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A VALUE-DISTRIBUTION CRITERION
FOR THE CLASS L LOG L,

AND SOME RELATED QUESTIONS

by M. ESSEN (1), D. F. SHEA (2) and C. S. STANTON

1. Introduction.

Let F belong to the Nevanlinna class of functions analytic in the unit
disk U, so that

i r2"T(1,F) = lim — log4- |F(re19)! d6 < oo .
r-i In Jo

In particular, lim F(r^9) = F(^9) exists a.e.. We shall say that
r-»l

ReFeLlogL if

r2"
sup |Re F(r^9)! log4- |Re F^19)! dQ

0<r<\ Jo

r2" |Re FQ?19)! log-^ |Re F^19)] dQ < oo .
Jo

The class L log L is closely related to the Hardy space H^U), as is
shown by the following classical results of Zygmund [22]:

THEOREM A. - If ReFeLlogL, then F e H 1 .
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THEOREM B. - If FeH 1 and R e F > 0 , then R e F e L l o g L .

In this paper we prove some refinements of Theorem B. We state our
basic results in terms of the usual Nevanlinna counting function

N(r,w) = N(r,w;F) = !'n(t,w) dt/t
Jo

where n((,w) = S^ 1 and {z,} ^-'(w). Our main result is

THEOREM 1. - Let FeH^U). The following are equivalent:

(1.1 a) ( NO.MOlog-' \v\dv < oo.
J-oo

(Lib) ReFeLlogL.

(1.1 c) f2" |Re ¥(ei9)\ log+ IF^16)] d6 < oo .
Jo

Remark 1. - We note that if Re F > 0, then N(l,fr) = 0 for all
u e R . Hence Theorem B follows from the equivalence of (1 1 a) and
(Lib).

Remark 2. — We could replace the integration over the imaginary axis
in (1.1 a) by integration over any vertical line, i.e., for any real u (1.1 a)
is equivalent to

(l.lfl') f°° ^(l,u+iv)log+\v\dv<ao.
J-oo

Once the Theorem has been proved, this follows immediately since
N(l,M+n;;F) = N(l,n;;F-M) and Re (F-u) e L log L if and only if
Re F e L log L.

In Sections 3 through 6, we give some further refinements of
Theorem B: from a geometrical condition on the range of F, we can
deduce that Re F e L log L. To apply Theorem 1, we need a criterion to
decide whether FeH^U). In this context, our main tool is a more
general result which may have independent interest: in terms of harmonic
measure, it gives a necessary and sufficient condition for
FeIPQJ), 0 < p < oo (cf. Theorem 7 in Section 5)). We also consider
cases when the hypothesis FeH^U) in Theorem 1 is omitted. The
material in Sections 5 and 6 overlaps with certain work of Burkholder in
[4], [5].
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The starting-point of our work was a study of the relation between the
classical criterion of Zygmund and the following result of A. Baernstein.
Let/eL^T) be a given real-valued function and consider

(1.2) F(z)=2lp^^d(P•

We have F(e19) =/Q?19) + i/V^a.e. on T. Let g be the symmetric
decreasing rearrangement of / and g the conjugate function of g with
mean value zero. In particular, we have

ll^lli=ll/lli, f \gW\g\= f I/I ̂  I/I.
JT JT

In [2], Baernstein proved that

(1.3) ll/lli^llilli.

Thus, when/eL^T) is given, (1.3) implies a sufficient condition for F
to be in H1, namely: FeH1 if ||g||i < oo. However, this consequence
of (1.3) does not actually yield a new criterion for F e L1, in view of the
following consequence of Theorem 1 :

COROLLARY 1. - ieI^fOo^eLlogL.

Proof. — Assume that g e L^T). From the discussion in Section 6 in
Baernstein [2], we see that the analytic function G associated to g by (1.2)
maps U univalently onto a Steiner symmetric domain, i.e., a domain with
the property that for all u e R,

G(U)n{Rew=M} = {\v=u^-iv:\v\<b(u)}.

If there exists UQ such that b(uo) < oo, condition (1.1 a') will hold for
u = UQ , and Theorem 1 implies that g e L log L which is equivalent to
/e L log L. But such a UQ exists because if b(u) =00 for all u e R, G
would mapU onto the whole complex plane.

The converse assertion is simply Zygmund's Theorem A; Corollary 1 is
proved.

Remark. — In a private discussion, Lennart Carleson has shown us a
simple real-variable proof of Corollary 1.
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In Section 2, we deduce Theorem 1 from a general identity:

THEOREM 2. — Let F be analytic in U and let 0 be subharmonic in
C mth 0(F(0)) finite. Then

(1.4) (In)-1 f ^(F^19))^ = f N(r,w)^(w) 4- 0(F(0)),
Jo Jc

0 < r < 1,

\vhere \i is the Riesz measure of<S>.

For each choice of O in Theorem 2, we get a formula connecting a
mean of F over a circle in U with an integral of N(r,.) over the range of
F. Examples of such formulas will be given in Section 2. The present
proof of Theorem 1 avoids some lengthy estimates in the original proof of
Essen and Shea, as announced in [8]; this simplification is made possible
because of Stanton's proof of (1.4) in [19]. We apply (1.4) here with
0(w) = |Rew|log(l+|w|2), cf. (2.5) below.

If U is a positive finite measure on C and - 0 is the logarithmic
potential of n, then (1.4) is a classical formula of Frostman,
cf.[16,p. 177].

We can extend Theorem 2 in a number of ways. For example, it holds
when <& is 8-subharmonic, i.e. the difference of two subharmonic
functions, with ^ a signed measure. An identity like (1.4) is true for /
meromorphic (in the disk or in the plane) provided <& has sufficiently small
growth at infinity. The theorem also can be extended to analytic functions
mapping the polydisk or ball of C" into C. Details of these extensions
are given in Section 7.

2. Proofs of Theorems 1 and 2.

We need the following well-known facts on the Nevanlinna counting
function (for further information and references, cf. Section 4 in Essen and
Shea [7]):

N(l,w,F) = lim N(r,w,F) exists and is uniformly bounded except
r-»l

near F(0). The upper regularization N(w) = N(w,F) of N(l,w,F),
defined by

N(w) = limsupN(l,^,F),c-»w
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is subharmonic in C\{F(0)} and coincides with N(l,w,F) off a set of up-
values of logarithmic capacity zero. The function N(w) + log |w—F(0)|
can be defined at F(0) to be subharmonic in C.

Throughout the paper, the H^-norms are defined as in Duren [6], p. 35.
The class W of harmonic functions in U is defined in [6], p. 2. The set of
interior points of a set K is denoted by K°.

Proof of Theorem!. — Let r be fixed, 0 < r < 1. Then there exists a
compact set K such that supp N(r,.) c: K° and we have

0(0= f log|^w|^(w)+fc(0,
JK

where h is harmonic in K°. From Jensen's formula

r2"(2n)~1 log IF^-wl dQ = N(r,w) + log |F(0)-w|,
Jo

we deduce that

r2"
(27i)-1 ^(FO^)) d9

Jo

= [ ^i(w) f ^gIF^-wlde^-h^F^))
JK Jo

-I
-I,

(N(r,w) + log |F(0)-w|) dn(w)+/i(F(0))
K

N(r,w)dp(w)+<D(F(0)).
K

The theorem is proved.

Next, we give a list of some special subharmonic functions $, their
associated Riesz measures p and the formulas which follow from (1.4).
Most of these formulas are known; (2.5) is new and is basic to our proof of
Theorem 1.

We write w = u + iv. §„ and §„ are Dirac measures supported by the
v- and M-axis, respectively. (Formally, we should write 8^0} ® 1 and
l®-8^o}). We put k(r)= (2+0(1+Q-2 and C(r) - 27Ulog(l +().

0>
A0=27t^

1u|
28.

H
28.,

|w|

H-1
Nlog(l+|u|)

fed"))
Mlog(l+H2)

2S,log(l+l;2)4-4M^H2)
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Applying (1.4), we obtain

pn /•oo

(2.1) |Re F^19)! dO = 2 N(r,fr) rfu + 2n\ Re F(0)|,
JO J-oo

(2.2) f |Im F^19)! dQ = 2 f0 0 N(r,M) du + 27c|Im F(0)|,
JO J-oo

(2.3) IF^'9)! d6 = | ] N(r,w) dM di;/|w| + 27c|F(0)|,

f2"(2.4) (| Re F| log (1 +|Re F|))(n?19) dQ
Jo

= j ] ^(r^)k(\u\)dudv + C(|ReF(0)|),

(2.5) f2" (|Re F| log (1 +|F|2))(^i9) dQ
J o

= 4 ^(r^uW^dudv

+ 2 N(r,n?) log (1 +t;2) ̂  + 27i|Re F(0)| log (1+|F(0)|2).
J-oo

The equation AO = 2n d[i is interpreted in the distributional sense.
This means that for all \|/eCy(R2), we have

(2.6) ] | < D A ^ = 2 7 i [ f \MH,

(cf. Lemmas 3.6 and 3.8 in Hayman and Kennedy [12]).

We illustrate the computation of these formulas by deriving the one
needed for (2.5). We choose <D(w) = \u\ log(l-h|w|2). Then if u ^ 0,
OeC00 near u + iv and Ad> = 4|M|fe( |w|2) .

Let \|/eC(S°(R2). From Green's theorem, we deduce that

|| <D Av|/ = ff i|/(w)4Mfe(|w|2) du dv + f" v|/("0 log (1 +r2) dv,
JJ{u>0} JJ{u>0} J-oo

[[ <&Ai|/= [| ^)4\u\kW)dudv^ f00 v|,(fi;)log(l+r2)^.
JJ{u<0} JJ{u<0} J-oo
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Adding these two formulas, and using (2.6), we obtain

27C \MH = ^(^Wk^w^dudv -h 2 ] i|/(w)log(l+u2)^,

which is the fifth formula in the table above.

We rewrite (2.5) in the following way:

Ii(r)=4l2(r)+2l3(r)+27i|ReF(0)|log(l+|F(0)|2).

Let I, = sup I,(r), 0 < r < 1 J = 1, 2, 3 .

LEMMA 1. - Let F be analytic in V. Then FeH^U) if and only if
Re F e h1 and 1^ is finite.

Proof, - Let FeH^U). From the inequality k(t) < r1, t > 0, it
follows that |u|k(|w|2) ^ l u l l w ] " 2 < |w|~1 and ^ must be finite since
we have (2.3). Trivially, we have ReFe/i1 .

Conversely, if 1^ ls finite, we use the subharmonicity of N(r,w) in
C\{F(0)} to deduce that

| N(r,M) du ^ 4 f (TO2)-1 du ff N(r,!;) ̂  dr}
J|u|>2|F(0)| J-oo JjK-u|<|u|/2

^ (4/7C) ff N(r,0(^-3Ti2)1/2 ̂  dri/ia2

< (4/7i) ff N(r,0|^|^dn/|a2 = W,

where D+ = {^=^4-ir| -.i2^^2}.

If 12 is finite, sup 14 (r) will also be finite. It is now clear from (2.2)
0 < r < l

that ImFe/i1 . Since ReFefc 1 , we must have FeH^U) and the
lemma is proved.

Proof of Theorem 1. — The proof will show that

(1.1 a)-> (1.1 b) -> (1.1 c) -^ (1.1 a).

To prove (a) -> (b), we first note that it follows from (a) that 13 is
finite and from Lemma 1 that 1^ is finite. Thus, by (2.5), I^ is finite and
we have proved (fc).
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To prove (b) -^ (c), we consider the following simple chain of
inequalities:

|M|log(l-^M2-H;2)^2|u | log(l+|M|+| l ; | )^2( |M|log(l+|M|)+M).

If we now choose u = Re F, v = Im F and integrate with respect to 9,
we obtain

r2"Ii < 2 (|ReF|log(l+|ReF|) + lImFDO?16) d9 < oo,
Jo

and have proved (c).

The implication (c) -> (a) is an immediate consequence of (2.5).

Remark. — It is easy to prove Zygmund's Theorem A that (l.lfc)
implies FeH^U), using these methods. This is immediate from (2.3),
(2.4) and the inequality k(\u\) XM+1)-1 ^ (2|w|)-1 (valid for
|w|>l), which yield

1 f " IF^19)] dQ ^ i- f n |Re F| log (1 +|Re Fl)^10) dQ + C,2n Jo K Jo

for Ci = T(1,F) + |F(0)| + 1 .

In the opposite direction, (2.3) and (2.5) together with
|«|fc(|w|2) ^ |w|~1 imply

1 f2" |Re F| log (1 +|F|2)l/2(r^e) dQ ^ i- (21t ̂ (re^ dQ + C,,
2n jo T i j o

C^ = -'- \ NO.^logO+i;2)1/2^ + |ReF(0)|log(l+|F(0)|).
n J -00

With heavy restrictions on F(U), such as Re F > 0, inequalities of this
type are classical (cf. [22], p. 256).

Let us finally give some further examples of formulas which are
immediate consequences of Theorem 2. Successively choosing <l>(w) as
log4'|w|, log(l-h|w|2), [w^ with p > 0, W with p > l and as
|w|A(argw) where

Ar(D)= f(l/2)(psin<p,|(p| < Tc/2,
V T [(l/2)(7c-<p) sin (p - cos q>, 7t/2 ^ q> ^ 37C/2,
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we obtain

(2.7) f2"^ ̂ (re^dQ == f^NO^Ap + 271^ |F(0)|,
Jo Jo

(2.8) f^gO+IF^16)!2)^
Jo

=4 ^(r,w)(l+\w\2)~2dudv+2n\og(\^\P(0)\2)

(2.9) | n\¥(reiQ)\pd6=p2 [| N^w)!^-2 du dv

+27l |F(0) |p ,p>0.

pn

(2.10) IReFO^Vde
Jo

=P(P-1) [[ N(r,w)|Mr-2 du du+27c|Re F(0)r, p> 1 ,

(2.11) f^lF^argF))^0)^
Jo

== [| N^lMllwr^M^^TclF^^argF^)).

Remarks. — Equation (2.7) is Cartan's identity (see
Hayman [11], p. 8). Equation (2.8) is a version of a classical formula for the
Ahlfors characteristic (see (3.1), p. 173, in Nevanlinna [16]). Equations
(2.9), (2.1) and (2.2) are classical (see e.g. Lehto [15], pp. 12, 14). Baernstein
derives (2.1), (2.2), (2.9) and (2.10) from Cartan's identity in [2].

3. The class LlogL and estimates
of harmonic measure.

What more can we say about the connection between the closed set E
on which N(z) = N(z,F) vanishes, and the integrability condition (1.1 b) ?
From now on, we assume that F(0) = 0.

We need an idea of M. Benedicks [3], developed to study positive
harmonic functions vanishing on the boundary in sets of the form C\E() ,
where Eo is a subset of the imaginary axis. Our set E is not necessarily
restricted in this way.
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Following Benedicks, we introduce a function Pg which measures how
«thin » the set E is at infinity near the imaginary axis. If z -^ 0, let K^
be the open square in the plane with centre at z, sides parallel to the axis
and with side length |z| .Let ft^ = K^\E. In ft^, we consider the
harmonic function V2 which has boundary values 1 on 3K^ and 0 on
E n K,. We define PeOO = V^z).

THEOREM 3. - Let FeH^U) and assume that F(0) = 0. A
sufficient condition for Re F to be in L log L 15 that

(3.1) f My)\og\y\dy/y< 0).
Jh l> i

In Section 4, we shall give examples of conditions on the omitted set E
which ensure that (3.1) holds.

In the proof of Theorem 3, we need

LEMMA 2. — Assume that F e H^U) for some p > 0 and that
F(0) = 0 . Then

(3.2) N(z,F)^C^||F| |?|z|-^z^O,

where Cp = p ~ 1 , 0 < p < 1, and Cp < 4, p > 1.

Proof. — For any F in the Nevanlinna class with F(0) = 0, it
follows from Jensen's theorem that we have

p2n

(3.3) N(w,F) < (27t)-1 logO+IFO?19)! M-1)^.
Jo

When 0 < p ^ 1, (3.2) is an immediate consequence of (3.3) and the
inequality

log (1 +u) < u^p, 0 < p ^ 1, u > 0.

When p > 2, we use the fact that N(z) is subharmonic in C\{0} to
deduce that, if p = 2 / p ,

N(z) ^ (Tip^zl2)-1 || ^(w)dudv
JJ|w-z|<p|z|

< \z\~pft~2(\-ft)l~p ff ^(^W^udv/n,-.(I-P)-{[
<C,||F||;|z|-', C,-(\-tlff-'l-l.
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In the last step, we used (2.9). The argument is similar when
l < p < 2 , with p = l and Cp = (l/p2)!2-^.

Proof of Theorem 3. - Using the maximum principle, we deduce from
Lemma 2 that

N(0<2||F||^(0/M,^eQ,,,
N(^2||F||^0}0/M, y ^ O .

Hence, Theorem 3 is an immediate consequence of Theorem 1.

In the study of the function pg(z), we need two lemmas of Hayman
and Pommerenke[13].

LEMMA A. — Let EI be a compact subset of {z:|z|<R/2} and let cog
be the harmonic measure of Ei in {z:|z|<R}\Ei. Then

(3.4) (OE/Z) ^ a(R,Ei), |z| ^ R/2,

^here a(R,Ei) = log (5/4)/log (5R/4 cap E^).

Lemma A is proved in Section 3 in [13].

LEMMA B. — Let E be a given closed set in the plane and let
EI = E n {z:|z-fr|<R/2}. Let p > R, and let co be the harmonic
measure of the outer circle in { z : | z - f t | <p} \E . We define
B(r) = max ®(z). Then

|2-»t|=r

(3.5) B(R/2) < (1 -a(R,Ei))B(R).

Proof (Adapted from the first part of the proof of Theorem 1 in
[13].). - We define co(z) = 0, z e E n {z:|z-f(|<p}. Let ©i be the
harmonic measure of Ei in { z : \z-it\ <R} \E i . If
h(z) = co(z) - B(R)(l-G)i(z)), it is easy to check that h(z) is non-
positive in {z:|z-ir|<R}\E. Applying Lemma A, we obtain (3.5).

4. Applications of the estimates in Section 3.

We say that a closed set E c C satisfies condition (K^) if there exist
positive numbers 8 and a in the interval (0,1) such that for all real (
with |(| sufficiently large, we have

(4.1) cap{En{z:|z-K|<R}} ^ 8R, I^R^t].
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THEOREM 4. — Let F be in the Nevanlinna class and assume that
F(0) = 0 . If the set E = {z:N(z,F)=0} satisfies condition (KQ, then
ReFeA 1 , i.e.,

r2"sup IReF^19)!^ < oo.
0<r< lJO

Proof. — From (3.3) we see that N(z,F) is uniformly bounded when
|z| ^ 1. From (2.1) we see that it is sufficient to prove that

( 0 0 N(ft) < oo.
J — 00

Let © be that harmonic measure of the outer circle in
{z:|z—K|<|r|/2}\E. Applying Lemma B with p = |t|/2, we see that for
some b > 0, we have

B(R/2) ^ (l-a(R,Ei))B(R),fc<R<|t|/2.

It follows from condition (K^) that for all sufficiently large |r|, we have

a ( R , E O ^ Y > 0 , 2 | r r < R ^ M / 2 .

Putting RQ = 21^1°, we obtain

B(Ro) ^ (1-7)^(2^) < (l-Y)^

where we can take 2p+l |r| f l w |r|,i.e., p % (1-a) log |r|/log2. Thus,if|r|
is large, we have

(4.2) PgOO < ^O'O ^ const 1^1"^

where c = (1 —fl)y/log 2.

Since N(z) is bounded when |z| > 1, it follows from the maximum
principle that

NOT) < Const. PeO'O ^ Const. I^P, |r| ^ 1 .

The Poisson integrals of N in {Rez>0} and {Rez<0} are majorants
of N(z) in the respective halfplanes. We conclude that

N(z) ^ Const. \z\~\ |z| ^ 1,

provided that 0 < c < 1 .
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Repeating the previous argument, we see that

N(fQ < Const. W-^it) ̂  Const. W-2^ \t\ ̂  1.

Continuing in this way, we obtain

N0*0 ^ Const. 11]-^, \t\ ̂  1 ,

where q is the integer determined by qc > 1 and ( ^ — l ) c < l . (If qc=\,
we can decrease c slightly so that qc < 1, (^+l)ol). Thus, we have
f00

N(i() A < oo, and Theorem 4 is proved.
J -00

As a second application of our ideas, we consider the class L log L.
We say that a closed set E in the complex plane satisfies condition (K^) if
there exist positive numbers 8 e (0,1) and q such that for all sufficiently
large |(|, we have

(4.3) cap(En{z:|z-ir|^R}) ^ 8R, \t\ (log |(|)-4 ^ R < |(|/2.

In the same way as in the proof of Theorem 4, we define for all
sufficiently large \t\

y = infa(R,Ei), W^W)^ < R ^ |t|/2.

THEOREM 5. - Let FeH^U) and assume that F(0) = 0 . If the set
E = {z:N(z;F)=0} satisfies condition (K^) with ^y>21og2 , then
Re F e L log L.

Proof. — Arguing in the same way as in the proof of Theorem 4 and
choosing Ro = 2\t\ (log |t|)~4, we have

B(Ro) < (l-yy^Ro) < (l-y)^

where we can take 2^0 » |(|, i.e., p w (g/log 2) log log |(|. Thus, for |(|
large,

PeO'O < (o00 ^ (1^ ^ e-^ » (logl^l)-^2 - (logltl)-^^),

where e > 0. Theorem 5 now follows from Theorem 3.

We now point out an immediate consequence of Theorem 3 and some
sharp estimates of Benedicks [3].
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THEOREM 6. — Let p > 1 be a real number and put

E = U [sign (m^m^-d^ sign (nOlm^-hdJ,
m^O

where {d^}00^, 0 < d^ < 1/2, fs a sequence of positive numbers such that

log ̂  % log dfc, k » m,

k, m-> oo and k, m-^ - oo. TjfFeH^U) and N(w,F) = 0 , w e E , a
sufficient condition for Re F e L log L is that

(4.4) E log (1/dJ log m/m2 < oo .

Remark. — It is clear that the set E can be chosen to be a very small
subset of the imaginary axis.

Proof. — At the end of the proof of Theorem 5 in [3], Benedicks gives
the estimate

PeO'O ^ Const.(logp4-(p-l)logw -+- log (l/dj+l)/m,
m19 ^ t ^ (m+iy^m = 1,2, . . . .

r°°This gives the convergence of PE(^) l°g Y d y / y provided that (4.4)
Ji

holds. The argument as t -> — oo is similar. Thus, Theorem 6 follows
from Theorem 3.

5. H -̂classes and harmonic measure.

To apply Theorem 1, we need a geometric criterion on the range of an
analytic function F to decide whether F e H^U). Our main tool is the
following observation which we state as

THEOREM 7. - Let F :U->F(U) be analytic with F(0) = 0, and
assume that C\F(U) has positive capacity. Let (OR be the harmonic measure
of the outer circle in that component Dp of {(z,F(z)): ze U,|F(z)|<R}
which contains (0,0) = 0. Then, for 0<p<oo, FeH^U) if and only if

r°°(5.1) RP~l^(0)dR< oo.
Jo
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Remark 1. — Here we understand the range of F to lie on a Riemann
surface 31, and (OR to be harmonic measure on 91. If F is univalent, it
is not necessary to use this terminology : (OR will be the harmonic measure
of the circle {w:|w|=R} in that component of F(U) n {w:|w|<R} which
contains the origin. The rest of Theorem 7 will remain unchanged.

Remark 2. — As a corollary, we obtain the following result ofHayman
and Weitsman [14]: Let (OR be the harmonic measure of the outer circle in
F(U)n{w: |w|<R}. Then FeH^U) if

r°°(5.1') R^ORWdR < oo.
Jo

This is immediate from Theorem 7 since we have (OR(O) ^ (0^(0).

Added in proof. -Conversely, if Fe^QJ), then (5.1') holds. An
argument proving this when F is the universal covering map of U onto
V, V such that C\V has positive capacity, is given in Section 6 of [8a].
The general case follows via subordination.

Remark 3. — Theorem 7 is equivalent to a result of Burkholder
(Theorem 2.2, p. 189 in [4]). In Section 6, we shall use Theorem 7 to discuss
another result of Burkholder (cf. [5], p. 115-116).

Proof of Theorem 7. — Assume that (5.1) holds. We define
Fp(z) = F(pz), 0 < p < 1. Let R > 0 be given and let hp = hp^ be
the harmonic function on U which is 1 on {^IFp^^^R} and 0 on
[e19: | Fp^19) | ̂  R}. Let ©p p be the harmonic measure of the outer circle in
that component Dpp of {(z,Fp(z)):zeU,|Fp(z)|<R} which contains
(0,0) = 0 .

We claim that for (z,Fp(z)) e Dp R , we have

(5.2) fcp(z)<(Op^(Fp(z)).

To prove this, we consider

E^={zeU: |Fp(z) |<R}.

If z e a E p ^ n U , we have |Fp(z)| = R and

o>p.R(FpOO) = 1 ̂ W.
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If z e a E p ^ n T , we have |Fp(z)| < R and

W=0<o)^(Fp(z)).

Hence (5.2) follows from the maximum principle. Since we have
DpR c= DR, we conclude that

VO)^ (0 (̂0) < 0)^(0).

We have assumed that the complement of F(U) has positive capacity
and thus F is in the Nevanlinna class (cf. R. Nevanlinna [16], p. 209). For
almost all R, we have

(2n)-lm{eiQ:\P(eiQ)\>R} = lim h,(0) ^ 0^(0).p-+i_

Since we have (5.1), it is now clear that FeIPQJ) because

||F||̂  = f00 (27c)-lm{^:|F(^)|>R} dR^ p f00 (^(0)R^-1 dR < oo .
Jo Jo

This concludes the first part of the proof.

Conversely, let us assume that F e H^U) for some p > 0. We shall
also assume that F is continuous on U u T. If this is not the case, we
argue as in the first part of the proof. Let NF be the nontangential
maximal function of F (let the opening angle of the associated Stolz
domain be 2n/3 (cf. Petersen [17], p. 8)). Let H = H^ be the harmonic
function on U which is 1 on {^NF^^R} and 0 on
{^NFO^KR}. If |F(zo)|=R, where ZQ = r^ = (1-8)^ with
8 €(0,1), we have

NF(^'9)^ R, |e-a|<8,

and it follows that

H(zo)^(27i)-1 | (l-^)(l+rg-2rocos((p-a))-1 d(p
Jl<P-a|<8

r5
^7i-1 8(82+^2)-1A= 1/4.

Jo

Let ER = {zeU:|F(z)|<R}. We claim that

(5.3) (OR(^FOO) < 4H(z), z e ER .
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Again, we use the maximum principle. If z e 8E^ n U, we have
|F(z) |=R and 4H(z) ^ 1. Thus, (5.3) holds in this case. If
z e a E p n T , we have either NF(z) ^ R and H(z) = 1 or
|F(z)| ^ NF(z) < R and consequently ®R(z,F(z)) = 0 ^ 4H(z). In both
cases, (5.3) is true. In a standard way, we conclude that

O)R(O) ^(2/7i)m{^:NF(^R},

f G)R(O) dV ^ (2/7i)||NF||^ ^ Const. W .
Jo w

In the last step, we used a result of Hardy and Littlewood (cf. Theorem
IV.40, p. 186 in Tsuji [21]). This concludes the proof of Theorem 7.

6. Examples.

All examples F^ discussed below satisfy condition (1.1 a), while F^
may or may not be in H^U). In case F^ € H^U), these examples may
be considered to yield variants of Zygmund's Theorem B, mentioned in the
Introduction, by means of an obvious subordination argument.

A simple first example is Fo(z) = 2z(l-z2)"1 which maps U onto
C\{\v=iv:\v\^l}. Consequently, (1.1 a) is true for F(). On the other
hand, Fo is not in H^U).

We proceed to construct a class of univalent functions F = F^ which
are such that F(U) avoids a neighborhood of the imaginary axis near
infinity. The function F will be or will not be in H^LJ) depending on the
size of this neighborhood. Let

D = D(<D) = {z^r^liei-T^I^OM.r^},

where the function <I> will be in one of the following two classes : We say
that <I>: [2,oo) -^ [0,7C/3] is in Qi if <I> is continuous, <I»(r) -^0, r -^ oo ,
and <D(2) = 0.

We say that 0: [2,oo)-+[0,7t/3] is in Q^ if OeQi and 0 is
r°°differentiable with <D' e L°° and with r^'(r)2 dr < oo .
j 2

Let F = F^ map U onto C\D in such a way that F(0) = 0. We
r00

also introduce J = J(0) = 0(r)dr/r.
J2
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PROPOSITION. — If^cQ^ an^ JW is finite, F will not be in H^U).
7f <DeQi and J(0) is infinite, with

f 0 0 } / Z f ^ A ^ d R^ .L {^r.J^^R-^5

r^n FeH^U).

To prove the Proposition, we consider the harmonic measure, (OR , of
the outer circle in F(U) n {z:|z|<R}. From Haliste ([9], formulas (2.1)
and (2.3)), we see that if OeQi and R is large enough, we have

/ f R \
®R(O) < (4/7t) exp (47C - 7t (7i - 2<D(t)) -1 dt/t I

< (Co/R) exp ( -2 f 0(0 dt/t\, Co = 8^.
\ n J 2 )

r00
Now, (6.1) implies 0)^(0)dR<co and thus FeH^U), by

Jo
Theorem 7.

From Theorem 2.1 in Haliste [9], we see that if 0 e Q2 and R is large
enough, we have

/ FR
(6.2) O)R(O) ^ Ci exp -7i (7c-2$(0)-1 dt/t

\ J2

-7i fR{r(D'(02/(7l-20(0)}A/3V
J2 /

where C^ = (l/9)exp(-87i(l+4||0'||^/3)).

It follows that if OeQa and J is finite, we have

/ f R \
(OR (0) % exp - (1 - 2<D(0/7c) -1 dt/t w exp (- 2J/7i)/R.

\ J2 /

r00
Thus, we see that ®R(O) dR = oo . Applying Theorem 7, we see that

J2
F^H^U), and we have proved the first part of the Proposition.

Let us in particular take <I>(r) = (logr)"", when r $ ? 3 . The
associated domain is essentially of the form

{z=x+^:|x|<M(log|^|)-^|^3}.
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When a > 1, the argument above applies and ¥^ is not in H^U). On
the other hand, (1.1 a) is clearly true.

When 0 < a < 1, (6.1) holds and consequently F^eH^U). It
follows from Theorem 1 that Re F<n e L log L.

If <D(r) = C(logr)-1, r ^ 3, we have 0)^(0) % R-1 (logR)-2^
when R is large and it follows that

(6.3) F^H^U), C ^ 7i/2, F^H^U), C > 7i/2.

This illustrates the second part of the Proposition. In particular, it follows
from Theorem 1 that Re F^ e L log L if C > n/2.

This last example is related to a problem considered by Burkholder
(cf.[5], p. 115-116). Let 85= {x-{-iy:x>l,\y\<Sx\ogx} and let Fg be a
univalent analytic function mapping U onto S§. Burkholder uses his
theorem on "generalized subordination" to prove that

(6.4) F^eH^U), 8 < 2/7i, F^H^U), 8 > 2/n.

Using our notation with D(<D) n {Rez>0} =85, we have

<D(r) = (8 log r) -1 + 0 (log log r/ (log r)2), r ̂  oo ,

and it follows from (6.3) that

FgeH^U), 8 < 2/7i, F^H^U), 8 ^ 2/7i.

Thus, we obtain Burkholder's result (6.4), as well as the boundary case
8=2/7i.

Remark. — Using estimates of harmonic measure in " strip domains ",
K. Haliste has in [10] given still another method to treat Burkholder's
problem, including the boundary case.

The following observation is due to Haliste. Let
Tg = {re19:^!,^^?"1 arctan (8p log r)} and let Gg be a univalent
analytic function mapping U onto T. Then

Gg e IP(U), 8 < 2/7i, G^ FP(U), 8 ^ 2/7t.

This result also follows in a simple way from our Theorem 7.

Let us now return to the more general regions D(<1>) considered earlier.
If a function F is such that

(6.5) F(U) c C - D(0)
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with J(^>) finite, then we cannot expect FeH^U). If however we
require (6.5) to hold with D(<I>) replaced by a somewhat larger set, we can
achieve FeH^U) and thus will be able to apply Theorem 1. Our last
example is of this type.

Let 0 be in Qi with J(0) finite and let Q be a collection of intervals
contained in (— oo, —2] u [2,oo) which is such that for all sufficiently large
R and for a constant c > 1, we have

dt/t ^ (cn/2) log log R, dt/t > (c7C/2) log log R.
JO(R) Jft(-R)

Here ft(R) = ft n [2,R] and ft(-R) = Q n [-R.-2].

Let ^o(R) be the one of the two sets 0(R) and 0(-R) which has
the smallest logarithmic length. Let F map U univalently onto the
infinite covering surface over C\(D(<D)uQ) in such a way that F(0) = 0.
From standard estimates of harmonic measure (cf. Tsuji [21], p. 116), we
see that

/ / rw r \ \
(OR(O) < <(()) ^ Const. exp - + (1 -20)(0/7c)-1 dt/t .

\ \ j 2 JWRW )

Thus, for R large, we have

0)^(0) ^ Const. R~ 1 (logR)-',

f0 0
and consequently ®R(O) dR < oo . From Theorem 7, we see that

J2

F e H^U). Applying Theorem 1, we conclude that Re F 6 L log L.

Finally, we observe that the function G(z) = nv/log^l+w) with
w = (1 -hz)/(l -z) is in H^U), but Re G i L log L. Thus by Theorem 1
the integral (1.1 a) diverges, and in fact N(l,n?) > (clog2!;)"1 is easy to
see, for large v .

7. Extensions of Theorem 2.

Theorem 2 can be extended to meromorphic functions /, provided the
subharmonic function <I> is not very large at infinity. We put
M(r,$) = sup0(r^19). We have
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THEOREM 8. — Suppose f is meromorphic in {z:|z|<R}, where
0 < R ^ oo, and that f does not have a pole at the origin. Let $ be
subharmonic in C, with $(/(0)) finite, and suppose that for some T e (0,1)

(7.1) <D(w) ^ 0(|wr), w - ^ o o .

Then, for each r such that f does not have a pole on the circle {z:|z|=r},
we have

(7.2) 1 f^CA^'9))^ = f (N(r,w)-N(r,oo))^(w) + <S>(f(0)),
27C Jo Jc

where p. is the Riesz measure of <I> and 0 < r < R.

Here the main case of interest is that of <I> small at oo, in the sense
that (7.1) holds for all T > 0; in this case (7.2) is finite for every r < R.
(Compare the <D in (2.7)-(2.9).)

Proof. — Our assumption (7.1) implies that the following
representation for 0 holds on the entire plane (cf. Hayman and
Kennedy [12], pp. 141, 146):

(7.3) 0(z) = f log|z-w|<4i(w)
J{H<1}

+ \og\zw~l—l\d[Ji(w)-^c,
J{H^1}

where c is a real constant, and dn(w)/|w| < oo . Put z =f(reiQ) in
JM^I

(7.3) and integrate d6, as in the proof of Theorem 2, using Jensen's
theorem on f — w or w~ 1 /— 1 according as |w| < 1 or |w| ^ 1. Using
(7.3) again, with z =/(0), to evaluate c, we obtain (7.2).

We can also extend our results to functions mapping the polydisk or
ball of C" to C. Let U" be the unit polydisk in C:

U n = { z 6 C n : | z , | < l J = l , . . . , n } .

U" has distinguished boundary

Tn={zeCn : |zJ=.. .=|zJ=l} .

For an n-tuple (p = ((pi , . . . ,(?„), (p, e [0,27t], we define a function /y on
the unit disc by

^(0=/(^<PS...,^<pn).



148 M. ESSfiN, D. F. SHEA AND C. S. STANTON

We define a counting function for w e C by

N/(r9w) = W L ̂ '̂  d(pl • • • ̂  •

Here N(r,w;/y) is the usual one-dimensional counting function for the
function /„. Jensen's formula is ([18], p. 326):

N/(r,w) =^— j^og|/(r^i,...,r^) - w\d^ . . . d^

-log|/(0)-w|.

Now consider the unit ball B" in C":

B» = {zeCrZlz,!^!}.

The boundary of B" is the unit sphere S2""1. For z e S2""1 we define a
function /, on the unit disc by /,(Q =/(^z). For the ball, the counting
function is

N^(r,w)- f N(r,w;/,)da(z).
^n JS2"-1

Here the volume element da is Lebesgue measure on S2""1 and €„ is

the volume of S2"-1, i.e. €„ = 2Kn '
( n — 1 ) !

In this setting, Jensen's formula is ([20], p. 404):

N/ (r,w) = — log |/(rz) - w| da(z) - log |/(0) - w\.
^n JS2"-1

Using these versions of Jensen's formula as in the proof of Theorem 2,
we get

THEOREM 9. — Suppose <D i5 subharmonic in the complex plane with
Riesz measure ^. If f is holomorphic in the unit polydisk IT, then

(—f ^ W^,..., re1^) d(pi ... d^ = [ N(r,w) ̂ (w) + <^(f(0)).

If f is holomorphic in the unit ball B", then

— 0(/(rz)) da(z) = | N(r,w)dn(w) + 0(/(0)).
^n Js2"-1 Jc
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