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ISOSPECTRAL RIEMANN SURFACES
by Peter BUSER

1. Introduction.

Two compact Riemannian manifolds are called isospectral if they have
the same spectrum of the Laplace-Beltrami operator. The first examples of
isospectral non isometric manifolds were tori of dimension 16 given by
Milnor in 1964 [8]. If the manifold is a compact Riemann surface of genus
g = 2 endowed with the Poincaré metric of constant curvature — 1, then
Gel’fand conjectured that the spectrum of the Laplacian determines the
geometry of the surface completely [4]. Early results in the affirmative
direction were that Riemann surfaces do not admit isospectral continuous
deformations [4], [14], and later by McKean that for a given Riemann
surface the number of isospectral non isometric surfaces is at most finite [7].
From general results ([2]) it is also known that the spectrum determines the
genus, and that a surface of constant curvature can never have the spectrum
of a surface of non constant curvature.

In 1977/78 two results appeared almost simultaneously.
Wolpert [19] [20] proved the Gel’'fand conjecture in the following generic
sense : Let T, be the Teichmiiller space of compact Riemann surfaces of
genus g > 2, and define

(1.1) V, = {SeT,|there exists a surface F € T, which
is isospectral but not isometric to S},

then V, is a local real analytic subvariety of T, of lower dimension. Hence
almost all Riemann surfaces of genus g > 2 are determined by their
spectrum. However, at about the same time M. F. Vignéras [17] [18] found
the first isospectral examples for, in fact, infinitely many sufficiently large
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g. Vignéras® examples are based on quaternion algebras over a suitable
number field and are difficult to understand geometrically. In 1983
Sunada [12] found a new and much more general approach to isospectral
manifolds. Sunada’s construction is based on covering arguments which
have been long known in algebraic number theory, and which he was the
first to apply to Riemannian geometry. Among the various results, Sunada
proves that dim V, >0 forall g=17+81, n=0,1,2,...

In this paper we shall improve this result as follows :

1.2. THEOREM. — dim V, >0 for g =5 and for all g>17.

The examples presented here have been found while investigating the
combinatorial aspect of Sunada’s construction. This aspect seems to be
rather important, and we shall construct all surfaces in a purely
combinatorial manner by pasting together building blocks according to a
certain pasting scheme which bears the phenomenon of isospectrality.

The proof that the two surfaces thus obtained are isospectral will then
be in the same spirit. We shall show that the eigenfunctions on the first
surface can be suitably « transplanted » to yield eigenfunctions with the
same eigenvalue on the second surface and vice-versa. One of the
advantages of this procedure is that it works equally well for surfaces in
space. In section 7 we shall therefore leave the realm of Riemann surfaces
and prove.

1.3. THEOREM. — There exist isospectral non isometric surfaces which
are isometrically embedded in R3.

In the same section we shall also give examples of isospectral flat two
dimensional bordered domains which are isometrically embedded in R3.
These domains which improve earlier results of Urakawa [16] have smooth
boundary and are isospectral for either Dirichlet or Neumann boundary
conditions. Since they are embedded as ruled surfaces, these examples may
be easily realized by paper models.

The pasting scheme is described in section 2. Sections 3, 6, 7 give the
examples. The transplantation of eigenfunctions takes place in section 4. In
section 5 we carry out a similar transplantation technique for closed
geodesics to prove that the examples are also also isospectral with respect
to the length spectrum.
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2. Pasting.

Two surfaces S;, S, will be obtained by pasting together a certain set
of building blocks in two combinatorially different ways. In order to simplify
the description we shall often refer to the particular example of surfaces of
genus 5 (section 3) which are illustrated in figure 1. There the building
block, B, is a rectangular geodesic octagon in the hyperbolic plane H
with sides d', b', a*, ¢/, a**, b", a", ¢" (fig. 2). In section 6, the building
blocks are more general geodesic polygons of the hyperbolic plane; in
section 7 the building blocks are bordered surfaces in R3.

In all the examples, eight identical copies B,, ..., Bg of the same
block B with corresponding sides a;, b; etc (i=1,...,8) are pasted
together along sides of equal length, where the combining of sides is given
by the pasting scheme.

Locally the pasting is the usual one as used e.g. in [1] or [15], namely : If
u on B; and v on B; are associated sides (i=j is possible, but u and v
are not allowed to coincide) we parametrize them in the form ¢+ u(t),
t—v(t); tel0, 1], with constant speed and positive boundary orientation
(with respect to some fixed orientation on B). With the identification

@.1) o) =ul J1);  teo,1],

we obtain the connected sum B; + B; (mod. 2.1). Since the hyperbolic
plane H has a twofold transitive isometry group, the identification — or
pasting — (2.1) can be carried out with an orientation preserving isometry
®:H— H satisfying

D(v(t)) = u(1—1); te[0,1].

It follows that the hyperbolic structures (= metrics of constant
curvature — 1) of B; and B; extend to a smooth hyperbolic structure on
the connected sum.

In the same way, we may paste together several pairs of sides
simultaneously. However we then have the following additional condition :
If p,,...,p, are vertices which together define an inner point p of the
connected sum, then the hyperbolic structures extend smoothly into p if
and only if

2.2) o + - + o, =2m,
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where a; is the inner angle at vertex p; of the building block,
@i=1,...,n).

In the case of the octagons of section 3 e.g. the inner angles are n/2 and
the number of meeting vertices will always be 4.

Globally the two pasting schemes may best be read out of figure 1 where
the identifications are indicated by arrows. The formal description is as
follows.

I ————————— = B!
|
=
=
I
4
C-:i > 1 3:3
t
& P -
$ (] | *I
I t 3 1
I |
| - |
li r L - 3 —1 ll
l ¢ | . i 1
C:: P I 6 —- «-> 4-\-)
r T 3 E

The sides of the building block B split into four groups : sides of type
a,b,c and d (with coherent labelling).
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Type d may be absent. In order to say that side u of block B, is
identified with side v of block B; via (2.1) we shall write

v; = n(4;), orequivalently u; = n(v)).

The sides of type a are a', a”, a*, a**; the last two may be absent.-
For S, the pasting scheme of these sides is

"

(2 3) n(a’i) = ai ’ n(ai‘) = ai*-i-*4; i = 1, 3, 51 7,
T n(@) = alvs, m@) =a*;  i=2,4,6,8.

For S, the scheme is

(2 3) n(ali) = a;l+4’ u(ai*) = ai**; l = 19 3’ 51 7,
2 An@) =a!, mw@@¥) =ar; i=24638.

(All indices mod 8).

For the remaining types, S; and S, will have the same scheme. The
sides of type b are b',...,bP, the scheme is

v=1,...,B,

"B = b, =D = B
@0 {65 e h— o

where o is an involutive permutation of {1,...,8}. For the octagons in
section 3 e.g. we only have b' =b', b2 =b" and o is the identity.

The sides of type ¢ are ¢’, c”, c*, c**; the last two may be absent. The
identifications are

@.5) {"(c")=c:"“- i=1,...,8 (mod8).

n(cH) = i’
The sides of type d are d!,...,d°. The identifications are
2.6) n(d)=d%;i=i ...,8(mod8), v=i...,5,
where t is an involutive permutation of {1, ..., 8}.

2.7. Remark. — The above pasting scheme is modeled on Gerst’s
example [5]

G = (Z/82)*-(Z/8Z)



172 PETER BUSER
(semi direct product) of a group G which has the two subgroups

Hl = {(1’ 0), (33 0)1 (55 O)s (7’ 0)}
I-12 = {(la 0)’ (3s 0)9 (5’ 4)a (79 4)}

which are not conjugate, but almost conjugate in the sense that each
element ge G has as many conjugates in H, as it has in H,.

Sunada proves in [12] that any group G with in this sense almost
conjugate but not conjugate subgroups gives rise to isospectral Riemannian
manifolds. Numerous further examples of such groups are found in [9]. The
first example is by Gassmann [3] and was used to give a counter example to
a conjecture of Kronecker.

3. Examples of genus five.

Before proving that S;, S, are isospectral, we give the examples of
compact Riemann surfaces of genus five. Here it is particularly easy to see
that S, and S, are not isometric in general.

The building block in this section is a rectangular geodesic octagon in
the hyperbolic plane which is obtained

Fig. 2.

by pasting together four identical rectangular pentagons (fig. 2). For the
pentagon with sides r, p, q, q', p' the following trigonometric formulae
are known (eg [10])

3.1 v sh r = coth p.coth p’
3.2) cosh r = sinh ¢.sinh ¢q'.

Moreover it is known that such pentagons exist for any positive values of
q' and r. Consequently one can construct such octagons for any given
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lengths of sides b’ and ¢'. By construction we have

/ "

a = a" = a* = a**, ¢ =c

so that the pasting of section 2 is possible. The following simple lemma
helps distinguishing S; from S,: (¢ denotes arc length).

3.3. LeMMA. — Let 0 < ¢’ < b’ < 1. Then any curve 8 on B which
connects two non adjacent sides of B has length ¢(8) = ¢'. Equality holds
only for 6 =c and & =c".

Proof. — Recall from the negative curvature that the unique shortest
connecting curve § between two non intersecting geodesics is the common
perpendicular between these geodesics. Now sinh g.sinh ¢’ = coshr > 1
and ¢ =1/2b <1 together imply q > 1. Similarly (3.1), (3.2) with
cyclic permutation imply p’ > 1, p > 1. It follows that any & different
from ¢ or ¢” has length /() > ¢’ = ¢” as claimed.

We now take B such that the hypothesis of Lemma 3.3 is satisfied and
glue together eight copies of B according to the pasting scheme of figure 1
to obtain Riemann surfaces S,, S,. Check that the angle condition 2.2 is
satisfied. We have 8 faces, 32 edges and 16 vertices so that the Euler
characteristic is — 8 and the genus is 5.

3.4. PrROPOSITION. — Under the hypothesis of Lemma 3.3 S, and S,
are non isometric.

Proof. — On either surface we let, for i = 1, ..., 8, v; be the simple
closed geodesic which contains side ¢; of block B;. Observe that B, is
rectangular so that either ¢; itself or ¢; together with c;,, (indices
mod 8) yields a closed geodesicc On S, we have /(y)=c¢ for
i=2,4,6,8 and ¢(y;) =2 fori=1,3,57. On S, itis the other
way round.

We claim thi.t any further closed geodesic n on S; resp. S, has length
£(n) > ¢'. Infact, since m is not contractible, n is composed of arcs &
which connect sides on building blocks.

If some & connects two non adjacent sides, the claim follows from
Lemma 3.3. Since by the negative curvature 8 cannot return to the same
side, it remains to consider the case that all 8 connect adjacent sides. Let
&, & be two consecutive segments of n which cross side u, say. As
indicated in figure 3, & U & connects the two perpendiculars at the
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endpoints of u since again & U & cannot return to the same geodesic.
Hence /() = £(8) + £(8) > u = ¢ and the claim is proved.

8’

Fig. 3.

Thus it is proved that the y; are the unique shortest closed geodesics on
S, for i=2,4,6,8 andon S, for i =1,3,5,7. Nowif S; and S,
were isometric then cutting open S, and S, along all shortest closed
geodesics would have the same effect.

However, S; remains connected and S, does not. This proves
Proposition 3.4.

3.5. Remark. — Since the parameters c’, b’ can be chosen freely in an
open neighbourhood, the above examples together with Proposition 4.1 in
the next section show that the variety Vs of surfaces in T which are not
determined by their spectrum (1.1) has dimension dim Vg > 2. This
proves Theorem 1.2 for g = 5. (Observe however that varying the
parameters ¢, b’ is not an isospectral deformation).

4. Transplantation of eigenfunctions.

4.1. ProposITION. — Let S;, S, be the two dimensional Riemannian
manifolds obtained by the pasting scheme of section 2. Then S, and S, have
the same spectrum of the Laplacian.

Proof. — The idea is to copy on S, each eigenfunction of S, in the
most obvious way and see under what conditions the such « transplanted »
function remains a smooth function. It would also be possible to use
covering arguments. However, transplantation shows more directly how
the two surfaces come to have the same spectrum.

Let S = S3 = S* be the interior of the surface which is obtained by
pasting together the building blocks B,, ..., By only along the sides of
type ¢ (2.5). The surface S is a sort of bracelet on which an isometry ¢ of
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order eight acts in a natural way : If p e S* lies on block B;, then ¢(p) is
the corresponding point on block B,,; (indices mod 8). S* is considered
as a subset of S, resp. S, in a natural way. Note that ¢* extends to an
isometry of S, resp. S,.

Since S* is open and dense in S; (i=1,2), ¢ induces a unitary
transformation

@: L*S) - LX(S)
of the L2-functions defined by

of=fooe, feL*(S).

Roughly speaking, ¢ shifts every function one block back. Observe that
for continuous functions the image under ¢ is discontinuous in general.

If a function fe L?(S;) which originally has been defined only on S¥
proves to have a C®-extension on S;, we shall, by abuse of notation, say
that fe C*(S).

To define transplantation we let

be the natural identification of S* = S = S, with S* = S¥ = §,. For
every feL2(S,) its transplanted image f'e L2(S,) is then defined by

fi=/el,

and similarly we define g’ = goJ~'eL2(S,) for geL?(S,). Observe
that this definition makes sense in L?. However, continuous functions
become discontinuous in general.

Now let A be a positive real number and let E; be the eigenspace of A
on S,;, (i=1,2), i.e. E; is the space of all C*-functions f on S; satisfying
Af = M where A is the Laplace-Beltrami operator on S;. We want to
prove that

dim El = dim E2 .

Certainly, if feE,, then Af* = Af* on S%. However, since f' is not
smooth in general, f* does not necessarily belong to E,. This will be
compensated by transplanting certain shifted functions @% which in turn
do not belong to E,.
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4.2. LemMA. — E; c L%(S,) is the orthogonal sum of E} and E/
(i=1,2) where
Ef = (/e BI§Y=/)
E = {feElo*f = —f}.

Proof. — This is immediate from the standard decomposition
f=12+0*) + 12(f—9*/). A priori, this decomposition takes place
in L%(S,). Butsince ¢* is an isometry of S; (and not only of S¥), ¢*f is
again a C%-eigenfunction so that the two components belong to E,.

4.3. LEMMA. —

@) If feE;} then f'eE},,.

() If feE[ then (of—@*f)€Ey,.
(Indices mod 2).

Proof. — Welet i =1, for i =2 the arguments are the same. We
have to show that the transplanted functions in (@) and (b) have C*®-
extensions on S,. The reader may first check with figure 1 that the
transplanted functions match at least continuously at the differently pasted
sides in S,. A closer look then shows that the matching is in fact smooth.
The arguments are as follows. (U, denotes an open neighbourhood of p).

4.3.1. For peS, there exists p'€ S, and a local isometry j:U, - U,
such that for all qe U, nS3 we have

j@=J@ or j@ =0*0J@9.

Proof. — Thisis clearif pe S¥. Now suppose pe S,\S%. Then p lies
on the boundary of some building block. These blocks have the following
property :

() If B, and B, meet along a side of type a in S,, then B, and
B,., meet along the same side in S,,
and

(ii) If B,, and B, meet along a side of type b,c or d, in S, then B,
and B, meet along the same side in S,.

(Indices mod 8). To define the local isometry j: U, » U, welet U,
be a circular neighbourhood of p with sufficiently small radius such that
the open connected components U',...,U* of U,n S} are circle
sectors, where any two circle sectors have at most one side of matching
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building blocks in common (t.g. if p lies in the interior of a side, we have
s=2). The components U!, ..., U* can be labelled such that for suitable
6, 1<o<s, the images J(UY),...,J(U° and
@*oJ(U°*Y), ..., 9* 0 J(U*) become the components of U, n S} for a
circular neighbourhood U, in S;. This follows immediately from (i), (ii)
and proves 4.3.1.

43.2. For peS, there exist p,, p;€S, and local isometries
J1:Up > U, j3: U, » U, such that for all qe U, n S3 we have either

Jj1(@) = ©0J(q) and at the same time ji(q) = ¢>0J(q),
or
j1(@ = 0 ' 0J(q) and at the same time j,(q) = ¢ 20J(q).

Proof. — This is trivial for pe S%. If peS,\S%, let again U, be a
small circular neighbourhood of p such that the components U?, ..., U*
are circle sectors. Here we use the following property of the pasting scheme,
(indices mod 8):

(iii) If B,, and B, meet along a side of type b in S,, then B, ., and
B,-, as well as B, .3 and B,_, meet along the same side in S,.

(iv) If B,, and B, meet dlong a side of type a,c or d in S,, then
B,,+x and B,.. meet along the same side in S,, k=1,3,5,7.

Again we can label U!, ..., U* such that for suitable t,1 <t <5,
the images oo J(UY), ..., 9 o J(UY and
@ 'oJ(U™Y), ..., ' 0J(U?) become the components of U, n St
for a circular neighbourhood U, in S,. This follows from (iii), (iv). At
the same time the images ¢@30J(U'),...,930J(U") and
@ 3oJU™Y),...,0 30J(U*) then become the components of
U,, n St for a circular neighbourhood U, in S,. This proves4.3.2.

Now let p be an arbitrary point on S, and let U, be a
neighbourhood of p such that 4.3.1 and 4.3.2 hold. If fe E] then 4.3.1
implies

foj=fol=f  on U,nS%.
In this case, fo is the desired C*-extension of f on U,. If fe E{, then
4.3.2 implies

foj, —fojs=fo@ol —fo@30) = (¢f—9*)* on U,n S}

(because fo@~!—fo@ 3= —fo@3+fo). In this case foj, — foj, is the
desired C®-extension. This proves Lemma 4.3.
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4.4. LeMMA. — The linear mapping L : E, — E, defined by L(f) = f*
1 .. -
for feE] and L(f) = —2((pf—(p3f)‘> for fe E{ is an isomorphism.

7

Proof. — Observe first by Lemma4.3 that indeed L maps E,
to E,.

Let L': E, » E; be the linear mapping defined by
. , I .~ . . -
L) =¢ if geEl, L'(@)= ~ﬁ(¢g—<p3g)' if geE;,

(Lemrha 4.2, 4.3). For feEf we have LfeE;, and L'oLf=f. For
feE[ we have LfeE;, and

Lolf= —}5 GLf— LA = 126% — 34—+ 65 =S

Hence L'oL =id and similarly one proves LoL' =id, q.e.d.

With Lemma 4.4 we have dim E;, = dim E, for the eigenspaces with
eigenvalue A, for any A > 0. This accomplishes the proof of
Proposition 4.1.

5. The length spectrum.

For a compact Riemannian manifold we define the length spectrum to be
the function ¢ +— ny(¢), which to each positive real number ¢ associates
the cardinality ny(¢) of the set of all closed geodesics of length £ on M.

If M is a.compact Riemann surface of genus g > 2, in each free
homotopy class of a homotopically non trivial closed curve there is a
unique closed geodesic (this is due to the negative curvature). From this it
follows that the number of closed geodesics of length < ¢ is finite for all ¢
so that the length spectrum here may also be defined by giving the list of all
possible lengths, arranged in increasing order. The following is a classical
result :

(6], [11]). Two compact Riemann surfaces of genus g = 2 are isospectral
with respect to the Laplacian if and only if they have the same length
spectrum. On a general Riemannian manifold the relation between the two
spectra is less strict, but still the length spectrum carries a lot of
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information. In [12] Sunada showed that his examples are isospectral with
respect to the length spectrum as well. We shall prove the same result here.
Instead of covering arguments as in [12] we use a transplantation technique
which is similar to the one in the preceding section, hoping that it will give
a closer insight to the phenomenon of isospectrality.

5.1. ProposITION. — The surfaces S,, S, obtained in section 2 have the
same length spectrum.

Proof. — For each closed geodesic on S;, and more generally for any
closed curve, we shall draw a copy on S, which has the same length and
vice versa.

5.2. DEFINITION. — Two curves t—7y(t)eS, and t— 7y (t)eS,,
te[0,1], are locally congruent, if for a suitable subdivision
0=ty <t; <---<t,=1 we have local isometries ©; satsifying

YO =o(y(®), tel_y,t) i=1,...,n—1.

Here, each ¢; is an isometry of a neighbourhood of v([t;_,,t;] onto a
neighbourhood of y'([t;—,,t]). In the definition it is allowed that one of
the curves is closed and the other is not.

For the proof of Proposition 5.1 we let
Ju: By & By

be the natural identification mapping of building block B, in S, onto
building block B,. in S,: k, k' =1, ..., 8. Strictly speaking j,. is only
defined in the interior of B, since the boundary of B, in S; is not pasted
the same way as the boundary of B,. in S,. For each closed curve
t->y({t)eS,;; te[0, 1], we draw a locally congruent copy y' in S, in the
most obvious way :

Suppose for simplicity that an initial part y|[0,8] and a final part
v|[1—38,1] are contained in the same block, for sufficiently small §&.

Select some initial block B,. in S, —the correct choice of an initial
block will be described in 5.3 below — and define y'(t) = ji,-(y(¢)) for
te€[0,t,] where t, > 0 issuch that y([0,z,]) = B, and y crosses a side of
B, transversally for ¢t = t,. We then let ¢, > t, be such that y([t,,t,])
is contained in the next block B, and such that y crosses a side of B,
transversally for ¢t = t,. (Here we may well have B,=B,). We let B,. be
the block in S, such that B,,B, in S; and B,, B, in S, meet along the
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same side. The definition of Yy now continues as ¥ (t) = j,(Y(t)),
te(t,,t;]. Then we select t; > t, such that y([t,,?,]) is contained in the
next block, crossing its boundary for ¢t = t5, and so on. Homotoping the
curve slightly if necessary, we may assume that y has only a finite number
of such crossings. (If, e.g. y is a geodesic, this homotopy is not necessary).
The copy process then ends after finitely many steps.

As a very simple example of this process we consider the closed geodesic

Y = v, on the boundary of B, in S; (see section 3), parametrized such

that it starts and ends in the middle of the side. We have B, = B,,

B, = B, and y crosses a side of type a transversally. The copy process

-ends after two steps. If we take as initial block B, = B, in S,, then the

terminal block is B, = B;, and ¢y’ is not closed. If we take B, = B,
then B, = B; and ¥ is closed.

If y is closed in S, then the terminal block and the initial block
coincide, and ¥ on S, is closed if and only if the initial and terminal
block coincide also. We shall now see under what conditions this is the
case.

To this end we let # a denote the number of times the curve y crosses
a side a of type a transversally. Correspondingly, # b is the number of
crossings of type b. We claim that the following receipe yields closed
image curves :

5.3. INITIATION. —

(i) If #a is even, take k' = k.

Gi) If #a is odd and #* b is even, take k' = k + 1.
(iii) If +a and 4 b are odd, take k' =k + 2.

Proof. — Let x(t)e{l, ...,8} denote the momentary block number
of y(t) G.e.if y([t;—,,t]) lieson B, then x(t) = m for tet;_,,t;)] and
let ¥’(t) be the block number of y'(t) in S,, 0 <t < 1. We define

0(t) = x'(t) — x(t) (integers mod 8).

We have to prove that with the initiation 5.3 we have 6(1) = 8(0).

Case (i) : We have 8(0) = 0. Aslongas d is even, a crossing of type a
replaces & by & + 4 (always mod 8). Aslongas 8 =0 or 8 =4, any
crossing of type b leaves & invariant. Hence we always have 8 = 0 or
8 =4. Since #a is even this proves 6(1) = 0 = §(0).



ISOSPECTRAL RIEMANN SURFACES 181

Case (ii) : We have 6(0) = 1. Aslong as 8 is odd, crossings of type a
leave & invariant. Aslongas & = + 1, any crossing of type b changes
O from + 1 to F 1. Hence, we always have d = + 1. Since # b is
even, this proves (1) =1 =-8(0).

Case (iii) : We have 3(0) = 2. As long as & is even, each crossing of
type a replaces 3 by 8 + 4. Aslongas & = + 2 each crossing of type
b replaces 8 by &+ 4. Hence we always have 8 = + 2. Since
#a+ #b is even, this proves §(1) =2 = §(0), q.ed.

In the same way we can, for each closed curve n on S, draw a closed
copy N’ on S, taking in 5.3 (i), (ii), (iii) respectively k' =k, k' =k — 1,
k' =k — 2. We then have

&Y=y, @)Y=n.

Consequently, the above copy process establishes a one-to-one
correspondence of locally congruent closed curves on S; and S,. By
restricting this correspondence to closed geodesics, we have a one-to-one
correspondence of closed geodesics of any given length. Hence S; and S,
have the same length spectrum and Proposition 5.1 is proved.

5.4. Remark. — On non orientable surfaces, a so called weighted
length spectrum is more frequently used, where the length of a closed
geodesic is multiplied by a positive factor which depends on the eigenvalue
(==1) of the holonomy of y. It is not difficult to see that the above
curves Y and Yy always have the same holonomy. Hence Proposition 5.1
holds also for the weighted spectrum. (This is of course only interesting if
non orientable building blocks are used).

6. Examples of higher genus.

In this paragraph we construct isospectral Riemann surfaces for any
genus g > 7 (g = 6 has resisted all efforts so far). The pasting scheme will
be the one of section 2. We shall use various types of polygonal domains in
the hyperbolic plane. To keep the description reasonably short, their
definition will be given via a figure. These figures represent domains in the
hyperbolic plane; however we made no effort to make them look as they do
in the Poincaré model.

A) Odd genus. For g=5+2n, n=1,2,..., the domain B is a
generalization of the one used in section 3. Its sides are shown in figure 4.
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B is composed of rectangular pentagons of only two types: Four
pentagons at the outer ends with sides p,q,q’,p’,r, meeting along p,
and 2n pentagons in between with sides u,v,w,w’,v’. The matching
conditions are

c=c"=2r a=a"=a**=a*=yp, v=2q.

Fig. 4.

As mentioned in section 3, pentagons exist for any lengths of two given
non adjacent sides. It is also easy to see that the lengths of two adjacent
sides, like u, v above, may be prescribed as long as sinh u.sinh v > 1. For
simplicity we shall use the values

u=v=1.

This determines q to be q = 1/2, and r is still a free parameter.
From the trigonometric formulae 3.1,3.2 we see that r —» 0 implies
p— o, p—> o and ¢ - g for some gy > 0 (the correct value is given
by sinh gg.sinh 1/2=1). Since all other pentagons remain invariant as
r —» 0, we have the following analogue of Lemma 3.3 :

6.1. LEMMA. — If r > O is sufficiently small, then any curve & which
connects two non adjacent sides of B (fig. 4) has length £(8) = ¢ = ¢".
Equality holds only if 8 =¢ or 8 =c".

The pasting conditions for the sides of type b and d are

n(b) = b3V, m(by = b5V,
(6.2.1) {n(b‘;) Z b men b VS Leont2
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with the permutation

6.22) ovy=n+2-v; v=1,...,n+1, oc(n+2)=n+ 2,

and
6.23) nd)=4d},,; i=123,4, v=1,...,n.

Like in section 3, we check that pasted sides have the same length and that
the number of meeting vertices is always 4 so that indeed S;, S, are
Riemann surfaces.

By Lemma 6.1, the shortest closed geodesics on S, are those composed
of ¢y, ¢y, 5, cg and on S, those composed of ¢, ¢, cs, ¢ so that
S, and S, are non isometric by the same reasoning like in section 3. We
have 8faces, 8n + 32edges and 4n + 16 vertices. This yields Euler
characteristic — 8 — 4n and genus g =5+ 12n. Note that r is a
variable so that indeed dim V, > 0 for these values of g.

B) Even genus. For even genus the construction is more difficult.
Rectangular domains are no longer suitable. For the more general domains
described here, we use so called trirectangles, i.e. geodesic quadrangles in
the hyperbolic plane with 3 right angles and one acute angle ¢.

Fig. 5.

The trigonometric formulae of a trirectangle are similar to those of a
pentagon. We have (e.g. [10]).

6.3. Trirectangle.
(i) coshg = coshp'.sin @
(ii) cos @ = tanh p.tanh p’

(iii) cot @ sinh p.tanh g

(iv) sinh p’ = cosh p.sinh g
(v) cos¢@ = sinhgq.sinhq'.

It is well known that such domains exist for any values of ¢ > 0 and
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9€O,m/2). As q and ¢ range in these domains, trirectangles are
obtained for all values of ¢ and ¢’ satisfying sinh g.sinhq' < 1 ((6.3(v)).
We also obtain trirectangles for all values of p’ and q satisfying
sinh p'/sinhq > 1 (6.3(iv)) etc.

In this partB) we construct surfaces for g =12 + 2n,
n=012,....

B x¥x coe
4Ny )
o B
| ‘\N___...ﬂl-__ﬂ. d-... _h._._../ =
P px jh Eopy .
bn’+2 oo
Fig. 6.

The building block is given in figure 6. We have 6 pairs of
trirectangles : two equal pairs at the outer ends with acute angle o, and
four different pairs with acute angles 8, t, m, y. Here we consider a
and t as variable parameters. The remaining angles are determined by the
condition

6.4) o+ B = m/l6, T+n=mn/l6, o+ 7=mn/8.

The middle section of the building block is composed of 2n pentagons,
if n>1. In the case n = 0 these pentagons are absent and we have the
matching condition

(6.5.1) u=v (ifn=0).

In the case n = 1 we have two pentagons P,, P,. Side s of P, together
with side ¢ of P, yields the only side d' of type d in this case. In the case
n>2 we have 2n — 2 additional pentagons arranged as shown in
figure 6. We have n + 2 sides of type b which are subject to the condition

(6.52) b =b"*t, B2=b", B =b"1, ..., (fn>1).

The existence of such domains is less obvious and will be shown below. For
b, .. .,Ib"+2 and for d', ...,|d" the pasting scheme is again 6.2 like in
part A). For c*, c** the pasting scheme is n(c}) =c**, i=1,...,8
(mod 8) (c.f. 2.5).
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By drawing a figure like figure 1 we see that the 32 vertices of
B,, ..., Bg which have angle ©/16 (c.f. 6.4) meet at a single point of S,
resp. S,. Similarly the 16 vertices of B,, ..., Bg which have angle n/8
(c.f. 6.4) meet at a single point of S; resp. S,. The remaining vertices
have meeting number 4 and angle n/2. Hence the angle condition 2.2 is
satisfied, and by 6.5.2 and 6.2, pasted sides have the same length so that S, ,
S, are Riemann surfaces. We have 8 faces, 4n + 10 vertices and
8n + 40 edges. This yields characteristic — 4n — 22 and genus
g=2n+12.

To make sure that S; and S, are not isometric we proceed like in part
A) of this section by taking ¢ = ¢” = 2r sufficiently small so that
Lemma 6.1 holds in the present case too.

Thus it now remains to prove that a domain with all the required
properties exists. By 6.3(i)) we have the following formulae for the
trirectangles :

cosh p = cosh r/sin a, cosh g = cosh p.siny
cosh w = cosh ¢/sin 1, cosh v = cosh w.sin 1
cosh u = cosh p.sin B

from which we deduce (c.f. 6.4)

sin (/16 — a)

' sin a

sin (/8 — a).sint
sin a.sin (/16 — 1:)'

coshu = coshr
(6.6)
coshv = coshr-

We start with the case n > 1. Here we choose the fixed values
o = m/64, t=mn/40 (ifn=>1)

and let r = ¢'/2 = ¢"/2 be arbitrarily small. As r - 0, p converges to a
limiting value p, given by cosh p, = 1/sin a. With the above choice of o
and t, all trirectangles are well defined for small r, and, except for those
with side r, converge to a well defined non degenerate limiting trirectangle
as r—» 0. The above formulae together with 6.3(ii) yield the limiting
values uy = 1.75 ..., x9 =2.66 ...; vy =220...,y5,=326.... For
the pentagons P,, P, we have the matching condition

(*) sinh x.sinh (2u) = sinh y.sinh (2v) = cosh h > 1
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(by 3.2); and in order to satisfy b! = b"*! (6.5.2) we impose the
additional (for n>2 somewhat stronger than necessary) condition

** xX+x=y+y.

Since sinh (y+) —x') = sinh y.cosh (y'—x’) + cosh y.sinh (yy —x) a
solution y of
sinh 2v

%kokk h =
(%) coth y = Gk 24 sinh (7 —x)

— coth (y —x")

together with x =y + ' — x’ will satisfy conditions (*) and (**).
Plugging in the above limiting values u,, vy, yy, Xp shows that (***)
indeed has a solution with the limiting value yo|=|3.26 .. .,| provided r
is sufficiently small.

For n > 2 we add the remaining 2n — 2 rectangular pentagons such
that 6.5.2 is satisfied. We may e.g. take all these pentagons such that one
side has length (s+¢)/(2n—2) and such that the two opposite sides are
equal to one another. Clearly, as r — 0 these pentagons converge to non
degenerate limiting pentagons so that Lemma 6.1 holds for sufficiently
small r. This concludes the existence proof in the case n > 1.

In the case n = 0, condition 6.5.2 is replaced by 6.5.1. By 6.6 the
condition reads ,
sin (1/16 — a) sin 1
sin (/8 — «)  sin (n/16 — 1)

This is easy to satisfy. We may e.g. choose a = m/40 and solve for 1. The
rest is as before.

Since r is variable, Theorem 1.2 is now proved for all g except g = 8
and 10.

C) Genus 8 and 10. The arguments are slightly different here. Since
these examples are for completeness, we only give a brief outline and leave
the details to the untiring reader. The building block is sketched in figure 7.
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For the example with genus 8 the angles o and P are
a=mrn/2, B=rmn/4 (forg=38).
For the example with genus 10 we shall take
o = /4, B =mn/4 (for g=10).

All other angles are right angles. The pasting scheme is from section 2, the
pasting of sides of type b being as follows: If w(b) = b, then

n(b) = by, n(b}) = by, (forg=38)
respectively
) =by, =wn®)) ="b;, (forg=10).

In either example, & denotes the length of the common perpendicular of
a', a* resp. a’, a**, and ¢ is the length of the common perpendicular of
b, b”. We can choose € < 8 with ¢ and & arbitrarily small. lThc
perpendiculars then extend to closed geodesics of length 46 resp. 2¢. All
other closed geodesics (on all surfaces) are longer. It follows that these
geodesics can be detected by rules which only make use of the intrinsic
geometry of the surfaces. The globally shortest connecting curves between a
geodesic of length 48 and a geodesic of length 2¢ are precisely the
segments marked PQ resp. P'Q (fig. 7). Hence the midpoints Q of the
building blocks can also be detected intrinsically. It follows that any
isometry from S, to S, sends building blocks to building blocks. The
difference in the pasting schemes makes this impossible, and thus S,, S,

are not isometric.
Theorem 1.2 is now proved.
6.7. Remark. — A detailed analysis of the number of free parameters

in the above examples gives roughly the lower bound dim V, > %dim T,
for large g.

7. Isospectral surfaces in R3.
In this section we use the pasting technique to give examples of

isospectral surfaces which are embedded in ordinary 3-space. We shall also
give examples of flat bordered domains in R® with smooth boundary.
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These examples improve results by Urakawa [16] who found 3-dimensional
domains with piecewise smooth boundary in R* and also 4-dimensional
domains in R* in the ordinary sense. The bordered domains are very
easily realized by paper models.

R3 denotes the standard Euclidean 3-space. A surface in R3® will
always be an embedded surface with the induced Riemannian metric. The
geometry of the building block is to a great extent arbitrary so that we
restrict ourselves to describe the procedure which leads to such surfaces
rather than to go into the details of a singular example.

A) Closed surfaces. The building block is a bordered surface in R3
with cylindrical ends. By this we mean that each boundary component y
is a closed geodesic and that a suitable neighbourhood U, of y is
isometric to the circular cylinder

Z = {(x1,%3,%3) e R®|x} +x3=p?,0<x;<¢e},

where € and p are positive constants. Each boundary geodesic is
considered as a side of a given type (a,b or ¢). If all ends have the same
radius p, the pasting is locally the same as in the preceding sections and
yields a smooth metric. The surfaces are isospectral. If the building block
has no intrinsic isometry other than the identity, and if the boundary curves
are so small that on S, resp S, they become the globally smallest closed
geodesics, then any isometry S; — S, would induce natural identifications
of building blocks. However, this is made impossible by the difference in
the two pasting schemes. Hence pasting in space yields isospectral non
isometric surfaces in the same way as before.

However, there is the additionnal problem that the pasted surfaces be
embedded. That is, all boundary components which are to be identified with
each other actually need to have contact. As long as we try to arrange
congruent blocks, this is not possible. We shall therefore use building blocks
which are intrinsically isometric but not congruent, i.e. bordered surfaces
which admit different isometric embeddings in R3.

The standard construction of isometric non congruent surfaces is by
pasting together smaller congruent pieces. The method is based on the
following principle : Let F, G be bordered surfaces in R®> which are
pasted together along a common closed boundary curve y. Assume that y
is contained in a plane o and that neighbourhoods U, < F, V, < G
are also contained in a so that U,, V, together form a plane annular
region (U,nV,=7). Now consider the mirror image G of G
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with respect to plane a. If G nF =v then FUG and FuG' are
isometric to each other but, in general, not congruent.

This principle will now be exploited to construct building blocks. The
idea is to build long and thin « arms » which one can bend in different
directions without affecting the intrinsic geometry. Here « bending » means
that finitely many different positions are possible. It is not known whether
continuous isometric deformations exist also. One such pair of arms or
rather « hinges » in different positions is drawn schematically in figure 8.

Fig. 8.

C and D denote cylindrical ends of the same radius. The hinges
consist of three parts F,, F,, F; which are the same for either hinge.
These parts satisfy the above matching conditions. One end of F; is C,
the other end is contained in plane a. Part F, has one end in a the
other end in B. Part F; has one end in B, the other end is D. The
angle ¢ between the planes o and P may be any angle in the interval
(0,x/2). (In fig. 8 we have @=mn/4). To go from the first hinge to the
second, we first replace F, by its mirror image F’; with respect to plane B
(in this intermediate step the surface may have self intersection). Then we
replace F, u F; by its mirror image with respect to plane a. End C
stays where it is but D is now rotated by the angle @ = 2¢ about the axis
o N B. Calling these surfaces hinges with angle ®, we have:

7.1. LEMMA. — A pair of hinges with angle « exists for all o e [0,m).

In order to get a relatively simple example we may take the standard
sphere, cut out 24 circular holes with equidistant centers on the equator
and deform the metric near the boundary such that all ends become
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cylindrical. We can achieve that an isometry of order 8 with north and
south pole as fixed points operates. At each hole we attach an arm which is
obtained by pasting together a number of suitable hinges. We use two types
of arms which we call type a and b. Arms of the same type are isometric,
arms of different types are not. The building block is then a 3 holed sphere
sector (with vertices = north and south pole) on the above 24 holed
sphere with two arms of type a and one arm of type b. We attach the
arms such that the building block has no intrinsic symmetry. If one takes a
large number of hinges, it becomes relatively simple to determine angles ®
and lengths of ends C, D such that, in fact, the pasting of section 2 can be
carried out in R3® without any self intersections. This. yields

7.2. THEOREM. — There exist isospectral non isometric closed surfaces
of genus 12 which are isometrically embedded in R3.

B) Paper models. In order to obtain paper models of isospectral
surfaces one may replace the class of smooth surfaces by the class of
piecewise linear surfaces on which isospectral problems still make sense.
However the construction is very tedious.

A much simpler way is to extend the pasting procedure to bordered
surfaces. In fact, if the building block is such that S, and S, have non
empty boundary, the proof of Proposition 4.1 is still valid for the Laplacian
for both, Neumann or Dirichlet boundary conditions.

The advantage of bordered surfaces is that they admit continuous
isometric deformations in space so that the construction of hinges is not
necessary. One such example is shown via its building block in figure 9 :
The block is a plane Euclidean circle sector with angle nt/4 and with three
rectangular sufficiently long strips attached. The corners have been
smoothed such that S,, S, have smooth boundary. Paper is stiff and
assumes the shape
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of developable surfaces. By practical experience it is easy to stick the
building blocks together in space. We thus obtain :

7.3. THEOREM. — There exist isometrically embedded flat two
dimensional domains with smooth boundary in R® which are not isometric
and have the same spectrum of the Laplacian for Neumann as well as Dirichlet
boundary conditions.

It does not seem to be possible to obtain isospectral domains in R?
along these lines.
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