E) < c , since A^. C A^^.^ .

PROPOSITION 2.2.2. - For any w > 2 and ]> 1 w^ Aav^
^-2^ (^n? ̂  c w^^^ c = c(m).

Proof. - Fix 7 > 1. Let w ^ , . . . , WN be the elements of

A^.(N = 2^'). Set / = ^ fl,w, where (a,)^ E CN and

N
set A = ,̂ | a, |2 and B = ^ a,a.w,w.. We first observe that,

1=1 i^/

\fBk\<c,Ak (2.2.4)

where c^ depends only on k and w (here 1 < k < m). This is
because:

/B- =f(^a.-a^^)k

= f S a.., 5,,' . . . a^ a^ w, . . .w , w^. ...w,.
'1^1'...., ̂ 'jl

By the second property in proposition 2.1.1
./\...v^ w ^ . . . w ,^=0

unless there is a pairing so that (y = i,. or ;'„ for some / and n
for each 1 < / < k and similarly for ?}' (1 < / < k). So

\f^\< S l^ll^l...|a;j|^|. (2.2.5)
all pairings
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For a fixed pairing P we certainly have

Ak ^Sl^il |^v|- • • |%| |^'(
p

since A^ has all products of length k of squares i.e. |a, |2 . Note
that only a finite number of pairings exist and this number only
depends on m (and k). So (2.2.4) follows.

N

^
1=1 ' ^=1

||2m _ A W -_,a

Now |/|2 = ( ^ fl ,w, ) ( ^ ̂ . ) = A + B .v 1 = 1 / \=i /

It follows that I/II^^A^ and

11/1̂  = /(A + B r = / f (^A-^
w

k^O ̂

=A"' +fmAm-lB+f S (m )Am - f cB tm

fc^'2 v k

A" + I (m)^m-kf^.
k>1

So
— 7

| | ^ | | 2 w - | [ ( f | | 2 w | < A W 4 . y ^ I A'"-^ FR^11^ ||2w "- I II/ bw |^A -h ^ I ; A JB
î  •'». ^ ' w 'A:>2 W

w

<A" 1 . £ (m)
<W\

<^
f c > 2

with the last inequality following by the use of (2.2.4). Setting

= c^m)^ = 1 + 1 , ( m) Of, we have^im ^ ^
k > 2 k

Ifi^^c^ 11/11^ and so ||/||^<c 1 1 2 •

Remarks. - (2.2.1) The result in proposition 2.2.2 easily follows
from material in section 5, but the proof above is somewhat different
from that in section 5 and is especially simple.

(2.2.2) The reader will observe that we could also have built our
example on "disjoint" blocks A^n. instead of "inductive" ones
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(i.e. A^. C A^.^). We choose to use the latter type of blocks
just because this feature was implicit in the construction of propo-
sition 2.1.1.

3. Preliminary facts.

In this section we state some simple results which are used in the
rest of the paper. We start with a result which states that A(p) sets
are thin from the point of view of the groups they contain. A generaliz-
ation of this result is in [6] and the proof in [6] was based on ideas in
[23]. From now on if E is A(p) set for p>2 then the A(p)
constant of E, \p (E) is the constant of equivalence between the
Lp and L^ norms on L^ = { /E Lp \f(\) = 0 if x^ E}.

PROPOSITION 3.1. - Let G C F (dual of some compact abelian
group) be a group wth | G | < + o o . Let A be A(q) for some
q>2. Then \ (A)> |G H A I ^ / I G | l / q .

Remark 3.1. — It is obvious from [6] that the above result is valid
not only for finite groups but also translates of finite groups.

The next result improves the estimate of the A(p) constant
involved over that in [6]. It is an obvious modification of the proof
in [6]. A similar estimate appears in [4] but the proof is somewhat
different. We require the following definition.

DEFINITION 3.1. - Let r be an abelian group and let 2 < ^ E N .
For all A C F denote by R(A,n) all functions

f: A — — > Ns.t . S f(x)-n.
X^A

For 7 G r, R (A, n, 7) denotes all fs.t. ^ X^^ = 7 and
X€EA

/GR(A, n).

PROPOSITION 3.2. — Let G be a compact abelian group "with dual
group r and assume that \ R (A, n, 7) | < M for all 7 € r and some
ACr. Then \^ (A) ̂ (M^!))172" (here n>2).
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Proof. — Let /= ^ flOc).^ for some finite set A C A. By the
xeA

multinominal expansion we have

r= I ^ ! ,, n (a(x)x)^^e :R(A,M) n ^(^)! ^€A
jc^A

= ^ ^7 where ^= S - "! „ n aW^.
rer ' <reR(A,^ , - r ) n g(x)\ x<=A

xSA

Now by Holder's inequality

l^l2^ S ( n "! ..^ n l^^)!2^^^ V^eRCA'n .^V n ^(x)! / X £ A
jc€ A

/ M ! \
sup ———-. , ) I R ( A , » , 7 ) 1

\ ^ e R ( A , M , 7 ) n ^(.y)!/x xeA /

( , \
< M ^ ! ^ —————) n \a(x)\2^x\

^ G R ( A , M , 7 ) n g ( x ) \ l x ^ AxeA /

so ||/||^=Z|^|2 (by ParsevaFs identity)

<M(^!) I: 1: (-^n-^ " I^MI2'^7er ^RCA^^)^^^^)1/ X€EA

( f \
<M(^z!) S ——————-^ n \a(x)\1^

^ e R ( A . M ) n ^ ( X ) ! ^ € A
xGA /

= M ( ^ ! ) (S|a(^) |2)" (by the multinomial expansion)

=M(n\)\\f\\^.

So X^^AXd^Ai!)172". D

The last result of this section reduces the study of A(p) sets
for general compact abelian groups to a few special cases. A result
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of this type was stated in [6] for the purpose of studying Sidon sets.
We start with the following obvious proposition (for a proof see [6]).

PROPOSITION 3.3. — Let G be a compact abelian group and H
a closed subgroup. Then A is a A(p) set in (G/H)* (1 <p <oo) if
and only if A is a A ( p ) set in G*.

Proposition 3.3 shows that we may reduce our study to A(p)
sets in the list of groups in proposition 3.4. For a slightly different
proof of this simple fact, see [6].

PROPOSITION 3.4. — Let G be an infinite abelian group. Then
G contains a subgroup of one of the following types :

I ) Z 2) Z(pi) ^ Z(py) e • • • f01" some increasing sequence
of primes (pn)^=i 3) Z(p°°) and 4) Z ( p ) ^ Z ( p ) ^ . . . for some
p (prime).

Proof. - Let r(G) be the torsion subgroup of G. If r (G) ̂  G
then G D Z. So assuming r(G) = G write G == e) G where
Gp are the p-primary components. If there are infinitely many
components then G D Z(p^) ^ Z(p^) ®. . . . I f there are finitely
many components then j Gp j = 4- oo for some p . Then G (for
this value of p) contains a basic subgroup B (see [21]). Denote
by a(B) = sup 0(fe) where 0(&) is the order of b. If

& € B

a(B) = + oo then B will contain infinitely many cyclic groups in
it's decomposition, so B D Z(p) Q Z(p) 0 . . . . If a(B) < oo
then Gp = B C Gp/B (see [21]). If Gp/B = {0} then Gp = B
and so B will contain infinitely many cyclic groups in its
decomposition and so B D Z(p) ̂  Z(p) ̂  . . . . If G^/B ^ {0}
then Gp/B = 2 0 Q 0 Z(p°°), because Gp/B is divisible. Since
Q is not torsion and Gp is, G /B = 2 ^ Z(p°°). So at least one
Z(p°°) appears since Gp/B ̂  {0}. It follows that G D Z(p°°). n

4. Constructions in Z and Z(p^) ^ Z(p^) ̂  . . .

Constructions in Z and Z(p^) ^ Z(p^) 0 . . . are well known
([23], [6]). We will give a slightly different type of construction here.



150 D.J.HAJELA

Our starting point is the following theorem of Bose and Chowla
(see [5]).

PROPOSITION 4.1. —Let m = p" (where p is a prime, n G N^
and q = (m^1 — \)/m — 1 for some r G N . 77î  we can find
m + 1 integers (less than q) d^ = 0, ^i = 1, d ^ , . . . , d^ s.t. the
sums df -+- . . . 4- df , 0 < ^ < ^ < . . . < ; , . < w ar^ all different
mod ^.

Proposition 4.1 is for m being powers of primes (and this was
what was needed to construct finite projective planes). Proposition 4.2
is an extension. A similar argument appears in [6] with a different
conclusion.

PROPOSITION 4.2. -If n> 3m6m (for some m G N) then we
^Im

can find A C Z^ such that \ A | > ^—„„- and the sums
(3 m)

a, 4- . . . + a, flr^ distinct mod ^ w/^r^ {a. , . . . , fl, } C A and
i < ^ < . . . 2 ^ .

^1/m
Proo/ — Choose n as above. Set x = (iiyn\+i—r/,,," • Then

x > 2 and so there exists a prime p (by Bertrands's theorem, [15])
s.t. [x] + 1 < p < 2 [;c] + 2. So ;c < p < 2x + 2 < 3x (since

^l/w ^l/w

x > 2) i.e. there exists a prime p s.t. ̂ ^^ < P <~^rn~^ •
ym+l-l

Set ^ = ————. By proposition 4.1 there exists a ^ , . . . ,'flp (less
P ~" !

than q^) s.t. m-sums of the a's are distinct (mod q). Set
A = { f l i , . . . , Op} . Then we have that

a. + . . . + a^ < mq < 3pm m <n.

So the m-sums are also distinct mod n. Also
^l/m ^\lm

1^1 = P > gl /w+l^l /m "~ /^w+l^^l /w •

Since it is not particularly important as to how large n should
be in proposition 4.2 to make it true we could have used the prime
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number theorem instead of Bertrand's theorem in the proof above.
This is because for all e > 0, TT((I + e)n) — ir(n) —> + °° as
n —^ + °° (and so there is a prime p , n < p < ( l - ^ - e ) n if n
is large) by the prime number theorem. This would have yielded a
somewhat larger set A in proposition 4.2. Since this is of no
importance in what follows we choose to use Bertrand's theorem.

One may now easily construct A(2k) sets in Z which are not
A(2k -he) , for all e > 0 .

PROPOSITION 4.3. — There is a set F C Z which is A(2k) but
not A(2k 4- e) for e > 0, where k > 2 .

Proof. - Let (?„) be an increasing sequence of primes. By
proposition 4.1 there exist sets E C Z s.t. \E \>p

1 _fc+ i ,'•
e,co,^'£„ C 0,—"———— s.t. fe-sums out of £„ are distinct (we are

now adding in Z and looking upon these sums). Set F^ = E^ and
set a^ = k max F^ (for ( > 2) and F{ = a^. Set F = U F^.

i>\
It is clear that F is A(2k) by proposition 3.2. To see F is not

^+1 - 1
A(2k + 6), let A^ == ^ m \ m E N , 0 < m <—1———— and note

Pn ~ 1

that | F^ n A^ | > ̂  > ^ ^ 1 A^ [1/* . By a theorem of Rudin

the cardinality of the intersection of a A(2A: + e) set with an
arithmetic progression can't be so large (see [23], one can't quite use
proposition 3.1, but certainly one can use appropriate generalizations
of it. Since this is the only time we need anything other than
proposition 3.1 we don't state the general results), a

It should be clear that by using proposition 4.2 on "disjoint
blocks" of Z ( p ^ ) ^ Z ( p ^ ) ^ . . . , one may build analogous
examples.

PROPOSITION 4.4. - There is a set E C Z ( p ^ ) ^ Z(p^) ̂  .. .
which is A(2k) but not A(2k 4- e).

Proof — Assume without loss of generality that p^ > 3k6k

for all n > 1. By proposition 4.2. there exists E^ C Z(p^) s.t.
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i/k

I ̂ n I s> ^ n —i^ and fe-sums out of E^ are distinct mod ?„.
(3 k )

Set E == U £„ with each E^ embedded in Z(^) e Z(p^) . . .
n= 1

in the cannonical fashion. By proposition 3.2 E is A(2fe) and
since
X^(E)>|EnZ(p,)|^/^/u+e

> ————.7. P^~l/2fc+e -— + oo as n -^ + oo
O^fc)^ "

(by proposition 3.1), E is not A ( 2 f c + e ) . a

Remark 4.1.-Notice that the growth "locally" of X^+e (E)
for the sets E constructed in propositions 4.3 and 4.4 are "power
type" and compare this with proposition 2.2.1.

We now look at some infinite random A(p) sets in Z by
considering a method of Erdos. We first introduce a biased coin
tossing space on the set of integer sequences Sl (increasing
subsequences of N) . Let X^ be 2-valued random variables
(independent) for n > 1, with P(X^ = 0) = 1 — p^ and
P(X^ = ! ) = ? „ for 0 <pn < 1 and (pn)^=i a S^611 sequence.
It is natural to call Sl a biased coin tossing space: The probability
space on which the X^'s are defined can naturally be taken to be
the Cantor set D = {0 , l}^ . On each factor introduce the probability
P»({0}) = 1 -pn and ?„({!})=?„. Then the P above is just
P = ® P^ and the X^ ' s are the projection onto the nth

n= 1
coordinate. Using the natural identification between S2 and D we
have a coin tossing measure on S2.

For different choices of (?„) we get different probability
spaces (though by a theorem of Kakutani [16] if ?„ is sufficiently
close to p^ for all n, the spaces are the same). We denote a generic
sequence of S2 by (a^^ . We always choose (?„) so that

2d p^ = + oo. This insures that the sequence (fl^)^= ^ is infinite
n>\

with probability 1 (by Borel-Cantelli). Recall the following simple
variant of the strong law of large numbers (see [13]).
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PROPOSITION 4.5. —Let 0^n)n>\ ^e a sequence of independent

random variables on a probability space (S2,F,^). Let S^ = S X,
i<n

and suppose that: 1) E(X,) > 0 2) lim E(S,) = + oo 3)
l-^oo

V Var(X.)
—0^2" <^ + °°- ^^n WY^ probability 1, w^ Afl^

i > l E(S,)

(S^ - E(S^))/E(S^)—^ 0.

As an immediate consequence we have in our case :

PROPOSITION 4.6. -Let (X^^ and Sl be as in our case. If
in addition to the previous conditions on (p^)^= i ^e have

S _P"(Lr-P"L_ < + oo
n>l (Pi + . . . +?„)'

?/ie« 0.0. coG S2

X, + . . . + X„ _
1 .

Pi + • • • + Pn

It follows that a. a. Ci?€X2 we have

S P,

lim "^-=1
fc-^+oo k

v^ith (Of) being a generic sequence.

The essence of the method is that by choosing (p^)^ i carefully
we impose a growth rate on almost all sequences by proposition 4.6.
This in turn forces some nice properties to hold.

PROPOSITION 4.7. - Let 2 < / E N , 0 < e < l / / and set
1 — / e c

c=—^——.Let Pfc^o-i/o^ for f c € N . Let (^)^^en

be a random sequence. Then wth probability 1 we have
|R((^);Li .l.n) \ < [ l / / e ]

except for finitely many n.
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The case / = 2 is classical and due to Erdos and Renyi [8].
The proposition above is proved with some minor modifications to
their proof. For a detailed proof in the case of / = 2 see [8]. Let
us also note the following consequence of proposition 4.6.

PROPOSITION 4.8. — With the same hypotheses as in proposition 4.7
we have that for each 6 > 0, there exists an 0 < e < I / / s.t. with
probability 1 we have a^ ^ k1^ .

Proof. — By proposition 4.6 we have a.a. (a^)^ Sl that

SP<
lim"^———!

fc-*°o k

since we have that
1 ^(i/0-e

pl^'^pn=CL^^^CW~e=nlfl~e

^ since I y-0"^ ,,< 1: . . pn . < ^ o o since
n>l (Pi + • • •+^) n>l (Pi + . . . +Pn)

l-l€

S , . , , , . < 4- oo. So lim —k- = 1 which implies
n>i ^ l + l / / + c ^+00 fc

6
a^ ^ k1 by choosing e ==———— . n

/ ( / + 6)
We can now easily construct A(p) sets (in fact most integer

sequences will do) that are not A(p + e). We have the following :

PROPOSITION 4.9. - Let I € N , / > 2 . 5^ p = 21 and let
ri > 0. 77?^ a.o. subsequences A = (^)^i , fl^ A(2/) but not
A ( 2 / + r ? ) .

Proo/ — By proposition 4.7 and proposition 3.2 a.a. subsequences
A are A(2/) and ^ - k1^ for any fixed 6 , 0 < 6 < 7?/2. One
may now conclude that A is not A(2/ +17) by using Rudin's
proposition on arithmetic progressions (see [23]), but an alternative
argument is: By a theorem of Marcinkiewicz and Zygmund (see
[27]), [^,. . . , e^}^ ^ /^ for any 1 < q < oo where the constant
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of isomorphism k^ doesn't depend on n. If (a^) is A(2 /+ 77)
then the 2 and 2/ + 77 norms agree on (a^)^^ , but we can pack
[^ l / /+a] a ^ ' s in 1 , . . . , , n, so arguing as in proposition 2.2.1 we
have that,

\i^ ((^)) > ̂ r?) ̂ -^w^-26)^)
where c(l,rf) is a constant depending on / and 77. Since 6 < r } / 2
we have a contradiction, a

Note that the case / = 2 in proposition 4.8 gives a^ ^ k2^6

for any 5 > 0 being A (4). This is a priori somewhat surprising in
view of the fact that a^ = n2 is not A(4) (see [23]). One may
give a refinement of this result by calculating ^((k2)^^) by using
essentially the same techniques as in [23]. We first recall the following
result of Landau (see [14]) (and also due independently to Ramanujan
(see [14])). This is the only additional result needed in the technique
of[23].

PROPOSITION 4.10. -Let ^ G R ^ . Let BQc) be the cardinality
of n <; x , n E N which are representable as sums of two squares.

Kx (\ 1 V72

Then B(x)-^^ where K=(^ n -^-^) =.764...

p = 3 (mod 4)
p prime

PROPOSITION 4.11. — Let n E N. We have for all e> 0 there
exists N , E N s.t. \((k2)^^) > (1 - e) c(log n)^ where n>^,

2178

and c = 7T/2 —-,— where K is as in proposition 4.10.
K.

Remarks. — 4.2) It should be noted that while the previous
constructions yielded A(p) sets which were not \(p + e) for all
e > 0, the construction in proposition 4.9 is not uniform i.e. for a
fixed 77 > 0 a.a subsequences A = (a '̂̂  are A(2/) but not
A ( 2 / + 7 7 ) . This may be the price one has to pay for random
constructions.

4.3) It should be noted that \((k2)^^) = O(^) for
any 6 > 0. This follows from the fact that

IR^2};0^^^)!^^6)
for all 8 > 0 (see [15]) and because of proposition 3.2.
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5. Construction in Z(p) C Z(p) C . .. (p > 2).

In this section we will show that for p > m there is a A(2w)
set in Z(p) OZ(p) 0 . . . which is not A(2w + e) for all e > 0.
For m > p we don't have a construction but we indicate a possible
solution. Prior to this however we need an appropriate analog of
proposition 2.2.2. Proposition 3.2 is not useful when most elements
have small order, such as in Z(p) ̂  Z(p) ( & . . . . One may prove
the appropriate generalization of proposition 2.2.2 by suitable
modifications of its proof, however we choose to improve the
estimates in [6]. One may perform a modification of the proof
in [6]. The modification of the proof of proposition 2.2.2 is much
more cumbersome. We require the following definition:

DEFINITION 5.1. —Let r be an abelian group and let
2 < ^ e N , 2 < p C N . For A C F denote by Rp (A, n) all functions

f: A —> N s.t. /(X) < p - 1 for all X G A and H /(X) = n.
XGA

For 7er , R ( A , ^ , 7 ) denotes all f s.t. H X-^ = 7 and
XGA

/GRp(A,M).

PROPOSITION 5.1.— Let G be a compact abelian group with
dual group F and assume that A C r has elements only of order
p , p > 2 . Also assume | Rp(A,w ,7) I < M for all 7GF and
for all m s.t. 2 < m e N , m < n C N. Then

X^AXM^fp] -n)17^!)^.
\ [P\ I

We now turn to the construction of A (q) sets in
Z(p)C Z(p)C . . . .

We will try to follow the ideas embodied in section 2. Fix 2 < m G N .
Suppose we could show the following for all w G N , n>n(m)'.
there exists A ^ C { 0 , l , . . . , p — 1}̂  (which is regarded as an
abelian group with the group operation on tuples being coordinate-
wise addition mod p ) s.t.

1) \\\>Pn

2) If
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< X n = s u p { \ R p ( \ , k , x ) \ \ x ( = { 0 , . . . , p - ! } ' " " , 2 ̂ k<m}
then sup a^ < + oo .

n

Then identifying the dual group of Z^)" with finite tuples
of 0 ' s , . . ., p — 1 ' s as in section 2 ; we way construct the required
types of A(p) sets. This is done by patching the sets A,, as in
section 2. |A,, | > p" and proposition 3.1 ensures that the patched
set is not A(2m + e) for all e > 0 and sup a,, < + oo ensures

using proposition 5.1 that the A^'s have a umform (in n)A(2m)
constant (and thus a union of A/s is A(2m); with the A^'s built
on "disjoint blocks" of Z(p) e Z(p) ® . . . ) .

Proposition 2.1.1 suggests that A^ may be built by considering
a suitable choice of (^, £ N" and letting,

A,, = { ( x k l , . . . , x k m ) ^ x e G F ( p " ) }

with 1 = k, < k^ < .. . < k^ (we regard GF(p") as a vector space
over GF(p) and expand x ' in a basis expansion and put in the
coordinates in place of x " ' , so that A,, C { 0 , . . . , p — I }"•").
The choice of ^i = 1 insures that | A^ | = p" . (Actually any choice
for k^ will work so long as x —> x " 1 is an automorphism for
GF(p") (fixing GF(p)). Since the automorphisms form a cyclic
group of order n, the most "convenient" choice is k^ = 1). The
main problem is making sure that sup a < + oo.

n

In view of the above remarks it is easy to see that we may reduce
to the following problem on Diophantine equations over finite
fields:

Problem 5.7. - Let 2 < m € N and p be a prime which are
fixed. Let n e N, {^ ,..., y^} c GF(p") and

1 = k, < ̂  < . . . < ̂
with the k, e N for all i. Consider the system of equations :

*i . , *i
^m

C")

^, + • • • + ̂  ^ y ,

^ + . . .+ ̂  =y,

x,km+...+ x^ =^
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By a "solution" to this system we mean an ( x ^ , . . . , x^) E GFQ^)^"
which satisfies (*) and for which the number of non-zero x / s
which are the same in (X i , . . . , x^) is at most p — 1. Denote by
g(n , y ^ , . . . , y^ , k^ , . . . , k^) the number of solutions to the above
system (*). The question then is: Can one find one fixed set of
k i ' s , 1 = k^ <k^ < . .. <k^ s.t.

g(n,y^ . . . ,y^ ,^, . . . , k^) <C

for some C G N uniformly in n and {y^ . . . , ̂ }? Of course
one may replace uniformity in n by working in the algebraic closure
A = U GF(p") and considering the equivalent problem of

n> 1

getting a bound on the number of solutions (to (*) of the type
(x i , . . . , x^) G A'" (with no more than p — 1 of the non-zero
x / s being the same)) uniformly for [y^ , . . . , y^} C A.

We now show that at least for p > m, one may solve the above
problem quite simply.

PROPOSITION 5.2. — // p>m and one chooses k ^ = i ,
I < i^m then g ( n , y ^ , . . . , y^ , 1 , 2 , . . . , m) < m !

Proof. — Fix n € N . The condition that at most p — 1 of
the non-zero x/5 in (^ , . . . , x^) ( ( x ^ , . . . , x^) being a solution
of (*)) are the same is automatic since p > m. We will show that
the assumption,

m 2m

L ^ = ^ x\ for / = 1 , . . . , m
(=1 i=m+l

implies that set of x ^ ' s , 1 < / < m counting multiplicity is the same
as the set of x^s m -t- 1 < i < 2m counting multiplicity. Let
Y\, ' - - , Ym ^e indeterminates adjoined to GF(//1). Denote by

k

S k ( V i . • • • . Yk) = ^ Y^ and by a ^ , . . . , a^ the elementary
1=1

symmetric functions in y ^ , . . . , y^ . By Newtons's identities (see [25])
the a / s can be written as polynomials in the S j ^ ' s since p>m.
It follows that a^x,, . . . , x^) = a,0c^ , . . . , x^) for
i = 1, . . . , m. So
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( X - ^ ) . . . ( X - x ^ ) = = ( X - ^ + i ) . . . ( X - ^ )
for all X € GF (p"). So some .̂ (1 < i < w) is the same as an Xj
Xj(m + 1 < / < 2 w). By relabelling the x ^ s we can have x^ = x^ .
Cancelling these from the equations

m 2m

^ x7 = ^ ^, / = 1 , . . . , m ,
, = = 1 ' i=w-H

we may repeat the above argument with the equations
m - 1 2 w -1
Z ^= S ^ y = = l , . . . , ^ - l
/ = i i = ^ i

(the equation with f = m is ignored since it is of no further value)
to conclude that x^_^ = ^ 2 w - i a^ter relabelling the x / s . The
procedure can be continued to terminate the argument, n

Proposition 5.2 therefore gives the required construction for
A ( p ) sets for p>m. For m^p the problem 5.1 is much more
difficult and no solution seems to be known. The following remarks
are due to P. Deligne.

Remarks. — 5.1) For a fixed set of y ^ s , [ y ^ , . . . ,j^ } C A
(see problem 5.1) if the variety of solutions consists of isolated points

m
then by Bezoufs theorem they are at most n kj of them. For

i
Bezoufs theorem see [20].

5.2) If there are infinitely many solutions to (*) on the algebraic
closure A then there is a formal power series :

00

(X,(0)=X(0 : X(0= S ^w ^
k=0

which is formally a solution with x^^O (i.e. one of x ^ ^ ^ O )
and

1)^/0^/ =yf
i

2) For all k>0, the coefficient of ^ in ^ X,(r/7 is 0.
i
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No use has been made of the above however.
5.3) One may weaken the problem (since the reader will observe

this is all that is really required for the construction) by requiring only
that g(rif, ^i , . . . , y^ , k^ , . . . , k^) < C uniformly for some
sequence of sets of k ^ s (i.e. the set of m k / s is allowed to change
with n^ however k^ = 1 for all /'), some subsequence (^.) of
N s.t. ^ ——> +00 and for all {^ , . . . , y ^ } C GF (p^').

However Professor Deligne thinks that solving the weaker problem
for a thin set of n^s does not really help much and presumably a
solution of the weaker problem will in fact enable one to solve
problem 5.1.

6. Construction in Z (p°°) .

We construct a A (4) set in Z(p°°) which is not A ( 4 + e ) for
all e>0. Some results are also possible for A(p) sets, p>4. The
construction will be done by showing the existence of sets

E,^Z(p^)+x,
(for some nj, ——> + oo , some Xj, € Z (p°°)) , ^ = 1 , 2 , . . . such that

1) | E^ | >c p"^2 (c independent of k)
2 ) | R ( U E ^ , 2 ,7)1 <1 for all 7^Z(p°°) .

k

By the remark 3.1 and (1) it follows that U E^ is not A (4 + e)
k

for all e>0 and pro position 3.2 and (2) insure that UE^ is A(4). The
k

idea of the construction is that by proposition 4.2 it is easy to cons-
truct F^ satisfying (1) and having 2-sums out of F^ being distinct.
The sets E^ (are modified F^s) are constructed by induction. The
main tool will be a well-known theorem of Turan's in extremal graph
theory [3].

PROPOSITION 6.1. — The maximal graph on n vertices without
an l-clique is achieved by splitting the n vertices into /-I sets of

n n 1
cardinality -——- and -——-\ 4-1 and placing an edge between

any pair of vertices in different sets. If
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n==(l - l)m+r, 0 < r < / - 1
then the cardinality of the number of edges of this graph is

•<)-.('"; ')-.-i-<).
The following proposition follows trivially from proposition 6.1.

PROPOSITION 6.2. - Let S be a set with | S | = n. If A C P, (S)

(a// 2-subsets of S) w^A IM^"^" n _ (-" _ i ) ^^

ADP^B) /or B C S wfA |B|>".

Proof. - We think of S as the vertices of a graph G where an
edge {a, b} is in G if and only if [a, b} e A. We show that if A
has cardinality at least as much as above then G has a n/2 clique.

Case 1 : If n = 2k for some k, then set l = k + l , m = l ,
r=0, so that n = (I - 1) m + r. If

IAI>1+(:;)-^)=1^(.-2)

then there exists a B s.t. | B | = w / 2 + 1 and A3P,(B) by propo-
sition 6.1.

Case 2 : If « = 2 A ; + 1 for some k write n = ( l - l ) m + r
with l = k + l , m=2, r= 1.

By proposition 6.1. if | A | > — — — — - 1 then there exists B

with | B | = "—— and A D P^ (B).

So the result follows by comparing case 1 and case 2. D

Remark 6.1. - If S = { 1 , 2 , . . ., 2 n} then put
A= {{a, b} \Ka<n, n+ Kb<2n} .
n2

Then IA|=^- yet A ̂  P, (B) for any B with 1 B | > 3 . This

shows the sharpness of proposition 6.1.
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Remark 6.2. - If \S\=n and n>fi(q) and AC?2(S) is

such that |A |> ^ ^ "(9) then ̂  Kamsey's theorem A D P^ (B)

for some B with | B | = q . Unfortunately q is only about log n
(see [12]). For our application we need the size of B to be propor-
tional to n.

We now start the inductive construction. Since some of the details
are cumbersome, we shall not give all details especially if it is obvious
as to what to do.

PROPOSITION 6.3. - There is a A (4) set in Z(p°°) which is not
A ( 4 + e ) for all e>0.

Proof. - Assume E^ , . . ., E^ have been constructed with the
two properties discussed above (and so | R ( U E., 2, 7) | < 1 forv / < fc /
all 7 G Z O?00)). Denote E = U E, and let E' = E^ ^ which

f<k
is to have the properties (and will be constructed below) that
E t C Z ( p n k + l ) + x ^ ^ for some ^ + i ^ = N ( ^ ^ > ^ ) and
x ^ + i eZ(p°° ), \Ef\>cpnk+l/2 and | R(E U E', 2 , 7) | < 1 for
all 7 E Z ( p 0 0 ) . First choose F^ C ZQ^ ), ̂ .^ = m > n^ (m is
much bigger than n^ , we will choose m so big that a number of
properties will be satisfied. We leave its size unspecified because it will
be-clear that such an m will exist), and so that \ F ^ \ > c p m / 2

(all constants in this proof are denoted by c and are independent
of n^) and finally that 2-sums from F^ mod^^ are distinct
according to proposition 4.2.

Considering the possible interactions between E and F^ we
have 3-cases which may violate R (E U F ^ , 2, 7) < 1 for all 7 G Z (p°°)

Case 1 : a + b' = c + d ; [a , b\ c } C F, , d E E
{ a , b ' } ¥= { c ' , d } .

C a ^ 2 : ( a ) a ' + & ' = c + ^ ; [a , b ' } C F ^ , { c , d } C E
[a , b ' } ^ { c , d } , and (b) a 4- b = c + d ;-{a\ c } C F ^ ,
{ 6 , d } C E .

Case3 '. a ^ b = c + d and a E F^ {b, c, d} C E,
{a\ &}^ { c , r f } .
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We discuss each of these 3 cases separately. Our starting out
assumption will be that E H F ^ =0. We may assume this because
m may be chosen so large that | F^\E | > c p17112. F^ = F \E will
be the new F^ . All primed elements from this point will be from
our possible new set and unprimed ones from the old set.

Case 1 : We want to avoid a' + b' = c + d , [ a ' , b1}^ {c , d\ It
is enough to have (F^ + F^ - F^) n E == 0. By choosing n large
enough E C Z ( p n ) . Assume m much larger than n and F^ C Z ^ p ' " )
with | F^ | > cp^2 . Choose n' larger than m and pick

x € Z ( p n f ) \ Z ( p m ) . Set F3 =F, +;c.
Then (F3 + F3 - F^) n E = 0, otherwise ;c E Z (^ ). Also

^31=^1, F3 CZ(^)+;c
and 2-sums out of F^ are still distinct in Z(p°°). Fg will be the new
F^ . Of course we may assume F3 n E = 0 by taking m large and
considering Fg\E if needed.

Case 3 : We want to avoid a + b = c 4- d with {a', &}=^ {c , rf}.
This time we want (F3 n E + E - E) = 0. -It should be clear to the
reader that the translation technique of case 1 will again work, giving
a new set F ^ C Z ( p m ) ^ y for some y E Z (p°°). We should remark
that when using the translation technique in succession we might have
to translate using elements of larger and larger Z ( p n ) l s so as not to
cancel the effect of previous translations. Again we may assume that
F^ n E = (Z).

Case 2 ( a ) : We want to avoid a ' + b ' ^ c + d . This time we
want (F^ + F4) n (E + E) = 0 . Again this can be handled as above
with a new set F^ C Z (p771) + z for some z G Z (p°° ).

Case 2 ( b ) : Now we want to avoid a 4- b = c 4- d with
[ a , b}^ {c . d}. The fact that Fg n E == 0 (which we may assume)
and {a , b} ^ {c , d} means that we may assume a , b, c , d are
all different. It is enough to show that

((FS - Fs)\{0}) n (E - E)\ {0}) = 0 .
Since differences in F^ are unique, if we set

G=(F5-F5 \{0}) \ (E-E]{0})
then by choosing m large we can have (G | as "close" to

|Fs-F5\{0}|
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as we want. Define a map 0 :.(F5 x Fg)\A —> (F^ — F5)\{0} where
A ={( / , / ) I/O FS } by 0 (a', b ' ) = a - b ' . Then 0 is bijective.
Define ^ : Fs x Fs\A——^(Fs) by ^ (a , b ' ) = {a' , b ' } . Then
^ is surjective with |^"-1 ({a\ &7}) | = 2 for all {a', &'} € P^ (Fg).
Let A = ^ 0 - 1 ( G ) . Then |A| is as "close" to IP^Fg)! as we
want (by choosing m large). If we know there exists

B C FS s.t. | B | > c | Fs I and P^ (B) C A then we would be done by
setting F^ = B. That this can be done is guaranteed by proposition
6.2 (by choosing m large enough).

Now ^k+i = ^6 anc^ m=:nk+l worlcs. n

For A(p) sets with p > 4 we have some troubles. This is
because neither the translation technique nor the technique of case
2(b) (suitably generalized) helps in dealing with the case e.g. when
we want to avoid a' + b' + c = e -I- /' + g (using the notation of the
proof) in the A (6) case. Translation obviously doesn't work and to
use the other technique would mean that 4-sums from our new set
(which we want to adjoin) would have to be distinct (or at least meet
the requirement of proposition 3.2) in which case we only would have
the new construction being not A (8 + e). In any case it is at least
possible to show :

PROPOSITION 6.4. - // 2 < / : G N then there is a A (2k) set
v^hichisnot A ( 4 A : - 4 + e ) for all e> 0 in Z(p°°).

Let us also note that from the work of the previous sections we
have as a particular consequence :

THEOREM 6.5.—For any compact abelian group G there is
a A (4) set in G* v^hich is not A (4 4- e) for all e > 0.
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