ANNALES DE L’INSTITUT FOURIER

JOHN L. BOXALL

p-adic interpolation of logarithmic derivatives
associated to certain Lubin-Tate formal groups

Annales de institut Fourier, tome 36, n°3 (1986), p. 1-27
<http://www.numdam.org/item?id=AlF_1986__36_3_1_0>

© Annales de I’'institut Fourier, 1986, tous droits réservés.

L’accés aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique I’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIF_1986__36_3_1_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Inst. Fourier, Grenoble
36, 3 (1986), 1-27

p-ADIC INTERPOLATION
OF LOGARITHMIC DERIVATIVES
ASSOCIATED TO CERTAIN
LUBIN-TATE FORMAL GROUPS

by John L. BOXALL

Introduction.

The purpose of this paper is to study the p-adic interpolation
properties of the values of logarithmic derivatives of power series
at O attached to certain one-dimensional formal groups over p-adic
integer rings. The earliest results at this kind were given in Iwasawa [3],
following the then unpublished work of Kubota and Leopoldt [9],
who applied them to the construction of p-adic L-functions attached
to Dirichlet characters. They were subsequently used to construct
p-adic L-functions in other contexts, notably those attached to
abelian extensions of ‘totally real fields [1] and to elliptic curves
with complex multiplication, at least when p splits in the field of
complex multiplication. We first recall the interpolation results of
Iwasawa, Kubota and Leopoldt in a form similar to that in
Lichtenbaum [10, §1]. Fix an odd prime p and let C, be the
completion of the algebraic closure of Qp. We denote by
v:C: —> Q the valuation normalised so that v(p) = 1. Let Q,
be the ring of power series

n

- T
fm=3 c"'“ €C, TN v (c,) — =asn — = {. (1)
n=0 .

For B€Z/(p —1)Z and f€Q, define fﬁ to the power series
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p—1

1
1M = £ = Y fEQ+T -1 if =0,

c=0

_1 )

7(8) * .

=— Y fEEA+D—1 w k) if p#0.

p c=1
Here & is a fixed primitive p-th root of unity, w: Z;‘ —_— Z;" is the
Teichmuller character (i.e. for each a € Z;‘ w(a) is the unique
p — 1 — st root of unity such that w(a) = a (mod p)) and the Gauss
sum 7(B)is defined by

r—1
@)= X JF)§.

a=1

Let © be the ring of integers of C, and u a topological generator
of the Zp -module (1 + p Zp »*; then the interpolation theorem
may be stated as follows.

THEOREM A. — (i) Let fE€Q, and a €EZ[(p—1)Z. Then there
exists a unigue continuous function C}“):Zp—> C, such that
for each BEZ/(p—1)Z

o - d \k
C® (k) = (= 1) ﬂ((1+T)E) Faes (D) br—g

whenever k20 and k€.

(i) If f€ O [[T]] then [,EO [[T]] for each B and there
is a unique power series G}a) (X) € 0 [[X]] such that

G (' — 1) = C (s)
for all s& Zp .

The existence of the power series G}"‘) in (ii) is equivalent
to the assertion that C}“) is an Iwasawa function (see Serre [14]),
or that it is p-adic Mellin transform of a Mazur measure (see
Lang [8, Chapter 4] or Mazur and Swinnerton-Dyer [12]).

We now explain the generalisation of Theorem A to which this
article is devoted. Let ¥ be a (commutative) one dimensional formal
group over the ring of integers @, of a finite extension F, of Q,.

p
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Let Kp be another finite extension of Qp, of degree % and
ramification index e, let OKP be the ring of integers of Kp ,M a

uniformising parameter for Kp, and g (a power of p) the cardinality
of the residue class field ka. We suppose that & is isomorphic

over O to the basic Lubin-Tate group &, associated to the
polynomial #T + T?, so that in particular the height of & is 4.
Let n, be a fixed non-trivial element of ker [w], the =-division
points of %, and write A for the logarithm of & . The Teichmuller
character w:@;‘;p — (9?2, is defined by taking w(a) to be

the unique g — 1 — st root of unity in Kp which satisfies
w(a) =a(mod ). Also, for each residue class BEZ/(g—1)Z we
denote by 7(B) the Gauss sum to be definedin § 1. If f €0 [[T]],
we define AD f by

1
(AD £(T) = £(T) —;Z FT+ Lclmy)) if B=0,

3)
“TOY T g 0P i B0
q c#0

Here the sum is taken over a complete set of representatives {c} of
ka in Ok, if =0 and of k;’gp if B=0. Let e be the

ramification degree of Kp over Qp. We shall prove

THEOREM B. — Suppose that e<p — 1. Let f€0 [[T]] and
a€Z/(q—1)2. Then there exists a constant Qpecp with
1 1
p—1 el@—1
C\¥:Z, —> C, such that for each BE Z|(q — 1) Z
(—1#
o

v(2,) = and a unique locally analytic function

1 d \¥
(= 2) QP DMy @

() —
G ® A\ (T) dT

whenever k=20 and kEBS.
(Locally analytic means that C}") can be expanded in a Taylor
series about every s, € Z).

If & is the multiplicative group G,, (so that 4 = 1), it is easy
to see that Theorem B reduces to a weaker form of Theorem A (iii) ;
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more generally, if % is an arbitrary formal group of height 1 the
results of Lubin [11] imply that & is isomorphic to G,, and so it
is possible to deduce a much stronger form of Theorem B from
Theorem A ; thus we shall only regard Theorem B as being of interest
when the height of & is = 2. After some preliminaries in § 1, we
define in § 2 a subring B, of Cp [[T]] which is the analogue of
Q, and prove the existence of a continuous function interpolating
the right hand side of (4). In § 3 we describe a condition on the
fE€ B, which ensures that C}"‘) is locally analytic while in § 4 we
show that this condition is satisfied if f&€ O [[T]].

A weaker form of Theorem B in the case when the height of
& is 2 has been proved by Katz [6], [7] and also by Rubin [13],
but our argument is more in the line of Lichtenbaum’s proof of
Theorem A, and in fact there is more than a germ of these ideas in
Kummer’s note [4].

In a subsequent paper we shall show how these results can be
used to construct p-adic L-functions attached to elliptic curves with
complex multiplication, even if p is inert or ramified in the field
of complex multiplication. It would be interesting to find applications
of our results to other situations. For example the power series studied
by Coleman [2] and to generalise Theorem B to other kinds of formal
groups.
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support furing its preparation. My thanks also go to Dr B.J. Birch for
suggesting this area of research and giving me his constant support
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1. Preliminaries.

Let p be an odd prime. The symbols Z, Zp, Q, Qp have
their usual meaning and we write Z, for the non-negative integers.
Let Cp denote the completion of the algebraic closure of Qp,(‘J
its ring of integers and m its maximal ideal. We denote by
v:C: —> Q the p-adic valuation normalised so that v(p) = 1.
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If Lp is a subfield of Cp we write (9Lp for its ring of integers,
mp, for its maximal ideal, and kLp for the residue class field;

u,(L,) is the group of n-th roots of unity in Lp and u(Lp) the
group of all roots of unity in Lp. Let w: ®* — u(Cp) be the
Teichmuller character; if a€ O* then w(a) is the unique
prime-to-p-th root of unity congruent to @ (mod m); we also use
w for its restriction to @;‘jp for any subfield L,. Let K, denote

an extension of Qp of degree h and residue class degree e, and
q (a power of p) the cardinality of kg . We consider a
one-dimensional (commutative) formal group & defined over
@Fp, where F, is another finite extension of Qp, and as in the
Introduction we assume that ¥ is O-isomorphic to the Lubin-Tate
group associated to the polynomial #T + T?, where =7 is a
uniformising parameter for Kp (for the theory and basic properties
of such groups see Lang [8, Chapter 8]). This implies that the absolute
endomorphism ring of % is isomorphic to @Kp, and we may suppose

that all the elements of End (&) are defined over Fp, and that
K, CF,. Let N(T) be the logarithm of & , i.e. the unique element
of Fp[[T]] satisfying

AX+ YY) =AX)+AY) and NT)=T+O(T?.

It is well-known that A'(T)€ 1 + T © [[T]] and in fact that

1 6

——=—FX,Y) lxor v= 5
(see Lang [8, Chapter 7]). We denote by ker [w] the group of
order g which is the kernel of multiplication by m in the group
law of &, and fix a non-trivial element n, of ker[n], so that
ker [1] = {[c}(ny)} as c runs over a set of representatives for ka
in (9Kp (here [c] € End (%) denotes the element corresponding
to c€(9Kp).

Let
F={eo [ITHIfFX+ ,Y)=fX)f(Y) and f(0)=1}. (6)

Then &€ can be identified with Hom e(ETv,Gm). It is evident that
every f€ Y€ induces an element of Hom (Tpﬁ T G ), Tp?ii and

> *p m
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Tp G,, being the Tate modules of & and G,, respectively. According
to an important result of Tate [15] the induced map

Hom, (¥,G,,) — Hom (Tpﬁ,Tme)

is an isomorphism of Zp -modules. From this we deduce the following
facts which are vital to the following discussion.

FACT 1: 8@ isa free Zp-module of rang *.

FACT 2 : For each non-zero element n of ker [w] there exists
t € ¥ such that #(n) is a primitive p-th root of unity.

In our case, if ¢ € Je thenalso to [a] € ¥ whenever a € OKP,
and so Y€ acquires the structure of an (9Kp-module, which must

necessarily be free of rank one: we fix a generator ¢, and write
t, for t, o [a]. Define a constant §2, by

t,(MH=1+8Q,aT + o(T?). @)

We denote by Diff (%) the ©-algebra of all % -invariant
differential operators taking © [[T]] into itself (recall that
g-invariant means that (Df) (T + cw) =D(f(T + ,w)) for all
D € Diff (&), f€ O[[T]] and we&€ m). It is known that Diff (%)
is the free ©-module on the operators D,, n€Z, defined by the
“Taylor expansion”

oo

fFX+ =2 O, HXY". (8)

n=0

We now recall some properties of € and Diff &) (cf. [6], [7]).

LemMA 1. — (i) Each t € 3@ is a simultaneous eigenfunction for
all the DEDIiff (&); in fact (Dt)(T) = Dt(0) ¢ (T).

(ii) We have the expansion

oo

(M =2 DO,nH0)T".

n=0

1
(iii) DeNH M =f(T) and (le)(T)=mf'(T) for all

fec, [[T]}, ie. D, is the logarithmic derivative of .
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) If a,b€ O, then t,,,(T)=t,(D)1,(T), t,(T) =1,
tp(T) = t,((BYT) = ,([a)(T)), and if bE Z,, then

o b
t,,(T) = £t,(TY = X (£,(T) — 1)"<n).

n=0

Proof. — (i) We have
Dt(T + ,w) =D@(T + ,w)) = D((T) t(w)) = (D) (T) t(w)

for all w&m. Putting T =0 we obtain (D¢) (w) = (D#) (0) t (w)
and since w is arbitrary the assertion follows.

(ii) This is the special case X =0, Y =T of (8).
(iii) Since

X+ Y) = f(5(X,Y) = 2 Y@ (X, Y))

n= 0 n ! 8 Yn Y = 0
by the “usual” Taylor expansion, we find that Dyf = f and
5fF(X,Y)) 1
@, (1) = YEE1) =——f'(T)

8Y  |xar,y=o N(D
using the chain rule together with (5).

(iv) This is obvious from the definition of %€ ; note that the
last expression is well-defined since #,(T) — 1 has no constant term.

Our next task is to define the Gauss sum 7(8) appearing in
Theorem B. Fact 2 above together with part (iv) of Lemma 1 tell
us that ¢, induces a homomorphism from ker[n] onto up(Cp)
if and only if a# 0(modm). In particular t, = t, (restricted to
ker [7]) if and only if a = b (mod 7).

LEMMA 2. — (ii) Let n € ker [7]. Then
)y t,M) =0 if n#0

amod 7
=q if n=0.
(i) Let a€ @Kp. Then

Y ,m=0 if a#0(modm)

nEkernw

=q if a=0(modm).
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Proof. —()If n+#0 then 2 t(n)=qp~'! % £=0 while

a €N

if =0 then 2 t,(n) = Z 1 = q by Fact 2. The proof of(ii)
a

a
is similar.

Now let BEZ/(q —1)Z with B+ 0 and recall that n, is a
fixed non-trivial element of ker [w]. Define

7,(8) = Y W) t,([u] (ny)),

u

where X' ‘indicates that the sum is taken over a complete set of
representatives of k;p in (9Kp (i.e. omitting the term « = 0(mod 7)) ;
and write 7(8) for 7,(8). The 7,(8)'s may be thought of as Gauss
sums and we have

LemMa 3. — (i) 7,8) = wB@) 7 @) if a€ Oﬁp )

() @ 7B =(1fq.

Proof. — (i) We have 7,(8) = & wP([u] (n,))

u

Y wfw) £, ([au] (o))

u

w ? @) }; w* (au) t, ([au] (n,))

and (i) follows.

(ii) we have

@) 7(—BH)

2w ) w P @) 1, ([l () ¢, (] (1))

u,

<

= ¥ W) wf (—xu) t, (lu — xul ()

(on writing v = — xu)

=(—1)F Z' w P (x) Z, t,([u — xu] (ny)).

X u
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!
But by Lemma 2 (ii)}_, t,([u —xu)(ny) =q— 1 if x =1 (mod m)
u

and — 1 otherwise. Therefore

r@T(F=C1Fg—1+ :( @ 1)
XFEI1(m

= 1Dlg—D+EDE D]
=(—10gq,

as claimed.

2. An interpolation theorem.

In this section we define a ring of power series B, C C [[TH
and a “‘twisting operator” A% for each residue class 8 mod (q -1
of Z, and prove an interpolation theorem for the quantities

1 d
D*A® pH@0), k=0,1,2,..., where D, =—— — and
( 1 § j)( ) 1 xI(T) dT
fEB,.

We first introduce a notational convention which will be in
constant use throughtout this and the next section : if x €C” 5 (Tesp. K
resp. Z+ etc.) then we denote the i-th component of x by x
Conversely, if a system of A elements of C, (resp. K,, resp. Z
etc.) has been denoted by a letter with suffices i=1,2,...,h
then the same letter (without a suffix) is used for the corresponding
element of Cﬁ (resp. Kﬁ, resp. 2" etc.). If n€Z" we write n!

h
for II n!. If X,,X,,..., X, areindeterminates, the monomial
i=1
X]! X3%... X" is abbreviated to X”; however the letter T will
always stand for a single indeterminate.

Let x € @"'(p be a basis for @KP over Z,, and Q, the ring

F(X)

u C Xn
= Zi S EGI1X, Xy, Xyl Hu(e,) — 0 asn —> oo,
ne2 ‘
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Define a homomorphism €: Q, — Cp [[T]] by setting
e(X) =1x,(T) — 1

for each i =1,2,...,h. This is well-defined since ¢,(T) — 1 has
no constant term.

DEFINITION. — B, is the image of € in C,[[T]]. If a€ Oy
h p

we can write a = X, v;x; where v,€Z, and so (using Lemma I
i=1
h v; h v;
(v)) t,(T) =TI 1y (T)" =¢ ( II (1+X) '). This implies at once
i=1 i=1

that B, doesnot depend on the choice of basis x.

Let BE€2/(gq —1)Z. One would like to define the ©-linear
operator A9 : B, —> C,[[T]] by

1
A® ) (T) = £(T) —;Z (D) + 4lul () if =0,

= T—‘(I“) YoM+ ulm) w @) it B#0.

u
However at first sight it is not clear whether this is well-defined owing
to the possible presence of denominators in the coefficients of f.
The fact that it is follows from

LemMMA 4. —Let n€ker[n] and fE€B,. Then f(T + 4n)
is a well-defined element of B,, whence A® is a well-defined
operator taking values in B .

Proof. —Let f=¢€(F) with F&€Q,. Define {€ (up(Cp))"
by &= txi(n) for each i=1,2,...,h. It is well-known that

~n;
v — 1= and v(n!) < ! 1if nEZ'L. These estimates
_ p—
imply that
FoXp, oo X)) =F(,— D+ X, €~ D+ X))

is an element of Q,. Now since
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t,(T+m)—1=£,Mt,m)—1=t,Mm)—1+1,n) ¢ (T)—1)
we have
F(t, (T +4m) — 1,...,txh(T +om) — 1)
=F(@, M—-1,...,, (MD—-1D 9

and so we would like to define f(T + 4n) by the right hand side of
(9). To do this we need to check that this is independent of the choice
of F. One way to do this is as follows; — it suffices to consider the
case f=0: now F&€Q, implies that F converges at all z € C-Z

1
with v (z)) = " and y —> tx,(J’) — 1 defines a homeomorphism
p—

from an open subset I of Cp containing the origin into Cp-.
Hence

Fty, (M—1,..., 6, (T)=1)=0 in C,[[T]]
implies that
Flty, )= 1,....1,, ) —1)=0
for all y € 9, ie.
F§, =D +80, 00— D, 0@ — D +8,0, 0D —1)=0
and therefore |
Felty,, )= 1,...,6, ) —1)=0

for all ' such that y' + M €91 . Since a power series that vanishes
on an open set on which it converges vanishes identically, we conclude
that

Fe(ty, (T) — 1,...,tx1 M—-1=0
which is what is required.

The following lemma shows that any f€ B, can be decomposed
as a sum of functions on which the A®'s act especially simply.

LEMMA 5. — Let fEB, and for a € (9Kp define

F(M= X fT+ma)t,m; (10)

ne€ker(m]
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]

wP@F,(T) if a#0 (modn)
=0 if a=0(modm).

then (i) (A® F,) (T)

(i) Wehwe fT) =~ X F (T).
qamodn ¢
(iii) If B# 0 then

@D 5T =+ Y @) F(T) =

1 !
— 2 (A® F ) (T).
q p q a( £ J a)()

Proof. — (i) Suppose that § # 0. Then
(AP F,) (T)

= 2 @P9rT+m)t,m

n€ ker[n]

Tff) Y pa+ $[ul (M) +,m) t,(n) WP (u)

n u

Iqﬁ) 2 f(T+ ,[u + 0] (o)) £, ([v] (1)) W~ F (w)

— Z 2 F(T + JIx] (o)) 1, (Ix — ul (ny)) w™* (u)
q

(writing u + v = Xx)

=Lf,@  £T+ 61 @) 151 @e)) (40— ul @0 o))

T;ﬁ) F, (T) (— 1) 7,(— B)
= wf (a) F,(T)

by Lemma 3. The case § = 0 of (i) as well as parts (ii) and (iii) require
similar calculations and will be omitted.

We shall now state and prove the main result of this section.
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THEOREM 6. —Let fE€B, and «a€Z/(q — 1)Z. Then there
exists a unique continuous function C}") :Z,—* C, such that
for each BE Z/q — 1)Z
s DY(AS™ n (0)

k
QP

C (k) = (= 1)°"
whenever k=20 and kEf.

Proof — The uniqueness is clear, since Z, is dense in z,.
Evidently ¢, €B, forall a€ 0 k,» and we claim that

(AD 1) (T) = (— 1P @) 1,(T) if a# 0(modm)
=0 if a=0(modm)

for each BE Z/(q — 1)Z. Indeed suppose that a # 0 (mod 7) and
B # 0. Then we compute

A® )T = z? Y t, (T + gul my)) ™ (u)

= IZ—B) t,(T) Y t,([u] ny)) W™ (u)

= %ﬁ) t,(T) 7, (— B)

wf (@) t,(T) (— 1)
by Lemma 3. The other cases are similar.
Now (D,7,) (0) = ,a by (7) and Lemma 1 (ii). Hence

(D* AG™P £,) (0) B

—1p"
Q2

W* B@d* if a#%0(modm)

=0 if a=0(modwn).

Define (a), for a€ Oy , by (@)w (@) =a if a# 0(mod ) and
(a)=0 if a=0(modw). Then (a)= 1 (mod7) if a % 0 (mod m)
and so (a)* is well-defined for all s€Z,; we interpret w*(a) and
(a¥” as 0 if a = 0 (mod 7). With these conventions, we have

CP) (5) = w*(a) (a¥.
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Now let f€B,. Then we can write

. ., — 1"
f= :—‘zh C"(’;! : an
n€Z4

where (¢, — 1)" is an abbreviation for

(e, (D — D (1, (D — D™,

n h o (n,
and wv(c,) —> > asn —> oo, If ( )= nn ( ') for each
n,rEZ’}r then

i=1

t

Xer

< Zni—n
= =2 cn" (7)

where x - r =

x; r;, so that
i=1

@ _ n _ iEni—r,-
C(tx—l)" () = 2 —D
r=0

n

(e -nxormr. (2
r

In view of this, and the fact that v(c,) — oo, the theorem will be

proved if we can show that

CE)_1yn (s) =0 (mod n!)

(13)
Let k€Z, satisfy k€,

whenever n € Z'l. and ev(n!) <k,
where e is the ramification degree of Kp over Qp ; then

Cc©@

n Zni—r
(tn—nyn (k) = Y =) (j) W ) lx . r)
r=0
. Inr (p
=X (r)(x - )* (mod 7*)
r=0

(so that this congruence also holds modulo » !) and

e[

T 1 (exp (x;z) — 1) ];:o .

i [ =

1
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Since the set of integers k described above is dense in Zp, the
theorem follows from the following lemma (cf. [3 § 3.5

LeMMA 7. — Forall k€ Z, we have the congruence

kK n "
8, (n): =[ (f) E]l (exp (x;z) — 1) ’Jzzo = 0 (mod n !)..

Proof —If k<Zmn; then §,(n)=0 and the assertion is
trivial. On the other hand

Op+q (n) = [(;{d;)k dz’ =

(—d) ﬁ (exp (x;z) — 1)ni]z=0

x;n;(8, (nP) + 8, (n))
1

TI[ A >

where n® is obtained from n by replacing n; by n,— 1. Hence
if 8,(n)=0(modn!) and §,(n®) =0 (modn®!) then

8+, (M) =0(modn!)

as required.

3. An analyticity theorem

The function C}"‘) introduced in the previous section does not
appear to have any analyticity properties for an arbitrary fE€B;
however we can prove that C}") is locally analytic if the coefficients

¢, in (11) can be chosen to tend to zero sufficiently fast. More
precisely we have

THEOREM 8. — Let notation be as in Theorem 6. Suppose that
there exist real numbers A,B with B > 0 such that
v(c,) = A+ Bv(n!)

forall n€2Z. Then C}"‘) is locally analytic on Z, in the following
sense . at every s, € Zp , it has a power series expansion
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oo

CO ()= L 0, (s9) (s — 50)*

k=0
with non-zero radius of convergence.

Proof. — Suppose first that f(T) = ¢,(T) for some a€ (9Kp.
We saw in the proof of Theorem 6 that C}“) ) = W) (a)* if
a # 0 (mod m) while C{*)(s) = 0 if a = 0 (mod 7). Hence
o w®(a) (log, (a)*(a)™

e

C}“) (s) = (s —so)* if a¥O0modm)

(14)
=0 if a=0(@modn)

h.

so that if we now take f(T) = (£(T) = 1)" = I (£, (T)— 1)
i=1

then by (12) and (14)

C® ()= L 8(n,k,s50) (s —so)*
k=0

where
n

n—
s(nkys) =2 1 (Dot n®
r=0 r
(log, {(x - r))*

o if x-r#¥0(modw) (15

=0 if x.r=0(modm).

9 t (T)y—1)"
Now suppose that f(T) = z cn—(—u as in (11).
nezZ’l n!

Then Theorem 8 will be proved if we can show that

Y . o(n,k,s,)

" n!

(16)

nezi
converges forall K € Z, and, if its sum is denoted by 0, (s,), then
v(0,(s0)) = A + B'k 17

for some constant B’ depending only on B.
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If F:2) — C, is any function and n€2} we define
M(n,F) to be the expression

n Zn—n i p
M. B =2 1D (")Fo
r=0 r
where the sum is taken over all r €24 with 0<r,< n; for each
i. In particular

8(n,k,sy) =M»n,G) (18)
where G is defined by

% (og, <x . p>)k
k!

G(p) = w*(x - p){x - p)
if x.pF0(modm)
=0 if x.p=0(@modm).

The proof of assertions (16) and (17) will require a couple of
lemmas.

LEMMA 9. — (i) The map F — M(n, F) is Cp-linear and
if F takes values in © then M(n,F)e0 .

(ii) If F and F' take valuesin. © and F(p) = F'(p) (mod ™)
for some m =0 and all pEZ: then

M(n,F) = M(n,F') (mod ™)

for all n€2.

(iii) Let F be defined by

F(p) = ({x + p> — 1)* % - p){x - p)*

if x-pFO0(modw) and F()=0 if x.-p=0(modn). Then
v(M(n, F)) = max (-ﬁ—,v(n !)) , where e is the ramification degree
of Kp over Qp .

Proof. — Assertion (i) is trivial. (ii) follows from (i) by considering
the function 1ri"' (F—F'). To prove (iii) observe first that if

Fo(p) = 0% « p){x - p)* for x +p % 0(modm) and Fo(p)=0
otherwise, then v(M(n,F;))=v(n!); indeed this is just the content
of equation (13) of the previous section. But F is an O -linear
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combination of functions of this form so that v(M(n,F)) = v(n!)
also. On the other hand (x . p)=1(modw) if x .p F 0 (mod )
and so F(p) =0 (mod 7% for all p so that v(M(n,F)) = Q¢!
by (i).

LemMA 10. — For k,R€2Z, let €c o be defined by the
expansion

(log(1 + TH* = X € o T,
=0

where log(1 +T) = 2 (— 1)‘”‘*2—. Then we have €, =0
=1
log 2 —log k
ifR<kand v, )>—k———B% rosyk
’ log p

Proof. — It is clear that €, = 0 if  <k. On the other hand
if 2k then

o= X -
m;=>1

ml+...+mk=2

1)m1+m2+... tmp—k

mym,...mg

and so
. 1
v(€g o) = min v \l—).
! mi>l mlmz...mk

ml+...+mk=Q

Therefore we need to estimate max v(m,m,...m,). Now by an
1

. ) k k1 v [
elementary inequality ( I mi) < P s and so
i=t i=1

k
L
2 logm; < k (log —).
i=1 k
1 .
But v(m,;) < o8 for all i and so
k
: 2 g log (8/k)
N i=1 og
vimym,... m)= L vim) < <
1 WP log p ( log p )

and the result follows.
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We can now estimate &(n,k,s,) =M(»n,G) where G is
the function in (18). In fact

G(p):k—l‘wa(x-p)<x-p>so 2 Ek‘Q((x'p>'—1)Q if X°P$0
. =k

=0 if x.p=0(modm),

and so combining Lemmas 9 (iii) and 10 we_find that

v(6(n,k,s,)) 2 min gmax (§~+ v(ge o) v(n!) + v(ek,2)>; —v(k!)

0>k
whence
6(n,k,s,) .
v <——’—’—°—) = min
n! [

{max (%-v(n !)—k(l—ogfo_g-—*:élf) , — k(lﬁgfo;-—-—;kﬂc));—v(k!).

It is easy to see that the minimum is attained at

g=——k  if e>logpand(logp)v(n!) <k,
log p
L=k if e<logpandev(n!) <k,
and L=e@m!) if inf(e,logp)v(n!) = k.

Taking each of these cases in turn, we have

k 1 1
U(S(n,k,so))> _v(n!)_k(og(e/ogp)
n! log p logp

)—v(k!),

k
or =——vn!)—vk!),
e

) —
—k log (ev(n!)) — log k) — ok D).
logp

v

or
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Hence if v(c,) = A + Bv(n!) forsome B > 0, then

6(n,k,
v (c,, ____(n So)

" )—)wasn—)oo,
n.

(k fixed) and so (16) is proved.

We now turn to the proof of (17). For §>0 and k€Z,
define

k 1 1
pe®)= A+ Bg + ——— g —  RELTED)
log p log p

if e=logpand (logp) ¢ <k,
k
=A+BE+——E&—vk!) if e<logpande § <k,
e

£ —log k)

lo
= a+BE—k( gelogp — vk 1)

if inf(e,logp) £ = k.

é(n,k,s
Thenif 0,(s;) = & <, Ln—'—i)

nez’f',

v(0,(sp)) = min (¥, (v(n!))) = inf y,(¥).
nezh £>0

we have

inf(logp,e) . .
We may suppose that B <—log——. Then y,(§) is decreasing
p

in 0<§¢<

< ———— and a routine computation shows that y, (£)
inf(logp,e)

has a wunique minimum at§ = which is greater than

k
inf(logp,e)

Blogp

Hence

inf ¥, (8 = ¥ (7 )
£>0 B log p

1 +logB + loglogp —loge
logp

=A+k( )—v(k!).
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k
Recalling that v(k!) < 1 we see that
p—

1 +logB + loglo —lo k
v(0p () > A +k (BT B OBP T OBC T

log p p—1

for all k, and so we may take

B,_1+logB+loglogp—loge___ 1
log p p—1
in (17) and so complete the proof of Theorem 8.

4. Power series with integral coefficients.

We preserve the notation of the previous sections. The purpose
of this section is to prove

THEOREM 11. — Suppose that the ramification index e of K,
over Q, is less than or equal to p — 1. Then there exists a constant

oo

& > 0 with the following property : if f(T)= Y. a, T" €C,[[T]]

e
n=0

satisfies v(a,) = A—nd for some A€ER, then f(MEB,
and the function s C}“) (s) is locally analytic for every
a€Z/(q— 1Z.

In particular since A'(T)E O [[T]], it is easy to see that if
FEC,[[T]] satisfies D';f(T)E O[[T]] for some k=0, then
Theorem 11 can be applied to it, and so we have

COROLLARY 12. — Let fEC, [[T]1] be such that
(D} H(ME O [[T]]
for some k=0. Then fE€B, and s > C}“) (s) is a locally
analytic function for every a €Z/(q — 1)Z.
Theorem B of the introduction is evidently the special case
k = 0 of Corollary 12 (except for the statement
@) 1 1
v = -
PP p—1 el@—1)
which is Lemma 13 below).
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We now begin the proof of Theorem 11. Recall our hypothesis
that & is isomorphic to the Lubin-Tate group &,. If » =1, then
Lubin [11, Theorem 4.3.2] tells us that & is isomorphic to G,, and
so a much stronger result can be deduced from Theorem A (ii) ; and
we shall therefore suppose that h > 1.

Let 7:9% — &, be an isomorphism. Then
7(T)=71,T + O (T> € O [[T]]
with 7, a unit of ©. Thus O /[[T]]= O[[r(T)]] and so
7(By) = By (= B, defined with &, in place of %). Also if
Ao denotes the logarithm of F,, and W=171(T) then
AT) =7, ' o(W) and so by the chain rule
1 df(T) 1 dfo 7Y (W)
N(T dT 7o' AW)  aw
Since f(T+m)=Ff (T 'W) + %o 7 '(n)) it suffices to prove the
theorem for the group &, and we assume that & =, for the rest
of this section; thus in what follows A,f, etc are associated to %, .

We write A(T) = Y. A, T" with X\,

=1

We need

LemMMA 13.— () A, =0 unless n=1(modqg — 1),\, € (9Kp
except perhaps when n = 0(mod q), and v(\,)) = — e ',
(ii) The map (Qp a) — (D, t,)0)(@c @Kp) is a polynomial

in Q,a of degree n with coefficient in Kp ; the coefficient of
(QIJ a)* being 0 unless k = n(modgqg — 1).

(iii) We have

q
t(T)—Z (Qa) M+>\Qa T + O (T,
1 1
(iv) v(82,) = -

p—1 e@—1’

Remark. — Part (iv) of this lemma is true for any % (so long as
< p — 1). Indeed, once the assertion has been proven for &, the
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isomorphism 7: & — 3, above shows that, with suitable norma-
lisation and obvious notation, we have 7,2, (5 = ,(5,).

Proof. — (i) For the proof of this see Lang [8, Chapter 8]. The
final statement follows from the proof given there.
(ii) We have the commutative triangle

,(T)

g G,,

A(T) A (Q, az)

Ga

where z is a local parameter for the additive group G,). This says
precisely that ¢,(T) = exp (Qp a\(T)). Expanding exp (Qp a\(T))
in powers of T and using (i) we obtain (ii).

(iii) This follows easily from parts (i) and (ii).

1 1
(iv) Put x = - . We first claim that v(§2, ) < x
p—1 e@@—) d
Indeed Fact 2 of § 1 tells us that there exists n € ker [r] and
$€uw, (Cp) with {# 1 such that ¢,(n) = §. Suppose that

1 —1
v(§2,) > x. Since v(n) = —— and v(n!) <n__ we have
e@— 1 p—1
Q )t 1
(£2,7) )>
n! p—1
1
for any n> 0. But one has v(n?) = __q_> —; so, using our
e(@q—1) e

hypothesis e < p — 1 and referring to the expression

Q
ty(n)= Z (——ﬁ)—+nu with u € ©

obtained by substituting ¢« = 1 and T = n in part (iii) we find that

1
v — D =v(t,@)— 1>
p—1

which is false. Hence v(Q )<x and so vO\ Q )< 0 by (i). But
the coefficient of T? in ¢ (T) is
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Qq
;;L‘f' 7\q Qp

o 1
which lies in ©, so that v(—%)= v(A, Qp) =——+ v(Qp). Since
q! e

it is easy to see that v(q!) = a —

it follows that

ay=—t 1
v p—1 e(@—1

as asserted.
We now begin the proof of Theorem 11 itself. Consider the
auxiliary function

oM =—— X ()¢}

q - feﬂq—l
where the sum is taken over all g‘Euq_l(Kp). In view of parts (i)

and (ii) of Lemma 13, and the fact that P "=q—1 or
§$€1e—

0 according as to whether n=0(modqg — 1) or not, we find that

the coefficient of T" in ®(T) is O unless n=1(modg — 1),

in which case it is the same as the coefficient of T" in ¢ (T).

Now consider the case f(T)=T. We can certainly write

n

o @(T
T= 2 a, @ with ¢, €C, and q, = 0 if n¥ 1 (modq — 1).

n=0
Now
M _ 1+ T gy
Q Q

p p
for some ¥ (T)E O [[T]] and thereforeif kEZ, ,

k(g—1)+ 1
(cp(T)) ‘ _ Tra—D+1

Q,

ﬁ(k) 6(")
N e WY i et S B

QP 14

with B) € © andin fact g QF@ DD e 0 jf
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r=2k(@q—1)+1.
Thus, proceeding inductively we find that if we write

* k(@—1)+ 1
= Z dy (I)(;I;g—l)ﬂ
k=0 Q,

then
dy=1, Q,d, €0, Qd,€o0,...

1
and in general Q’;dke O. For simplicity we write A for Q,g_’.

Then
e o]
A A?
and therefore, if we take

1 1 1
az"(A)=(p—1—e(q—1))q—1’

then any f satisfying the hypotheses of Theorem 11 will lie in

® (T
Cp- (9[[ ( )” Hence to complete the proof of Theorem 11

A9
¢ (T
it suffices to show that every f€ 0O H A(" )

] satisfies the hypothesis
of Theorem 8. Now clearly ®(T) € 0 [[txl(T) —-1,..., L (T) — 111

. (T
from which it follows that any f€ © [[ qu)” can be written in
\ t,— "
the form & ¢,  — U with
nEZ'.", n!
—(Zn)(@—1)
Cp Q 1
v(i—=)=2v(A ' =——\ 2 — )
(n!) ( ) q~1( >( —1 e(q—l))

P

]

h
Recalling that v(n!) > O (log M n) we find that
i=1

v(c,) = A + Bv(n!) for any



26 J.L. BOXALL

B<1_Q(p'“1)[ 11 )]_ 1 [(p—l)Q_l}

p—1 [p—1 e@—1 q—1le@—1

@ —Dgq
e(@— 1
e <p — 1 and so the hypotheses of Theorem 8 are satisfied and the
proof of Theorem 11 is complete.

and suitable A depending on B. Now > 1 since
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