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INEQUALITIES OF BERNSTEIN-JACKSON-TYPE
AND THE DEGREE OF COMPACTNESS
OF OPERATORS IN BANACH SPACES

By Bernd CARL
0. INTRODUCTION

Since the classical investigations of B. Riemann and D. Jackson
one has been interested to know how certain properties like continuity,
differentiability or integrability of 1-periodic functions influence the
behaviour of Fourier coefficients and the “‘degree of approximation”
by trigonometrical polynomials. Because every such function f
corresponds to a convolution operator

@ —y@=[' r6—1x@ ar

in an appropriate function space whose approximation numbers
may be estimated by the approximation (Bernstein) numbers of
the function and whose eigenvalues coincide with the Fourier
coefficients we have a special situation of a more general problem.
Namely, we want to know how the ‘‘approximation” and the
distribution of eigenvalues of an integral operator depends on the
properties of its kernel. Much more generally the question arises
whether there are characteristics for operators in Banach spaces
implying a good approximation as well as a good behaviour of
its eigenvalues. Obviously, the smoother the kernel the better the
properties of an operator. This automatically leads to the problem
of finding certain characteristics for the ‘degree of compactness”
of an operator which guarantee a good approximation of the
operator as well as a good behaviour of its eigenvalues. The entropy
moduli (resp. entropy numbers) have turned out to be very
natural characteristics simultaneously quantifying the “degree

Key-words : Entropy numbers — n-widths



80 B. CARL

of compactness’” of operators as well as the behaviour of its
eigenvalues.

The starting point of the paper are finite dimensional covering
problems and the degree of compactness of I, and [_ -factorizable
operators. The main part of this paper is devoted to new relationships
between entropy moduli (resp. entropy numbers) and Kolmogorov
(resp. Gelfand and approximation) numbers for operators which
may be interpreted as counterparts to the classical Bernstein-Jackson
inequalities for functions. Via convolution operators we notice
that these analogies are not only formal. Within the class of Banach
spaces of type we establish new interesting statements on the
equivalence between Kolmogorov, Gelfand, entropy and approxi-
mation numbers. We also discuss a quantification of results in
the Riesz-Schauder-Theory in terms of entropy moduli and
Gelfand numbers. Finally, we determine the largest distance
between the ‘‘degree of approximation” and the ‘degree of
compactness’” of integral operators in C[0,1] generated by
smooth kernels. For illustrating the quantification of the Riesz-
Schauder-Theory we treat some eigenvalue and compactness
problems of nuclear operators and operators of Hille-Tamarkin-
type.

Throughout this paper we use standard definitions and
notations of Banach space theory. For the convenience of the
reader we here collect some of them. In the following E, F, and G
always denote (real or complex) Banach spaces. Given
any Banach space E, we denote the closed unit ball by Ug,
the dual Banach space by E'. If x €E and « €E', then
(x,a) is the value of the functional g at the element x.
Moreover, £ (E,F) denotes the Banach space of all (bounded
linear) operators S from E into F equipped with the usual
norm. R denotes the real line and C the complex plane. We recall
the definitions of some s-numbers. For every operator S € £(E,F)
the n™ Kolmogorov number d,(S), n = 1,2,..., is defined by

d,(S): = inf sup inf ||Sx —y||
NCF x€Ug y€eN

inf inf {6 >0:8(Ug) C 8 Uy + N},
NCF
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where N is an arbitrary subspace of F with dim N <n. Clearly,
d,(8) is the infimum over all (n — 1)-dimensional subspaces
N CF of inclination of the image S (Ug) of the unit ball Ug
from N. It expresses how “nicely” the image S (Ug) can be
approximated by (n — 1)-dimensional subspaces of F. Using
the canonical map Qf, from F onto F/N the Kolmogorov
numbers may be described as

d,(S) = inf {||QESI: N CF,dimN <n}.

The dual concept to the Kolmogorov numbers has been suggested
by Gelfand. The n™ Gelfand number of an operator S€ 2(E,F)
is defined by

¢, (S): = inf {ISJE|: M CE, codim M < n},

where J,‘f;1 denotes the natural embedding from M into E.
Obviously, we have c,(S) =d,(S'), where S’ is the dual operator
of S. The concept corresponding to the well-known e-entropy
are the so-called entropy numbers introduced by B. Mitjagin and
A. Pefczynski [22]. For SE€ £(E,F) the »n™ entropy number
€,(8), n=1,2,..., is defined to be the infimum of all ¢ >0
such that there are y,,...,y, €F for which

SUp) S0 0, +eUp).

The analytic expression of this characteristic is

€, (S) = inf sup inf NISx —y,l;
1., yn}CF x€UE 1<i<n

€, (S) means the best approximation of S (Ug) by sets consisting
of n elements. In the framework of operator ideals in Banach
spaces it frequently will be helpful to switch over from ¢, to
the dyadic entropy numbers e,(S): =€2"_1(S). For algebraic
properties of the above characteristics we refer to ([23] (11),
(12)). Finally, characteristics closely related to entropy numbers
describing not only the ‘“degree of compactness” but also the
behaviour of eigenvalues of operators very well are the so-called
entropy moduli. The n™ entropy modulus g,(S), n =1,2,...,
of an operator S € £ (E,F) is defined by
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g,(8):= inf ke (S).
k=1,2,...

Roughly speaking, the entropy moduli may be interpreted as the
n®™ root of the volume of an optimal covering of S (Ug) by
balls y, + € Uy considered in n-dimensional real Banach spaces.
The reason for considering this characteristic is the following
relationships between eigenvalues and entropy moduli for compact

operators S € £(E,E) acting in complex Banach spaces [1],
[51,[19]:

(IIIM,(S)|)1/"<82,,(S), n=1,2,...,

and

(Illlxi(S)l)‘/" = lim g (S¥), n=1,2,....

k—>oo

Here the eigenvalues are ordered in non-increasing absolute values
and counted according to their algebraic multiplicities. We mention
some algebraic properties of the entropy moduli.

ISl =¢g,(8)=>g,(8=...20 for SE€E g(E,E),

£,(TS) <g,(M) g,(S) for SE £ (E,F), TE £(F,G), g, (8)=0
if S€ £(E,F) with rank (S)<»n and if E and F are real
Banach spaces (g,,_,(S)=0 if E and F are complex Banach
spaces), g,(I,) =1, where I, is the identity operator on an
n-dimensional Banach space.

Finally, we introduce special Banach spaces. We say that a
Banach space E is of (Rademacher) type p, 1<p<2, if
there is a constant 7> 0 such that for every finite sequence
{xy,...,x,} CTE we have

1 n n 1/p
Ls o xhar <o (S 1xp)",
1 1

where (r) denotes the sequence of Rademacher functions on
the interval [0,1], i.e. r,(t) = sign (sin 2/ 7¢). The Rademacher
type p constant ‘rp(E) is the smallest constant 7 satisfying the
above condition. For a Banach space we have the following characte-
rization of type p [12], [21]:
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For all independent E-valued random variables z,,...,z

no
n=1,2,..., with finite p*® moment the inequality

n

EIlY ¢, —Ez)l< 4TP(E)( z E||z,||P) e
=1 i=1

holds, where E is the mathematical expectation. For detailed
information on the type of Banach spaces we refer to B. Maurey
and G. Pisier [21] and to J. Hoffman-Jgrgensen [12]. Given
0<p, u<eo and a measure space (2,2 ,u), the Lorentz
space L, ,: =L, ,(Q,Z,u) (with L,: =Lp,p) is the set of
all ¥ — measurable (real or complex) valued functions f such
that

1= (L rrer e ar )™ <)

Here f* denotes the (equimeasurable) rearrangement of S (cf. [13]).
For @ ={1,2,...} (set of natural numbers) and p = counting
measure we get the Lorentz sequence space I, , (with I,:=1 p'p)
which may be re (quasi). normed by

1l = (S " )

n=1

By 17 we denote the vector space of n-tuples equipped with || - Il,
and by I, we mean the identity operator between l: spaces. We
mention that the L, spaces, 1 <p <o, are of type min (p ;2).

1 1
The conjugate index to p, 1 < p < oo, is defined by —~:=1—-——
D

p

There are several constants which enter into the estimates
below. These constants are mostly denoted by the letters p 2Py -
We did not carefully distinguish between the different constants,
neither did we try to get good estimates for them. The same letter
will be used to denote different constants in different parts of
the paper. Let (@,) and (b,) be non-negative sequences. We
write a, Sbn if there exists a constant p >0 such that
a,<pb, for n=1,2,.... The symbol a4, X b, means
4, $b, and b,<a,.
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1. COVERING PROBLEMS AND THE DEGREE
OF COMPACTNESS OF OPERATORS

The starting point of this paper are n-dimensional covering
problems described by entropy numbers. Our interest is in getting
good estimates for the radius of a given number of m-dimensional
balls covering an n-dimensional set. It turns out that it is possible
to obtain quite sharp general estimates which in many interesting
_examples give the best possible results. Especially, we get new
estimates of entropy numbers of arbitrary operators from l;,"
into I™. It is not surprising therefore that sharp estimates on
entropy have also various applications. In particular, we are in
a position to characterize in terms of entropy numbers the degree
of compactness of operators of the form DT where D: /_ —— [
is a diagonal and T an arbitrary operator from a Hilbert space
into 1.

Basic estimates.

We start our considerations with an improved version of a
result going back to B. Maurey (cf. G. Pisier [25]).

LeMmMAe 1. —Let n=1,2,... and SELW} ,E). If E
is a Banach space of type p, then in the real case

e(2n +k—1) S)<4 Tp (E) k=P s
K

for k=1,2,..., and in the complex case

€nsx—ry () <AVT 7, (B) k11 |5 |
: k

for k=1,2,...

Proof. — First we assume that [7:=1I7(R) is a real vector
space. Putting M, : = {* Se,: i = 1,..., n} we have

S(UI,,) =convM,,
1
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where e,,..., e, denotes the canonical basis of IT.  For every
y€S (Uz") there is an E-valued random variable z on a suitable

probabilitly space (2,u) with values in M, such that Ez =y,
Now we take k independent E-valued random variables z

1o 2y
on (QF,u¥) with values in M, such that Ez, =y, i=1,... k.
Since E is of type p from lz,I<USW, i=1,...,k, we
infer that '
K k
E Zzi—*ky =E Z (z,—Ezp)
=1 =1
& 1/p
<47, ® (2 ElzlP)
i=1
<4TP(E)k‘/” I1S]|.
Therefore
1 k
E k—}: 7=y |[<4 71, E)k~1+Vp 5],
i=1

Now thereare y,,...,y, €M, so that

k

2‘ Yi—y

1
k 1=

<471, (B)k~1+Up 5.

k

1 ©
Because card z v 2 Yiiv,EM,
1=1

< (2n +kk—l)

we obtain

€ anik-ry (8) <41, (E) ¥V | 5|
k

for k =1,2,....

Finally, let 7;:= 7 (C) be complex. There is an isomorphism
J:11(C) — 2" (R) such that ||J| 1371 <.7Z.
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Thus
€ (anti—1y (S) <171 Cank1) (S1-1)
<4r,(E) KT1HUP | T | STy
<421, (B)k~+ve 8|
for k=1,2,....

[w}

The next statement is a consequence of a basic inequality in the
theory of stochastic processes obtained by Sudakov (cf. [6]).

LEMMA 2. — Let n=1,2,..., and Se gE, ). If
E' is a Banach space of type p, then

(log ©)? ey y (S)<p () 7, (E')(Z Is’ e,up>"”
1

for k=1,2,..., where
1+p Yp
I ( ) )
47 T (real case)
F _
2
p(p)< ‘
1 +p)\ U
o )
4y/m 2P | ——— (complex case)

e 0)

Proof. — The result of Sudakov already announced states

that for a Gaussian process 6,,...,0,,, the inequality
(log m)Y/? inf (E l0,—0j|2)”2 < /27E sup 16,1
1<i#j<m 1<i<m

holds. Let S€ £(E,5 (R)) and fix k. Then we may choose
elements a,,...,q, € Uy such that

€x+1(8) < inf  [Ss,— Sqll.

i<i1#j<k
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Furthermore, let u be the Gaussian measure on the real line with
the characteristic function exp (—n2?) and let u" denote the
n-fold product of u and consider the Gaussian random variables
0,(x): =< ,Sap), i=1,2,...,k, on (R*,u™). Observe that
the coordinate functionals (x e, where e, i=1,...,n,
is the canonical basis in /2, are independent random variables
on the probability space (R”,u”) with the characteristic function
exp (— n?). By [23, p. 28] we have

E10,— 0, = [, 14,52,— Sap) P d w" (x) = 2| Sa, — Say I
Since the Rademacher functions attain only the values + 1 and

—1 it follows from the symmetry of the random variables
(x,e)),i=1,...,n, that for every t € [0,1]

n

n
2 x eS¢, and X ri(¢) {x,e;) S'e,
1 1

possess the same distribution. Consequently,

Sonll 2ix e S el ()
1

n
= [0 1@ e S e lld w o).
1
Thus

fR"” Z (x ’el> S,e[ ld u* (x)
1
— 1 'L [] n
= /; fo I %r,(t)(x,e,)Se,lldtdu (x)
’ s’L p ' p Up n
ST (E) Jon (L 1, 1P (1S ¢l d u* (x)
1

<7, ®) (T fon 1x,ep 1P a G IS e 1P )"
1

< T (E') (./l;" I(x,el)|P d u" (x))llp ( i I s’ e;llp )l/p .
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Notice that (cf. [23] p. 289)
1 +p p

1/p F( 2 )

(‘/;,, [<x,e, 1P d u (x)) =po(p)=2 VIS

r (5)

Putting all together we obtain the desired assertion

(08 1) 6., (5) S 20/ 9y () 7, B)( 3 IS el”)”
1

in the real case. The complex case may be treated similarly.

Remark. — From a deep comparison theorem for p-stable
and Gaussian processes of M. Marcus and G. Pisier [20] one may
derive the following statement cf. [16]. Let n=1,2,..., and
S€ @£(E,2). If E' is a Banach space of type ¢ and 1<qg<p<2,
then

n
i1 ) <P (0,0 7, € Gog k117 (X s ¢,19) ™

for k=1,2,....

Operators in 2 (I ,E).

In the sequel we establish sharp estimates for entropy numbers
of operators from Il into Banach spaces of type p.

PrROPOSITION 1. — Let 75 = 1,2,... and Se LI ,E). If
E is a Banach space of type p, then

& S)<p 1, (E)f(k,n,p) S|
for k=1,2,..., where

n 1-1/p

log<;+l) 1
f(k’n,p)zz—-max(k/n;l)min 1;|max %k___;_
n

and p < 2% 401~ 1P < 448 .
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Proof. — From Lemma 1 we obtain

€ anao () <47, (EYK WS for k=1,2,...,n
k

k
in the real case. Passing from k& to ” we get for
20 log (?+ 1)

the dyadic entropy numbers

1-1/p
log (—Z— + 1) ‘
e (S) <4201 r (E)\— [Ny

k

for log(n + 1) <k <n. Obviously, ¢, (S) <[ S| for
1 <k<log(n + 1). Furthermore,if k=2 n + 1, then

e, (S) < e, (S) ey, (I,: 1" —> 1)< 4 - 2=C=min ¢ (S)
<827k ¢ (S)

(cf. [23(12)]). Choosing, for each k and n, the best estimate
we obtain the desired assertion with p, <32 - 201~1P  in the
real case. Finally, let /7 = 17 (C) be complex. There is an
isomorphism J: [/7(C) —> I3"(R) such that ||J|| |71 < /2.
Thus

e, (S:IMEC)— E)<||J|le, (SI"':1?2"(R) — E)
S p 1IN f(k,2n,p) IISITH
< po 212 21V £ (k,n,p) IS
in the complex case, which yields the desired estimate.
a

Now we turn to the well-known type p constant of L,
spaces.

LemMa 3. — Let L,: = L, (R,Z,u), 1 <p <co. Then
Tmin(p;2) Lp) <K, <V/P,

where K, denotes the constant in Khintchin's inequality.
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Proof. - 1f x,,...,x,€ Lp (,Z,u), Then by Khintchin’s
inequality (cf. [23] (E.5)) we get

f ar)e < .

<f o [T roxe

n

)3 r,(t) x,||? dt
1

n
X x,
1

P du(w)dt

n

< js“z ./(‘)l Z r (1) x; (w)

1

Pdtdu(w)

n

<k [ (:; 1%, () 12)P/2 d p (2).
From
“ p/2 “
o (@) du@ < Sixle for 1<p<2
1 1
and

A (anx,(w)l’)mdu(wK(ﬁux,nf,)"“ for 2<p<oo
1 1

we obtain the desired estimate

! S < . 1/min(p;2)
j(; Z r,(l‘) xl dt < KP(Z ”xi”;nin(p,2)) m ’
1 1
1 forl<p<2
where Kp = r 1 -;-p) 1/p
21 _———i——— for2 <p <eo
I" i
)

cf. Haagerup [10]. Hence
'Tmin(p;z)(Lp)<Kp <Vp forl1 <p < oo,

[w}
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Combining Proposition 1 and Lemma 3 we establish the
following statement, of which use will be made in later arguments.

ProrosITION 2. —Let n=1,2,..., and S Gﬁ?(ll, L),
1 <p <o, Then

e, S)<p/pflk,n,min(@;2)|ISIl for k=1,2,...,
where f is the function in Proposition 1.

In order to show that the estimate in Proposition 2 is the best

possible we need a result due to C. Schiitt [29].

LEMMA 4. — Let 1 <q <p<o agnd n=1,2,.... Then
there are absolute constants p,, p, > 0 such that

pog(k>n,q,P)<ek(Inle - l:)gplg(kan’q’p)
for k=1,2,..., where

1/q—1/p
log‘(-z-+1) 1
g(k,n,q,p)=2""=¢ M min\l;\max \———— ;~
n
SUPPLEMENT 1. —Let 1 <p <o and n=1,2,.... Then

there are operators ‘A, € £(I7, l") such that

pof (k,n,min (p;2)) < ek(A ) <p,/p flk,n,min (p;2))
for k=1,2,..., where f is the function in Proposition 1.

Proof —In the case 1 <p <2 the assertion. follows from
Lemma 4. For 2 < p < oo we take the Walsh-matrices

A

gl = n—1/2 (eZ"“d/n)k,.‘l

=1,...,n"

Obviously, A*A, =1, and therefore [|A,:17 — I =1.
Applying Lemma 4 we get :

pof(k,n,2) e (I, : 17 — 1) <e (A* A, : 1" — [7)
SNAF: I — 131l ey (A, I} — I7)

n'2UP g (A, 1T — 17).
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Thus
po NPTV £k n,2) < e (A,: 1" —> )

for k,n=1,2, ... . On the other hand we obtain from
Proposition 2

e, (A, : 1T — l;)<p\/})—f(k,n,2) A, : 1T — 17|l
< p\/P Y12 £k n,2)
for k,n=1,2,... . This completes the proof.

[n]

The previous results will be used to get also quite sharp
estimates of the entropy of operators from /% into /7 .

ProrosITION 3. — Let n,m=1,2,..., and S€E £3I%,I7).
Then e, S)Y<ph(k,n,m)IIS| for k=1,2,..., where

h(k,n,m)=2"m=k/nkm1) min (l ; max (1 ;logl/? (% + 1))) *

12

n

. log(;+1) )

* min\l;\max \ — ; —
k n

Proof. — By Proposition 2 and Lemma 4 we check, for
2 <p <o, the estimate

ey (S:17 — I7)

ex (L I} —> 1) e, (S: 17 —> I7)

poV/D & (k,m,p,) f(k,n,2)IS:17 — I
<poVrek,m,p, ) m'P f(k,n,2)|IS: 17 — IZ]|.

n N

m
Putting p = 2 max( 1;log (—k—°+ 1)) we see that

g(k,m ,p,OO) ml/p <pl 2—mu(k/m ;1) .
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Thus

e (S) < P, 2—2max(k/n i kjm ;1) oy (1 ;log (—2—1 + 1)) %

n

‘ log (;‘i' l)

#min \ 1 ;\ max\——M— ;— IISI.
k n

1/2

Finally, passing from 2k to k in the preceding" estimate and
comparing this with

ey 9 <8- o—max(k/n ;kfm ;1) IS

we get the desired assertion by choosing, for each k£, n and m,
the best estimate.

Operatorsin £ (E,I7).

In the “dual” situation S € @2(E,I”) where E' is a Banach
space of type p we may only give in general upper estimates of
entropy numbers by combining Lemma 2 and Lemma 4. However
for operators from [ into /T we get quite sharp estimates of
entropy numbers. For this purpose we need a striking and deep
Embedding-Theorem recently proved by Johnson and Schechtman
[14] (cf. also Pisier [26]) in the case 1 <p <2 and which in
the case p = 2 already goes back to Figiel, Lindenstrauss and
Milman [7] (cf. also Kashin [15] and Szarek [30]).

Lemma 5  (Embedding-Theorem). — Let 1<p<2. For
each € >0, there is a constant c¢ (p,e) >0 such that 1'1"

contains, for each m, a subspace (1 + €)-isomorphic to
l’p‘ with k=c¢ (p,e)m.

ProrosiTION 4. — Let n,m =1,2,..., and S€L(I;,I7),
1 <p<2. Then
e S)<p@ h(k,n,m)lSI
for k=1,2,..., where h (k,n,m) is the function of Proposition 3.
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Proof. — By Lemma 5 there is a constant c () >0 such
that, for each »n, there exists an #n-dimensional subspace
E, Cl"e®)  and an isomorphism A: I, — E, such that
lAll IIA™! || < 2. Consider the diagram

1
A E, A I
J
2
1 c(p)

Since I7 has the extension property by the Hahn-Banach-Theorem
there is an extension T: W@l — m  of SA—1 guch that
Tl =1ISA™].

Applying Proposition 3 we check
e, (8) < e, (SA™' A)<||Alle, (SA™1)

Iy

STAN e (TH <Al 1Tl e, (T)

<po h(k, L%] ;m) IAIITI

n
< pg hlk, |—| , Al |A™? S
poh(k [Zs| sm)nannat s
S<p@hk,n,m)|S|
which yields the desired assertion.

[m]

In particular, for n =m, we have the following statement
ProrosITION 5. —Let n=1,2,..., and SE€ B(I; i),
1<p <2 Then
e, (S)<p @) h (k,n) S|

for k=1,2,..., where
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log (%+1) )
h(k,n) = 27 ™=En;) mip\ | - max T ;71—177 )

By taking Walsh-matrices one may show similarly as in the

proof to Supplement 1 that the previous estimate is almost
optimal.

SUPPLEMENT 2. — For n = 1,2, ..., thereexist A, € £(I1,I7),
1<p<2, such that

po h(k,n) <ek(An)<pl(p)h (k,n)
n
max (1 ; log!/2 (;+ 1))

for k=1,2,....

Finally, the previous results may be applied for characterizing

the degree of compactness of operators from a Hilbert space H
into 17 .

PROPOSITION 6. — Let n=1,2,..., and SE€ £ H,I"). Then
e (S)Y<ph(k,n) S|
for k=1,2,..., where h (k,n) is the function in Proposition 5.

Proof. — For given S € £(H,I") we consider the factorization

H

S m

H/ker (S)
where Q is the quotient map to the quotient space H/ker (S).
Obviously, H/ker (S) is again a Hilbert space with the dimension less
than or equal to n and [|S| =S,|l. Moreover, there exists an

isomorphism  A: H/ker (S)—> 17}, m: = dim (H/ker (S)) <n,
such that ||A|l ||A™Y| = 1.
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By Proposition 5 we have
e, (8) < ¢, (S, A1 AQ) < [[AQI| ¢, (S A™1)
Shk,n) IAIIS, A~
<h(k,n)|ISI.

Degree of compactness of operators.

The preceding results may be applied to determine the degree
of compactness of several operators. We give some important sharp
results on the entropy of factorizable operators through I/, and
I, . The first statement has already been treated in [2]. It is a
consequence of Lemma 1 and of the technique to the proof of
Theorem 1 in [2].

THEOREM 1. —Let F be a Banach space of type q and
let S€ £(,,F) admit a factorization through 1,

S
I, F
N /
L
where D (): = (8;8), ©)€l,, and TELU,F). If
1 1
1<u<oo, 0<t<oo, r<u', and —=—+1——l, then
s r u q

,SNEL,,.

The ‘“‘dual” situation to Theorem 1 has been considered by T.
Kiihn [16].

THEOREM 2. — Let E be a Banach space such that E' is of type
pandlet S € £ (E,l)) admit a factorization through 1,
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with a  diagonal operator D (§):=(5,§), (8)€l, ,, and
TeR(E,l,) If 1<v<oeo, 0<t<o r<min (p,v) and
1 1 1

1
—=—+1l————, th SHEL ..
P > v en (e, (S) €I,

However, in the above statement there is the condition
r<min (p, v), we do not know whether in general it can be replaced
by the weaker condition r <v. In the special case of Hilbert spaces H
we may give an answer in the affirmative. Indeed, by Proposition 6
and with the technique to the proof of Theorem 1 in [2] we may
establish the following statement.

THEOREM 3. — Let H be a Hilbert space and let SE £ (H, 1)
admit a factorization through [, ,

;Iv
T
lca
with a diagonal operator D (&): = (8,¢), (8,)€I,,,, and
1 1 1 1
TeELMH,I). If 1<v<oo, 0<t< oo, r<v, and —=—+—-—-—,

s r 2 w
then (e, (S) €1 ,.

Remark. — The conclusions in the preceding theorems cannot
be improved. Indeed, under the conditions of the preceding
theorems, for ¢, < ¢, there exist operators such that (e, (S)) € ls,,o
(cf. [2]).

2. INEQUALITIES OF BERNSTEIN-JACKSON-TYPE

In this section we shall establish new inequalities between
entropy moduli and Kolmogorov (resp. Gelfand) numbers for
operators which may be interpreted as counterparts to the classical
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Bernstein and Jackson inequalities for functions. It turns out that
the corresponding analogies are not only formal.

The main part is devoted to inequalities of Jackson-type. As
a consequence of the inequalities of Bernstein and Jackson-type
we obtain interesting statements on the equivalence of Kolmogorov,
Gelfand, entropy numbers as well as entropy moduli. In particular,
we show for operators S € £(E,F), where the Banach spaces
E and F'are of type 2, the equivalence

¢, (S) X n=® iff d, (S) X n™ iff e,(S)x n~iff g, ()X n™¢
for 0<a<oo,

Inequalities of Bernstein-type.

The following inequality of Bernstein-type between dyadic
entropy numbers and Kolmogorov (resp. Gelfand) numbers has
already been proved in [1].

THEOREM 4. —Let s€ {c,d} and 0<a<oo. Then for
all Banach spaces E and F and all S € £ (E, F) the inequality

sup k*e . (S)<p(a) sup Kk*s5.(S),n=12,...,
1S k<n 1€k<n

is valid.

Inequalities of Jackson-type.

Before stating the inequalities of Jackson-type let us prove
two lemmas. The first one may be found implicitly in [24].

LEMMA 6. — Let SELE,F) and €>0. Then the
following assertions are valid :

(i) There exist x,,x,;...€E and b,,b,,...€F such
that  lix;l<1, b ll<1, (Sx;,b,>=0 for i<k, and
(1 +€)I(Sx,,b,) 124, (S), k=1,2,....

(i) There exist x,,x,,...€B and b,,b,,...€F such
that Nx,I<1, Ib <1, (Sx;,b,>)=0 for i>k, and
(1 +€)1(Sx,,b, ) 1=¢,(S), k=1,2,... .
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Proof. —We show (i) by induction, the second assertion
may be treated similarly. Suppose that x, and b, for i<n
and k <n have already been found with Ix,I<1, b <1,
(Sx;,0,)=0 for i<k, and (1+e)| (Sx,,b,) = d, (S),
k=1,2,...,n—1.

Then we put N:=gspan {Sx;:i<n}. Since dim N<n, we
may find x, € E such that ||x, || <1 and

(1+e)11Qy Sx, I=11 Q% Sl =4, (S).
Moreover, there is by € (F/N)" with |52 <1 and
I{Qg Sx,,,b3>| = 1QF Sx, Il.
If b,:=(QR) b, then
(I +€){Sx,,b,)>|=>d,(S) and (Sx;,b,>=0 for i<n.

[m]

In order to formulate the next lemma we need the following
quantity. If S &€ £(E,F), then Y. (S), n=1,2,..., is
defined by '

Y,(8):=sup (g, (BSX): [|X:I1f? — E|<1, ||IB:F — 7| <1}.

LemMMA 7. —Let s€ {c,d} and SER(E,F). If E and F
are real Banach spaces, then

(s, (W <nwy, (S), n=1,2,....
1

If E and F are complex Banach spaces, then
n
s, SN <ny,, (S, n=1,2,....
1

Proof. — We show the assertion for s = d, the statement for
s =c¢ may be treated similarly. Let E and F be real Banach
spaces and 6 > 0. By Lemma 6 there exist X,,%Xy,...€E and
b,,b,,...€F such that |x,| <1, ol <1, (Sx,,b,)=0
for i<k, and (1+8)1(Sx,,b,) |=>d,(S). Hence the matrix
({Sx,, b, )) has superdiagonal form. Setting
n

n
X,:= 2 ¢®x, and B,: =2 b ® e
1 1
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where e, denotes the canonical basis of the n-dimensional real
vector space R", we get operators X, € £(%,E) and B, € g2 (F,in)

with  IX, 1= sup llx,I<1 and |IB,|l= sup bl <1.
I<i<n 1<i<n

Obviously, the operator I, B,SX, € £37,17) where LeRUl 1)
denotes the identity operator is generated by the triangle matrix
«Sx,, b, 0, 1<i, k<n. Consequently,

n

Td, () < (1 +8) I [{Sx,,b,) < (1 +8)|det(l,B,SX,)].
1

1
Furthermore, let u be the Lebesgue measure on 17 . Then

k
L,B,SX,(U,) €, + U,
1 1 1
implies
k
M (In Bn an (Uln N < Z M (yl + GUI") Skeu (Uln)'
1 1 1 1

On the other hand we have
u (I, B, SX, (U"f)) = |det (I, B, SX,) | u (U"x‘)'
Combining the preceding two relations we may conclude that
Idet (I,B,SX,)| <ke".
This yields
(I:i d, (SHY" < (1 + §) g, (1, B, SX))
<A +8)IL,1g,®B,SX,)
<(+8)ng,(,SX,)
with |X,: ;] — E|I<1 and |B,:F — | <1.
Hence
(L d, (8™ < (1 + 8) ny, (S

Finally, 6 — 0 completes the proof in the real case. The
complex counterpart of this inequality may be treated similarly.
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We now are able to prove the basic inequality of Jackson-
type.

THEOREM 5. —Let s€ {c,d} and S€ L(E,F). If E is
a Banach space of type p and F' a Banach space of type q,
then in the real case the inequality

(I s, (SH* < p 1, (B) 7, (Fyn~1*Up*1Ua g (S), n=1,2,...,
1

r (LE)\*

2
is valid, where p <768 ¢*\/m| ——— < 10* and in the

r ;)

(01 s, (SN < p 1, (B) 7, (F') ™1+ 0¥ 0a g (8), m= 11,2,

complex case the inequality

1/
59"

is valid, where p < 3 840 e?/2w| 2 — 1
r (3)

< 10¢.

Proof. — We turn to the real case. Lemma 1 implies

In
g, (X: 1" — E)<(3: )l € X:m — E)<3ee(3n)(X)

n n
< 12e 7, (E) n it X 1 — E|l.
By Lemma 2 we obtain

g,(B:F — )< @nthine . (B:F — %)

2n+
<4p(q)7, (F)na=12 |B:F — I,

where p (g) denotes the constant in Lemma 2.

On the other hand by C. Schiitt ([29] proof to Theorem 1) we
have

€enery (hil] — 1) <k
n
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Thus
2 1/i
g, 17— )< 27 (*)) €anamy (3 17— I2)
n
<d4en?'.

Therefore

g (L1 15 — 15) <g,(A,: 17 — ") ||L,: 15 — 1"

< 4en 17,

Hence

g,(B:F — 1) <g, (1,:11 — I")g, (B:F —> I7)
< 16ep (q) 7, (F)n~1*Ya ||B: F —> 7 ||

Combining the previous estimates we get
g, (BSX) <g, (B) g, (S) g, (X)
<p 7, (B) 7, (F) n=2*1p*1a g (S) || X]| |IBII,

where p < 768 e2\/m p(q). Finally, Lemma 7 yields the desired
inequality in the real case.

The complex counterpart may be treated similarly.
a
The previous inequalities are optimal in the sense of the following
statement.
SUPPLEMENT 3. — Let s € {c,d} and 1<p,g<2. If

1 1
0<a<—1+—+;l— and p >0, then an inequality of the
14

n
form (s, (SHV"<p 7, (E) 7, (Fyn*g,(S), n=1,2,..., cannot
1

hold for all S € 2(E,F) all Banach spaces E of type p and all
Banach spaces F' of type q.

Proof. — We show the assertion for s =d. Define canonical
operators J,, € f?(l;" ,lp) and Q,, € I?(lq,,l;l",) by

InGroe b)) =Gy, 008,,0,0,..0)
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and
Qm(E,,---,Em,E,,,+,,-.-)2=(£1,-.-,E,,,).

Clearly, 1], Il = || Q. Il =1. We define the operators S,, € E’(lp D)
by S,:=Q, L,J, , where L, € ﬁ(l;," ,l",;n). A result of Gluskin
[8] [9] yields

Po(P ,Q) < dn (I[nq'/zl) = dn (S[n‘l'/2]) for n=1 s 2, cees
and by [29] we have

&n Spaa'n) = 8 Upep2 P < 26 Qgray)

log (n + 1)\~ !+ Up+i/q

for n=1,2,.... By Lemma 3 we have L~ () =1 for
1<p<2 and Tq ((lq:)') =1 for 1<¢g<2. Assume that
the inequality

< n 1/n o
@, Spyarnp < (1 e Spap)" < 07 8, S
holds with some p >0 and n = 1,2,... . Then we get

log (n + 1) —1+1/p+1/q
P@.)<pp,,q) (——T—)

for n=1,2,... . This estimate implies for n =1,2,... that
a=>—1+1/p + 1/q.

[m]

COROLLARY 1. —Let s€ {c,d} and SE€ £(E,F). If E and
F are arbitrary Banach spaces, then in the real case the inequality

n
(l'[ sk(S))I/n< ng,(S) for n=1,2,...,
1
is valid and in the complex case the inequality
n i/n
(rll 56(8)  <ngyS) for n=1,2,...,

is valid,
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Proof. — The assertion follows immediately from +,(S) <g,(S)
and Lemma 7.

[m]

The inequalities in Corollary 1 are optimal in the sense of the
following statement :

SUPPLEMENT 4. — Let s€ {c,d}. If 0<a<1, and p >0,
then an inequality of the form

n 1n
(Illsk(S)) <pn®g,S) for n=1,2,...,

cannot hold for all S € £(E,) and all Banach spaces E and F.

Proof — Assume that such an inequality holds with some p >0
and n=1,2,.... Then the argument in the proof to
Supplement 3 guarantees with E=1,, F=1. 1 <p,q<?2,
that a>—1+1/p+1/q. Letting p— 1, q— 1, we
obtain a=1.

Equivalence of Bernstein and Jackson inequalities.

In the sequel we shall determine the Banach spaces in the
class of type where we get equivalence of Bernstein and Jackson
inequalities. Especially, we obtain some interesting statements on
the duality of Kolmogorov and entropy numbers.

THEOREM 6. —Let S E€L(E,F) and 0<a<o, [f the
Banach spaces E and F' are of type 2, then

sup k% g.(S) X sup k% e (S) X sup k% c,(S)
1€k<n 1<k<n 1€k<n
X sup k*d. (S).

1€ k<n
Proof. — For s € {c,d} we see from Theorem 5 that
5, (S) < p 1, (E) 7,(F) g, (S) < 2 p 7, (E) 7, (F) ¢, (S).

Combining this estimate with Theorem 4 we obtain the desired
assertion.
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THEOREM 7. — Let s€ {c,d,e,g}, 0<a<mo, and
S€ L(E,F). If the Banach spaces E and F' are of type 2,
then

sup k% 5, (S)x sup k° s, Sh.
1S k<n 1< k<n

Proof. —Because ¢, (S) =d,(S') and since E" is of
type 2 we have

sup k% e, (S) <p(a) sup k% c,(S)
1<k<n 1< k<n

<p(a) sup k*d(S)
1< k<n

<pp (@) 7,(E") r,(F") sup k%, (S")
1S k<n
and

sup k%e, (S)<p(x) sup k*d,(S")
1<k<n 1<k<n

Sp() sup k% ¢ (S)
1< k<n

<pp (@71, (E)7,(F") sup K*e,(S)
1< k<n
by Theorem 4 and Theorem 5. Putting together these estimates
we obtain the assertion for s =e. Finally, if s€ {¢,d,g},
Theorem 6 yields
sup k%5, (S) X sup k% e (S) X sup k*e.(S)
1<k<n 1<k<n 1<k<n

X sup  k* 5,.(S).
1S k<n

a

There are several immediate consequences of the preceding
theorems. The first one is the following statement.

COROLLARY 2. —Let 0<a <o gnd S€EL(E,F). If E and
F' are Banach spaces of type 2, then

¢, (S)x n~® iff d (S)Xn® iff e,(S)x n~* iff g, (S)xn®.
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Proof. —We show that ¢,(S)xn™® implies d,(S)x n*.
From p,n™*<¢,(S)<p,n™® we obtain by Theorem 6

n*d,(S)<p, sup k%c,(S)<p,, and thus d,(S)<p,n°.
1<k<n

Now we turn to the converse estimate. Applying again Theorem 6
we see that

Po(mn)* < sup k** ¢, (S)<p, sup Kk d,(S)
1S k< mn 1< k<mn

<p, sup k**d,(S)+p, sup k2 d, (S)
1< k<n n<k<mn

Sps  sup k2 ¢ (S) + p,(mn)** d (S)
1<k<n

< pg n® + p,(mn)*® d (S).
This implies
pPom* — p _
d,(S) > (°_T6) e

Choosing m =

+
(1 p 6) ] we check d(S)> . The

remaining implications may be verified similarly.

a

Employing the same arguments as in the proof of the preceding

corollary and using Theorem 7 we may also establish the following
statement.

COROLLARY 3. — Let s€ {c,d,e,g}, O<a<<oo, and
S€ R(E,F). If E and F' are of type 2, then

5,8) x n™® =5, (8) xn7.

Now we turn to operators of lp’u-type. Let s€ {c,d,e,g}
and 0<p,u <. An operator S€ £(E,F) is said to be of
I, ,type, SELY (EF), iff (s,(S)€E,, Put

LY, (S): = li(s, SN, ,» SELY, (E,F).

The class of these operators form a quasinormed operator ideal
LW LW 1 for s€{c,d,e} (cf. [23] (14)). The next

p,u ; p u
statement may be easily checked via Theorem 6 and the following

inequality of Hardy (cf. [24]). For x = (§,) we put



COMPACTNESS OF OPERATORS 107

( i (nllf—llu—l/v sup kW g;)")l/u if 0<u <o

n=1 1€Sk<n

lxll, o i =
sup n'/r=1vqup kv gx if u=o0,
n 1€Sk<n

where 0 <v <min (r;u). Then Hardy’s inequality states that

hxll, , < ||x||,,,,,., <p(r,u,v) xll,, for xe€ Lw-

THEOREM 8. —Let 0<r,u<o and let E and F' be
spaces of type 2. Then

EﬁfL(E,F) =B§‘,’L(E,F) =L?£f)u(E,F) = BSL(E,F).

In the case of spaces Lp (£2,Z,u) we even have the following
interesting result.

THEOREM 9. — Let 0 <r <o, 0<u <o, and 1<p,p<oo,
Then the equality ES‘:L L,,L)= Bﬁ‘f?‘ (L,,L,) is valid for all
Lp and Lq spaces ifandonly if 1<q<2<p <o,

Proof. — Observe that L, and (L))" are of type 2 by
Lemma 3 if 1<g<2<p<o. Hence Theorem 8 implies
£O,L,,L,) =£9 (L,,L,). It remains to show the converse
implication. For this purpose we put Lp D= LP[O, 1] and
Lq: = Iq. It is well-known that I, is a complemented subspace
of L,[0,1], 1<p<oo, (cf. [17]). Therefore there exists a
projection P from Lp[O, 1] onto I,. Using the operators
I, € Ry A, Q,€L(,,15) and I €L (717,13) in the proof
to  Supplement 3 we define S, € E(LP[O, 1],lq) by
S,:=1J,1,Q,P. Clearly, ¢, (S)) X ¢, (1)), d,(S,) X d.(1,).
In [8, 9] Gluskin has shown that

de(L, 15 — I7) Xmin (1;k~2 n'), k =1,2,...,n

’

and by [23 (11)] we have

@, 1 — M) X1, k=1,...,%.
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A straightforward computation yields
L@, (8,) X LE, (1) x n'r
and
pmax (1r+ 1/q—1/2 ;2/qr) ,r #+ 2
LE(S,) X L&, ()%
nYa (log(n + 1), r=2.
Assume now £ ) (L,[0,1],1,) =£@ L,[0,1],1) for 1 <p <o

and 2 <gq <o, The closed graph theorem guarantees the existence
of constants p, > 0 and p, > 0 such that

po LE,(5) < L&), (5) < p, L, (5)

for all S€£© (L,[0,1],1,). Taking S=S, n=1,2...,
this inequality gives a contradiction. Because c,(S) =d, (S") the
assumptions 1 <p <2 and 1 <g <o also yield a contradiction.
Hence the proof is complete.

(m]

Finally, we give an additional result concerning approximation
numbers. The n'? approximation number of an operator S € £ (E, F)
is defined by

a,(S): =inf {||S — Al : rank (A) < n} .

Since ¢,(8) =a,(S) for S€ £ H,F) and d,(S)=a,(S) for
S€ L (E,H) (cf. [23] (11)), where H denotes a Hilbert space we
obtain from Theorem 8 the following statement

COROLLARY 4. —Let 0<r,u<o gnd let E and F' 'be
Banach spaces of type 2. Then
Bﬁ‘f)u(E, H) =B£{),‘(E, H) and £ ﬁ‘f)“(H ,F) =,€£{),‘(H ,F).

Classical Bernstein — Jackson inequalities.

The inequalities in this section concerning operators in
Banach spaces may be interpreted as counterparts to the classical
Bernstein and Jackson inequalities. It turns out that corresponding
analogies exist between
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(i) entropy moduli (resp. entropy numbers) of operators
and the modulus of continuity of functions

(ii)) Kolmogorov (resp. Gelfand or approximation) numbers
of operators and Bernstein numbers of functions.

Let Ly[0,1], 1<p<e, and L* [0,1]: =C[0,1] for
p = denote the spaces of p-summable and continuous 1-periodic
functions, respectively. If fe& L;‘ [0,1], then the modulus of
continuity is defined by

WP (f,8): = sup (fol If(x +h) —f(x)|P dx)l/p.

0< |h|<b
The n™ Bernstein number E®P)(f), f€ L*[0,1], is defined by
Ef{’)(f):=inf||f—-tllp, n=0,1,2,...,

where the infimum is taken over all trigonometrical polynomials
t with degree (1) <n,n=1,2,...,and where ¢ = 0 iff degree (¢) <O0.
Obviously, E{P) (f) = ||f||p .

Bernstein inequalities

The Bernstein inequality for functions fe L;[(0,1] says
(cf. e.g., [18], [19)])

n
w(p)(f,%) <§2 EP () for n=1,2,....
1

Theorem 4 implies, for s € {c,d,a}, an analogous inequality
for operators:

S o
\/3

-1

g, (S) < 2e,(S) < 5(8) for n=1,2

30 e e o

Jackson inequalities

The Jackson inequality for functions fe L;‘[O, 1] says
(cf. eg., [18],[31]

1
E®? (H<p w"”(f,—) for n=1,2,....
n
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If S acts between Hilbert spaces, we have an analogous inequality
for operators, and s € {c,d,a} ,

5,8<pg,(8)<2pe,(S) for n=1,2,....

Notice that the analogies established above are not only formal.
Indeed, if Sf is a convolution operator generated by a function
f, then there are relationships between Kolmogorov (resp. Gelfand
or approximation) numbers of S; and the Bernstein numbers of f
as well as relationships between the entropy moduli (resp. entropy
numbers) of Sf and the modulus of continuity of f. For this
purpose let f€& L;,"[O,l], 1 <p <o, then the convolution
operator is defined by

Sg:= [Mfe—ng®ar,

The operator Sf may be considered as a map from L;", [0, 1]
into C*[0,1] (cf. [32]). By [1] we have the following statement :
Let s€{c,d,a} and f€ L;‘[O, 1], 1<p<o. Then for
S, € 2 (L;,", [0,1], C*[0,1]) the inequalities
5,(8) = IS, < IIfll, = E® (N,
S2n (S <E®P (H for n=1,2,...
and :

8,(5p) < 2e,(S) < p® (n—l/r Irl, + w® (f,%»

for 0<r<oew, n=1,2,..., are valid.

3. RIESZ — SCHAUDER THEORY

The results proved in the previous sections allow us to quantify
the following qualitative statements already going back to F. Riesz
[27] and J. Schauder [28]:

— The sequence of eigenvalues of a compact operator tends
to zero.

— An operator is compact if and only if its dual operator is
compact.
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Since we are also interested in eigenvalues all Banach spaces
under considerations are assumed to be complex. So we may
establish the following quantification of the Riesz-Schauder-Theory :

(i) Let S€ £(E,F) be a compact operator. Then
n 2n n
AT NNV < g,,(S) and (II |N(S)NV* < p (I1 ¢, (S))!"
1 1 1

for n=1,2,..., (cf [5],[24]).

(ii) Let SEL(E,F) and let E and F' be Banach spaces
of type 2. Then

g,(S)xn~* ifandonlyif g,(S8") xn®
and

c,(S)x n* ifandonlyif ¢, (S)x n“.
n n

It should be mentioned that in general the statement in (ii)
concerning Gelfand numbers is false if E or F' are not of type 2.
Indeed, for the diagonal operator D (§,): = (™ ® §,) we have
(cf. [15])

c,(Dy:l,—> L) xn " and ¢,(Dy:1l, — I.)xXn*.

Consequently, we have in general not the same ‘“degree of
compactness” for an operator and its dual operator in terms of
Gelfand numbers. Up to this time we have not been able to give a
complete answer to the following ‘‘duality problem of entropy
moduli”.

ProBLEM. — Let SE€ R (E,F) and let E and F be arbitrary
Banach spaces. Does

g,(8) x n™* imply g,(8) xn"®,
where 0 <a<o gnd n=1,2,...7

We now turn to an interesting example of an integral operator
in C[0,1] generated by a smooth kernel. We show that there
exists a smooth Kkernel such that the distance of the ‘“degree of
compactness” in terms of Gelfand numbers and of the ‘‘degree of
compactness” in terms of entropy moduli of the corresponding
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integral operator is large. Since the Gelfand and the approximation
numbers coincide for operators acting in C[0,1] we have also
the same distance between the “‘degree of approximation” in terms
of approximation numbers and the ‘““degree of compactness’” in
terms of entropy moduli. We prepare two lemmas.

LEMMA 8. —Let m=1,2,..., and Serqy” F). Then
n ‘'m 1/2
(i ces) <p (n10g (F+1)) " g,05)

for n=1,2,...,m.
Proof. — From Lemma 3 we get L U7) <\/p, 2<p<oo,
and 7,(F') = 1. Thus by Theorem 5 we have
n
(T ¢ (S: I7 —> F)r < p \/p n'l? 8,(8: I — F).
1
A result of C. Schiitt [29] yields
1/p
log (% +1)
& Ly I} — 7)< p, ., )
Combining the preceding estimates with
xS:IZ — F)<m'P ¢, (S: Iy — F)
we get
n
(ITc, (S: 17 —> F))im
1
m Al

< pzx/?»(“;)/p log® (57 + 1) nif g, (S: 17— ).

m
Putting p = log (7 + 1) we obtain the desired estimate.

[m]

LEMMA 9. — For each m=1,2,..., there exists a mxm

matrix A= (e,,.), €; =1, such that simultaneously the

following estimates are satisfied :
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Pom<a,(A:]" — my<m
and

m
0, <g,A:Im — m)

n'? Jogl/? (_r:_+ 1)

m m
S2,(AlT — 7)<y, mlog(7+ 1)

for n=1,2,. .., [ps
log m

positive constants.

], where po, py, p,, p, are

Proof. — The first assertion is a recent result of S. Heinrich
[11]. The estimate from below of the second assertion is a
consequence of Lemma 8 with F = I and

C(AlT — M)y =g (A:I" — m).

The estimate from above may be checked via
e, (A: 17 — My 2 e,(A: 17 — m)
and Lemma 5.

o

Let a«=0,1,2,..., we define by C*[0,1]* the space
of all kernels K (s,¢) having continuous derivatives up to the
order o in both variables. By

x () -—»y(s)=fo‘ K (s,) x (¢) dt

we define an operator Sx€L(Cl[o0,1],C|o0, 1])  admitting
a factorization

S
C[0,1] = C[0,1]
JJ T J
SO
L,[0,1] = %[0, 1]

with embedding operators J and a bounded operator Sy . We are
prepared to establish the following interesting statement.
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TueoreM 10. — (i) Let Ke€C*[0,11*, a=1,2,....
Then for Sy € £(C[0,1], C[0,1]) it holds

a,(Sg) < pon™® and g,(Sg)<p, nTo12

for n=1,2,....

(ii) Forany € > 0 there exist a K € C*[0,1)? such that

Poe) ¢ <a,(S¢)<p, n®
and
P, (6) n-—a—llz—-e < g, (SK) < Ps n-o— 1/2

are valid for n=1,2,... .

Proof. — The first assertion of (i) follows from the factorization

of S¢ and 4,(J:C*[0,1] —> C[0,1])Sn™®. On the other
hand from the factorization

Sk
C[0,1] - C[o,1]
J
L,[0,1] J
J

Sk
L, [0,1] c*[0,1]

we conclude via Theorem 3 and a spline technique argument similar
to those in [4] that g, (JSgJ:L,[0,1]—> C[0,1])Sno" 12,
This implies the second assertion of (i).

Finally, we only sketch (ii). For each k=0,1,2,..., we
choose 2% x 2¥  matrices A = (e, €f) =+ 1, satisfying
the assertion in Lemma 9. By

2k
Ay = (€f) — K, (s,1) = ,‘,2= , e o (5) g (1),
we assign every such matrix a kernel where <p,(k) are suit-
able infinitely  differentiable = non-negative functions with
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i— i

’ 2k
of multiples of the K'Z,,s. We omit the precise construction and
refer to Heinrich [11].

supp (¢(ik))C ] . The desired kernel is a blockwise sum

[w]

This example shows that the difference of the order of
convergence between approximation (resp. Gelfand) numbers
and entropy moduli of integral operators in C[0,1] generated
by smooth kernels is 1/2. At the end of the paper we illustrate
the usefulness of the inequality between eigenvalues and entropy
moduli. We consider two examples of eigenvalue problems already
known in the literature (cf. [2], [3], [16]). They are immediate
consequences of Theorem 1 and 2 and of [A,(S)| < g,,(S).

Operators of Hille-Tamarkin type

An operator S(§): = (6,1. EI.) with the condition
> (2 18,1P)% <, 1<p,qg<co,
i i

is called an operator of Hille-Tamarkin type. We may establish the
following statement : Let

1 1 1
1<p,g<o, —+—>1, and —=
p.q qa p <

Then S€ £(,,1,) and

€ O)NEL, and \ONEIL,.

The result is optimal in the following sense. Under the above
conditions for ¢, <gq, there exists an operator S, such that
&, (S) €1, , and (?\"(S))Géls,qo.

1.1 11
P q 2°p

Nuclear operators

An operator S € 2(E,F) is said to be r-nuclear (in the
sense of Grothendieck), 0<r <1, if there are sequences
(@) CUg, () CUg and (§) €1, such that

Sx=26,<x,a,)y, for x€E.
1
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We may establish the following statement.

If Seg (Lp L)), 1<p<ee, is an r-nuclear operator,
0<r<1, then (g,(8))€ I,, and (@, (S)) € ls,r ,  where
1 1 1 1

Rl P}
conditions, for r, <r, there exists an r-nuclear operator
Se£(@L,,L,) such that (g,(S)) € I, and (A, (S)) &1

s,rg °

The result is optimal. Under the above

BIBLIOGRAPHY

[1] B. CARL, Entropy numbers, snumbers, and eigenvalue
problems, J. Funct. Anal., 41 (1981), 290-306.

[2] B. CARL, On a characterization of operators from I, into a
Banach space of type p with some applications to eigenvalue
problems, J. Funct. Anal., 48 (1982), 394-407.

[3] B. CarL, Entropy numbers of r-nuclear operators between

Lp spaces, Studia Math., 77 (1983), 155-162.

[4] B. CARL, On the degree of compactness of operators acting
from function spaces into Banach spaces of type ¢, (Jena
1982).

[5]1 B. CArRL, H. TRIEBEL, Inequalities between eigenvalues, entropy
numbers and related quantities of compact operators in
Banach spaces, Math. Ann., 251 (1980), 129-133.

[6] X. FERNIQUE, Régularité des trajectoires des fonctions
aléatoires gaussiennes, Lecture Notes Math., 480 (1975),
1-96.

[7]1 T. FicieL, J. LINDENSTRAUSS, V.D. MiLMAN, The dimensions
of almost spherical sections of convex bodies, Acta Math.,
139 (1977), 53-94.

[8] E.D. GLuskIN, On some finite dimensional problems of the
theory of diameters, Vestnik Leningr. Univ., 13 (1981),
5-10.



COMPACTNESS OF OPERATORS 117

[9] E.D. GruskiN, Norms of random matrices and diameters

of finite dimensional sets, Math. Sbhornic, 120 (1983),
180-189.

[10] U. HaaGerup, The best constants in the Khintchine inequality,

Proc. Intern. Conf. “Operator algebras, ideals,... ”’, Teubner
Texte Math., pp. 69-79, Leipzig, 1978.

[11] S. HemricH, Optimal approximation of integral operators,
in preparation.

[12]J. HOFFMANN-JYRGENSEN, Sums of independent Banach
space valued random variables, Studia Math., 52 (1974),
159-186.

[13] R.A. HunNT, On L (p,q) spaces, Enseign. Math., 12 (1966),
249-276.

[14] W.B. JonnsoN, G. ScHECHTMAN, Embedding l;,” into 17,
Acta Math., 149 (1982), 71-85.

[15] B.S. KasHIN, Sections of some finite dimensional sets and
classes of smooth functions, Izv, ANSSR, ser. mat., 41
(1977), 334-351, (Russian).

[16] T. KUnN, Entropy numbers of r-nuclear operators in Banach
spaces of type, Studia Math., (to appear).

[17]1J. LinpENSTRAUSS, L. Tzarriri, Classical Banach spaces, Lect.
Notes Math., 338, Berlin — Heidelberg — New York, 1973.

[18] G.G. LorenNTz, Approximation of Functions, Academic Press,
New York/Toronto/London, 1966.

[19] E. Makar Jr.,J. ZEMANEK, Geometrical means of eigenvalues,
J. Operator Theory, 7 (1982), 173-178.

[20] M. Marcus, G. Pisier, Characterizations of almost surely
continuous p-stable random Fourier series and strongly
stationary processes (to appear).

[21] B. MAUREY, G. Pisier, Séries de variables aléatoires vectorielles
indépendantes et propriétés géométriques des espaces de
Banach, Studia Math., 58 (1976), 45-90.

[22] B.S. MiTiaGIN, A. PErczynskl, Nuclear operators and approxi-
mative dimension, Proc. ICM, (1966), 366-372.

[23] A. PiETSCH,, Operator ideals, Berlin, 1978.



118 B. CARL

[24] A. PierscH, Weyl numbers and eigenvalues of operators in Banach
spaces, Math. Ann., 47 (1980), 149-168.

[25] G. Pisier, Remarques sur un résultat non public de B. Maurey,
Sem, d’Analyse Fonctionnelle 1980/81, Exp. V.

[26] G. Pisier, On the dimension of the [5-subspaces of Banach
spaces, for 1 <p <2, Trans. AMS, 276 (1983), 201-211.

[27]1 F. RiEsz, Uber lineare Funktionalgleichungen, Acta Math.,
41 (1918), 71-98.

[28] J. SCHAUDER, Uber lineare, vollstetige Funktionaloperationen,
Studia Math., 2 (1930), 1-6.

[29] C. ScHurr, Entropy numbers of diagonal operators between
symmetric Banach spaces, J. Approx. Theory (to appear).

[30] J.S. Szarck, On Kashin’s almost euclidean orthogonal
decomposition of I}, Bull. Acad. Polon. Sci., 26 (1978).

[31] A.F. TmMAN, Approximation Theory of functions of Real
Variables, Moscow, 1960.

[32] A. ZYGMUND, Trigonometric Series, Cambridge, 1968.
Manuscrit regu le 28 mars 1984.

Bernd CARL,
Sektion Mathematik
Friedrich-Schiller-Universitit Jena
Universititshochhaus 17.0G.
6900 Jena (R.D.A)).



