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EXISTENCE OF STAR-PRODUCTS
ON EXACT SYMPLECTIC MANIFOLDS

by M. DE WILDE and P.B.A. LECOMTE

Introduction.

The study of formal deformations of the Lie algebra structures
associated to symplectic manifolds has been initiated by Flato,
Lichnerowicz and Sternheimer [7], where the case of 1-differentiable
deformations was discussed. The case of differentiable deformations has
been studied by Vey who has obtained [13] such deformations when the
third de Rham cohomology space of the symplectic manifold vanishes.
With the same assumption, Neroslavsky and Vlassov [11] have shown that
the manifold admits star-products, which are special deformations of the
associative algebra of smooth functions of the manifold. As the skew-
symmetric part of a star-product induces a formal deformation of the
Poisson algebra, the latter result implies the former. In fact, these results
are equivalent. Indeed, as can be deduced from [9] which is a general
reference for the subject, a symplectic manifold admits a star-product if
and only if its Poisson bracket admits a formal deformation.

Due to the possibility to build up a phase-space formulation of
quantum mechanics in which quantization will manifest itself in a
deformation of the algebra of classical observables [2 for instance], an
important work has been done to obtain and to describe formal
deformations of the Poisson algebra and star-products on symplectic
manifolds whose third de Rham cohomology space is not necessarily
vanishing. In particular, it has been shown that every cotangent bundle of a
parallelizable manifold has star-products [3], next that it is so for any
cotangent bundle [6]. In the present paper, we extend this result to every
symplectic manifold whose symplectic form is exact by constructing a
deformation of the Poisson algebra of these manifolds.

Nijenhuis and Richardson [12] have endowed the space of alternating
multilinear maps from a vector space into itself with a graded Lie algebra

Key-words : Symplectic manifold - Formal deformations - Lie algebra, star-products -
Derivations.
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structure which they have shown to be particularly useful in the study of
deformations of Lie algebras. In section 1, we construct similarly a graded
Lie algebra structure on the space of all multilinear maps from a vector
space into itself which reduces by antisymmetrization to the Nijenhuis-
Richardson structure. It allows a unified presentation of the theories of
deformations of associative and Lie algebras and it turns out be a very
convenient tool for the study of star-products.

In section 2, we describe the Hochschild and Chevalley cohomology
spaces associated to a symplectic manifold in the precise way which we
need for our purpose. In particular, for exact symplectic manifolds, we
point out properties of the second and third Chevalley cohomology spaces
which are basic for the proof of our main results.

Section 3 is devoted to the proof of the existence of star-products on
each exact symplectic manifold. The star-products constructed here have
the special property that they admit non formal derivations. This was the
occasion to classify the non formal derivations of an arbitrary star-product
or formal deformation of the Poisson algebra, thus completing the results
of Lichnerowicz [10]. It turns out (section 4) that the existence of such
derivations is a rather restrictive property : if a star-product admits a non
formal derivation, then the manifold is exact and this star-product is
unique up to equivalence. The situation is similar (but more delicate) for
the formal deformations of the Poisson Lie algebra.

1. Graded Lie algebras associated to a vector space.

DERINITION. — Let V be a vector space. Denote by M?(V) (p=—1)
the space of (p+ 1)-linear maps from VP*! into V and set

M) = @ M?V).

p>-1

For ReM'(V) and SeM:(V), we define RV SeM**(V) by
RVS=0if r=—-1 and

(R\./S)(x(),' . '9xr+s)
= Z (-l)“R(xO,. . .,xi_l,s(x",. . .,x,-+,), x"+’+1, v eey x,.;.,)
i=0

if r20 and we set

RAS=R VS + (-1)**'SVR.
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The main properties of the bilinear maps V and A from M(V)? into
M(V) are given in the following proposition.

ProposITiION 1.1. — If ReM'(V), SeM?*(V) and T e M'(V), then
ORYSYD-RYS)VT=(-DRY(TVS)-RVYT)VS],
@) SAR = (—=1)"*'RAS,

@iii) (-D)"RASAT) + (-=D*SA(TAR) + (—=1)*TARAS) =0.

Proof. — (i) follows from straightforward computations, (ii) is
obvious and (iii) is easily deduced from (i).

Remark 1.2. — Properties (ii) and (iii) of A mean that A equippes
M(V) with a graded Lie algebra structure : (iii) is called the graded Jacobi
identity; it may be written in the following equivalent form

@iy (=1y*(RAS)AT + (—=1)"(SAT)AR + (—1)*(TAR) AS = 0.

Denote by a: M(V) - M(V) the antisymmetrization, that is the
projector defined on M’(V) by

a(R)(xo,. . ..x,) = A/(r+1)DZ.eR(x,);. . .,x,)

where v runs over the permutations of (0,...,r) and &, denotes the
signature of v. Set A?(V) = a(M?(V)) and A(V) = @ AP(V). The

p=-1

products A and [,] defined on A(V) by Nijenhuis and Richardson in
[11] are now given by

RAS=((+s+D!/T+D!s+DHa(RVS)
and
[R,S] = (r+s+D)!/+D!(s+1))a(RAS)

where Re A"(V) and S e A*(V). In particular

ProposITION 1.3 [12]. — The graded space A(V) is equipped by [,]
with a structure of graded Lie algebra.

Graded Lie algebra structure of the Hochschild and Chevalley cohomology
spaces

For .# eM!(V), one has
(M AM)(x,y,2) = 2(M (M (x,)),2) — H(x,#(),2)))

so that .# is an associative product on V if and only if # A .# =0.
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Moreover, in this case the Hochschild coboundary operator 8 of the
associative algebra (V,.#) is given by

C=(-1)y#4AC
for CeMP?(V). We will denote by F(A) the Hochschild cohomology
space of the associative algebra A = (V,.#).

Similarly, as shown in [12], ¥ € A!(V) is a Lie bracket on V if and
only if [#,#] = 0 in which case the Chevalley coboundary operator ¢ of
the adjoint representation of (V,%#) is given by

oC = (-1’[Z,C]
for Ce A?(V). We will denote by H(L) the Chevalley cohomology space
of the adjoint representation of the Lie algebra L = (V,.9).

We now denote by P a couple (V,#) where £ is either an associative
product or a Lie bracket on the space V.

In the first case, we set P(V)=M(V), O=A, D=3 and
HP) = A((V,#)) while in the second we set P(V) = A(V), O =1[,],
D =0 and H(P) = H((V,2)). With these notations, we have

ProposITION 1.4. — f ReP' (V) and SeP*(V), then
DROS)=RODS + (—1))(DR) O S.

In particular, the graded Lie algebra structure O of P(V) induces a graded
Lie algebra structure, also denoted by 1O, on H(P) in which the grading is
the natural grading of the cohomology spaces reduced by 1.

Proof. — Straightforward, using the graded Jacobi identity. The case
of a Lie algebra structure has been given in [12].
Formal deformations of associative and Lie algebras.

The notations are the same as above. We now define the formal
deformations of the algebra P. Denote by E(P,v) the space of formal
series

e o]
Xy = Z kak, _x,,eV.
k=0
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An element o, of MP(E(P,v)) is said to be formal if it is of the form

ee]
S ) ST T AGD. )
k= k

o r+so+. .. +;p=

where A, e M?P(V) for each r > 0; A, is called the r-th component of </,
and we write

M v = z VkAk.
k=0
If o,, SO,...,oP are formal maps, then the composed map
A, (A9, ..., 4P) is obviously a formal map and its k-th component
reads
A (AP, ..., AP = > A,(A§g>,...,A§f,’)-

rsp+.. . +sp=k
In particular, for formal #£, and &,

@02)= Y ROS,.
r+s=k

We now define the formal deformations of the algebra P. A formal
map €,eP!(V) is a formal deformation of P if Co =2 and if
€, 0 €, = 0 (this last condition means that €, is an associative or a Lie
algebra structure on E(P,v) according as £ is an associative or a Lie
algebra structure on V). In a similar way ¥, is a formal deformation of
order k of P if Co =2 and (¢,0%,),=0 for i=0,...,k.

One may try to construct a formal deformation of P step by step:

starting with ¢ = 2 and having constructed a formal deformation

k

€= Y VG,

i=0
of order k, one tries to find C,,, suchthat €**V = ¢® 4 V*+1C,_, is
a formal deformation of order k + 1. In this procedure, the following
well-known proposition is useful [9, § 3 and 5 for instance]. Its proof is just
a matter of computations. We indicate how the above formalism makes it
straightforward.

ProrosiTION 1.5. — A bilinear formal map

k
=3 ve

i=0



122 M. DE WILDE AND P. B. A. LECOMTE

where C,eP'(V) and C, = 2 is a formal deformation of order k of P if
and only if
2DC; =1],, Vi<k,
where
=Y cOc,.

r+s=1
r,s>0

Under these conditions, DJ,,, = 0.

Proof. — The map €% is a formal deformation of order k if and
only if

@Poev),= Y C,O0C=20C+CO2+ Y COC,

r+s=i r+s=i
r,s>0
= - 2DCI + Ji
vanishes for i =0, ..., k. Hence the first part of the proposition.

By the graded Jacobi identity for the graded Lie algebra M(E(P,v)),
we have

€PO@EPoer) =0.
Taking the (k+1)—th component, we get

CoOJisr+ Y CO@®POFY),=0.
r+s=k+1
r,s>0

Hence the result.

2. Cohomology.

The Hochschild cohomology of the algebra of functions.

Let M be a smooth connected, Hausdorff and second countable
manifold. Denote by 5 (M) the Lie algebra of smooth vector fields on M
and by N the algebra of smooth real valued functions on M the product
of which will be denoted by . All the objects on M considered in the
sequel are assumed to be smooth.

A map CeMP(N) is local if

supp C(u, - - -,u,) = () supp

i<p
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where supp denotes the support. It is said to be vanishing on the constants
(in short nc) if C(uy,...,u,) = 0 when u; is constant for some i < p. As
easily seen, the Hochschild coboundary operator & of N stabilizes the
space M, .(N) [resp. M. ,.(N)] of al Ce M(N) which are local [resp.
local and vanishing on the constants]. The corresponding cohomology space
will be denoted by H, (N) [resp. H,,, (N)].

ProposITION 2.1. [13]. — The spaces HZ (N) and HZ_ (N) are
isomorphic to the space of contravariant skew-symmetric p-tensor fields of M.

Given a p-tensor T, we set
Cl'(uo,. . .,u,_l) = T(duo,. . .,dup_l).

Given a cocycle CeM};'(N), a(C) is nc and of order 1 in each
argument, hence it is of the form C; for some p-tensor T. Moreover
C — a(C) is a coboundary. The isomorphism of the above proposition
maps the class of C onto T.

In view of proposition 1.4, the space of contravariant skew-symmetric
tensor fields of M has a graded Lie algebra structure defined by

Crar = (G AG).

If T is a p-tensor and T’ a g-tensor, it can be shown that

TAT = ((p+q—1!/plg) (-1 *V[T,T]

where [T,T'] is the Nijenhuis-Schouten bracket of T and T'.

The Chevalley cohomology of the Poisson algebra.

We now suppose that M is a symplectic manifold of dimensionm > 2.
We denote by L [resp. L*] its Lie algebra of symplectic [resp.
Hamiltonian] vector fields, by F its symplectic form and by pthe
canonical isomorphism between the spaces of contravariant and covariant
tensor fields of M induced by X - — i(X)F on #(M).

Given two vector spaces E and E’, CP(E,E’) is the space of p-linear
alternating maps from E” into E’. In particular, C?*!(N,N) = A?(N).
For CeCP(#(M),N), we define p*Ce C’(N,N) by

(F*C)(“o; . '9up— l) = C(xu‘)’ L "x“p—l)
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where X, = p~!(du) is the Hamiltonian field corresponding to u. As
usual, we put A = p~'F. The Poisson bracket of u,ve N is thus given
by

P(u,v) = A(du,dv).

It is well-known that P equippes N with a Lie algebra structure, called
the Poisson algebra of the symplectic manifold (M,F).

The Chevalley coboundary operator ¢ of the adjoint representation of
the Poisson algebra N stabilizes the space A, ,.(N) of local cochains on
N vanishing on the constants. We will denote by H,,,(N) its
cohomology space. Let ¢ be the Chevalley coboundary operator
associated to the representation of (M) by Lie derivatives on the space
A(M) of differential forms on M. It is easily checked that, for cochains
with values in N = A°(M),

1) p*od = dop*.

Moreover Q € A?(M) can be viewed as an element of C?(s¢(M),N). With
that identification, 0'Q = dQ (d: the exterior differential).

Let us now give some basic examples of cocycles for 4.

(i) In view of (1), if C is a p-cocycle for &', then pu*C is a cocycle for
0. In particular, p*Q is a cocycle for 0 provided that dQ = 0. Observe
that for X eL, the cocycle u - Lxu is of that type, the corresponding
closed 1-form Q being ixF.

Given a connection 1-form 0 on the principal bundle of linear frames
n:L(M) - M of M, one may construct Tye C3.(#(M),N) such that
0'Ty = 14 is the representative associated to 0 of the image by the Chern-
Weil homomorphism of the symmetric function on gl(m,R)

(AO’AI ,A2 ,A3) - otr AoAxAzA:;

(where o denotes the symmetrization). The cohomology class [ts] of T, is
thus the first trace-class of M. If [1,] = 0, adding to T, a suitable 3-
form, we obtain a 3-cocycle T, for ¢ which is never exact [5].

(i) If ® is a p-cocycle for & valued in A%2(M), then
KO = p*A,0)

where (,) indicates the dual pairing is clearly a cocycle for d. It has
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been shown [5] that there is a A2?(M)-valued 2-cocycle ®, such that
*(De)x y = tr %0 N ZL%0

where £*0: # (M) - AY(L(M),gl(m,R)) maps X onto L,.0, X* being
the canonical lift of X on L(M). When the connection I' associated to 0
is symplectic, the corresponding cocycle p'®, is the well-known cocycle S}
of Vey[13,9 for a more classical construction of S3].

We are now in position to describe the spaces Hf,. ,.(N), p =23 in
the precise way needed in the sequel.

ProposITION 2.2 [8]. — Each cocycle CeCk, . (N,N) has a
decomposition

C =rm/®y + p*Q + JE

where reR and QeA* (M) is closed. Moreover the mapping
[C] = ([2D({ ] denoting cohomology classes) is an isomorphism between
H2, . and R x H2 gpam(M). In particular, if p*Q = oC for
QeA’(M) and CeCi, ,(NN), there exists Q e A*(M) such that
u*Q = ou*Q'.

ProposiTioN 2.3 [4,8]. — (i If [t¢) = 0, each cocycle Ce C},,.(N,N)
has a decomposition

C = W(® A ixF) + p*(To+Q) + OE

where XeL, reR and Qe A3(M) is closed. Moreover, the mapping
[C] » (XLr[Ql) is an isomorphism between Hj ., (N) and
(L/L*) x R x H, gpam(M).

(i) If [tg] # O, the same conclusion holds with r = 0, H} ,.(N) being
isomorphic to (L/L*) x H3, gpam(M).

CoroLLARY 2.4. — The spaces HP_ (N), p=23, are spanned by
cohomology classes of cocycles of the form p*C and p'®.

The case of exact symplectic manifolds.

We now suppose that M is an exact symplectic manifold. This means
that F is an exact form. It is of course equivalent to the existence of
Ee# (M) such that L,F = F.
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The main properties of such a £ used in the sequel are summarized in
the following proposition.

ProPOSITION 2.5. — If Ee€# (M) is such that Li;F = F, then
(@) Lyod =0doL, -0,

(i) LX, = Xpu — Xu, VueN,

(iii) Lyp*C = p*L,C — pp*C, VCe CP(# (M),N),

@(v) Lgp'® = pL® — (p+Dp'®, Ve CP(H# (M),A2(M)).

Proof. — If Ce AP(M), oC = (—1)?[P,C]. Thus, since L,P = — P,

L§ oC = (- l)p[Lg J[P,C]]
= (= 1([L¢,P1.C] + [P,[L ,C]) = — 9C + IL,C

by the graded Jacobi identity. Similar computations achieve the proof.

It follows from the previous proposition that L, maps cocycles and
coboundaries onto cocycles and coboundaries respectively. This means that
for each k, L¢ + k induces a linear map from H,, ,(N) into itself. We
will denote this map also by L. + k.

Observe moreover that since L;0d =0 oL; and
L =ii0d + 0’ oig, proposition2.5 shows that for cocycles
DeC’(#(M)N) and ®eCP(#(M),A’(M)), (Lg+pu*D and
(Lg+(p+1D)W'® are the coboundaries of p*i;D and p'ig® respectively.

ProposiTION 2.6. — f k # 2,3 [resp. k # 3,4], then L, + k is a
bijection from HZ. ,.(N) [resp. Hi .(N)] into itself.

Proof. — Assume that k # 2,3 and let

C =rmp'®, + u*Q + J0E
and
C =rp'dy + u*Q + JF

be cocycles. One has (L;+k)C = (k—3)ru'®, + (k—2)u*Q + JE”. Thus,
in view of proposition 2.2, (L;+k)C and C’' are cohomologous if and
only if ' = (k—3)r and Q = (k—2)Q. This shows that for k # 2,3,
L, + k:HZ, . (N) - H . (N) is a bijection. Using proposition 2.3,
similar computations show that for k # 3,4, L; + k is a bijection from
H}. ..(N) into itself.
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Remark 2.7. — Observe that the kernel of L +3:
Hi. . (N,N) - Hf, . (N,N) is R[u'®].

CoroLLARY 2.8. — Let AeCl, ,.(NN) be a cocycle and
BeC%. .(N,N). Assume that (Le+k)A = 0B. If k # 3,4, there exists
CeCl. .(NN) such that A=0C and (Li+k—1)C—B is a
coboundary. Such a C is unique up to a coboundary.

Proof. — Since L, + k is injective on H ,(N), A is the
coboundary of some C,. One has then

d((Ly+k—1)C,—B) = 0.

Thus, the surjectivity of Ly + k — 1 on HZ. , means that for some
cocycle C,, (Lg+k—1)(C;+C;) — B is a coboundary. The cochain
C,; + C, has the properties required for C.

The uniqueness of C up to a coboundary results immediatly from
proposition 2.6.

3. Existence of formal deformations
of the associative or Lie algebra N.

Formal deformations of the Poisson algebra.

We will only deal with formal deformations
gv = Z chk
k=0

of the Poisson algebra (N,P) where the cochains C, are local and
vanishing on the constants.

Let T, = Y VT, e M°(E(N,v)) be formal. If T, = 1, the identity
k

map on N, then T, is non singular and T, ! is formal. Moreover, if, for
each k> 0, T, is local and vanishing on the constants, then so does
(Ty 1), In this case, if Z, is a formal deformation of (N,P), then this is
also the case for

T, (u0) - T(L, (T 'u, Ty ')
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Two formal deformations %, and %, are said to be equivalent if
&, =Tre, for such a T,.

Denote by ® the element of M°(E(N,v)) defined by
Om,) = Y V(2k—1)u,.
k=0

As easily checked, for a formal &, = Iv*A, e MP(E(N,v)), [O,«,] is
formal and its k-th component is (2k+p)A,.

In the sequel, we will deal with non formal linear maps from E(N,v)
into itself of the form 2 = 2, + ®, where 2, is a formal map whose
components D, are local and vanishing on the constants. Such a map 2
will be called of type ©.

LemMa 3.1. — If a formal deformation ¥, of (N,P) has a derivation 9
of type ©, then F isexact, Dy = L, where L,;F = F and C, is of the
form r/'®y + OE for some EeM,, ,(N).

Proof. — Observe that 2 is a derivation of %, if and only if
[2,2,]=0.

The first and second components of this equality read [Dy,P] + P = 0
and [D,,C,] + 3C, = dD,. From the first and from the structure of the
local derivations of P, it follows that D, = L; with L;F = F. From
the second and from remark 2.7, we see that C, is of the announced form.

Remark 3.2. — Recall that the cohomology class of p'®, does not
depend on the connection 1-form 6. Therefore, the cohomology class of
C, is also independent of 6. We call it the class of &,.

THeEOREM 3.3. — Let (M,F) be an exact symplectic manifold. For each
reR and EeCl, ,(N,N), there exists a formal deformation

L, =P + v(rp'®,+3E) + Y. VC,

k>1

of (N,P) which admits at least one derivation of type ©.

Proof. — We prove by induction on k the existence of
C,eCk. .(N,N) and D;eCj, ,..(N,N) such that

k
= 3 v,

i=0



EXISTENCE OF STAR-PRODUCTS 129

is a formal deformation of order k of (N,P) and such that, if

k
2® =% vD,+ 0,
i=0
then

) [2®,2®], =0, Vi<k.

Choose & such that L,F = F and set C, = P, C, = ri'®, + JE and

setting D; = r'iz®y + L.E + 2E, (2) is true for k = 1. Assume it is
also verified for some k > 1. By the graded Jacobi identity, we have

[20,(2, 2] = 2[2®, £¥), L.
The (k+1)-th component of this equality reads

r+s=k+1
rs>0

where
Jk+l= Z [CnCs]'

r+s=k+1
r,s>0

As #W is a formal deformation of order k, J,., is a cocycle (prop. 1.5).
Thus, by corollary 2.8, there exist C,,; and D,,; such that
Jk+l = 26Ck+l and

(L€+2k+3)ck+l = Z [Cr,D_‘] + aDk+1.
r+s=k+1
r,s>0

Thus L&*Y 4 V*1C,,, is a formal deformation of order k + 1 of
(N,P) and the last equality implies that

[@® + V*'D,,, £E U =0,  Vi<k+1.
Hence the result.

Let &, be a formal deformation of (N,P) and let X e L be given. If
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U = M is open and contractile, then X|y = X, for some fe N, defined
up to a constant. Following [10], we define D e M}(E(N,v)) by

(€) Dyl = L, (fm).-

Since the components of £, are vanishing on the constants, Df“ is well-
defined. Observe that it is a formal map with D, = Ly and that it is a
derivation of the Lie algebra (E(N,v),#,). More details on those
derivations will be given in the next section.

THEOREM 3.4. — Two formal deformations of (N,P) admitting
derivations of type © are equivalent if and only if they have the same class.

Proof. — (i) Assume that %, and %, are equivalent, that is
&L, =Tre, forsome T, =1+ Y VT, where the T,’s are local and

k>0
vanishing on the constants. As

(T3$V)1 = C1 - 6T1,

we see that ¥, and %, have the same class.

(ii) Assume now that %, and %, have the same class and admit
derivations of type ® 2 and 2’ respectively. From lemma 3.1, it follows
that D, =L; and D; =L, where && e€s# (M) are such that
L:F =L, F =F. Since X, = l’; — &eL, we may assume that & =&
by replacing 2' by 2' — @x

Suppose then that C; = C; and D; = D;, Vi < k.

The k-th component of the equality [2',%] — [2,%,] =0 reads,
setting aa = C, — C, and P = D; — D,,

(Lg+2k+1)a = 0B.

On the other hand, the k-th component of [&Z,,Z.] — [Z,,Z,]=0
shows that da = 0. If k =1, a is a coboundary because £, and &,
have the same class. If k > 1, it follows from proposition 2.6, that a is
also a coboundary. Thus by corollary2.8, o =0E for some

Ee Cloc nc(N’N) and
O(Lg+2k)E-B) = 0.

Therefore
D, = D, + (L¢+2k)E + Ly



EXISTENCE OF STAR-PRODUCTS 131

for some XeL. We may assume that X = 0, by replacing 2’ by
9’ - ng.

Set then T, =1 + V'E. As easily seen,

and T,02' 0T, ! = 27 + © where 2! is formal, local, nc and such
that
(2;); = D;, Vi<k.

It is then easily seen that the initial ¥, and &, are equivalent by a
formal map which is the product of maps of type 1 + V'E,.

Star-products.
A formal deformation
M, =M+ 2P+ Y AC,
k=2

of the associative algebra (N,.#) is a weak star-product if for each k > 1,
C,(v,u) = (—1*C,(u,v), C, is local and C,,,, is vanishing on the
constants. It is a star-product if C,; also vanishes on the constants for
k>1. Weset Co =4 and C, =P.

Equivalence of star-products is defined in the same way as equivalence
of formal deformations of (N,P):.#; = T¥.#, for some formal map

T,: E(N,A) - E(N,A) of the form T, = 1 + ), A*T, where the T,’s are

k>1
local and vanishing on the constants. For weak star-products, the T,’s are

no more required to vanish on the constants.
Clearly, if #, is a weak star-product, then
gv(“ﬂ’) = [()"/2)("41(“’”) - ‘ll(vau))]l.2=v
is a formal deformation of (N,P), We will say that &, derives from 4, .

Observe that if 4, = ) AC,, then 2, =) VCy,,.
k k

The question to know whether a formal deformation of (N,P) derives
from some weak star-product has been solved by Lichnerowicz [9, § 16].



132 M. DE WILDE AND P. B. A. LECOMTE

His result is obtained by a pretty long proof, checking the result for
M = R”™ and globalizing it by a careful analysis of equivalences. It seems
to be worth to give a direct proof inspired by the Neroslavsky-Vlassov
existence theorem [11]. Recall the cocycle S = w'®, associated to a
symplectic connection I' of M of connection 1-form 6.

THEOREM 3.5 [9]. — A formal deformation
&, = Z VkC2k+l
k=0

of (N,P) derives from a weak star product #, if and only if
C; = S/3! + p*Q + JE
where dQ = 0. The weak star-product #, is unique.

Proof. — (i) It is known that, given a symplectic connection I', the
most general weak star-product of order 3 reads

M + AP + A2(P%/2+3E) + A3(S/3! + u*Q + 0E)

where Ee CL.(N,N) and Qe Ai(M) . If it extends to a star-product of
order 4, Q must be closed. Hence the form of C; in &, .

(ii)) Assume now that C; is of this type and let us prove that 2,
derives from a weak star-product. To do that, we show that, if

2k—-1
M=) NC;
i=0
is a weak star-product of order 2k — 1, by modifying Cy4_4 if
necessary, there exists C,, € Ci. (N,N) such that
M, + \*Cyy + A**1C,, ,, is a weak star product of order 2k + 1. The
induction starts with k = 2, the case k =1 being obvious by (i).

The two key steps in the Neroslavsky-Vlassov existence theorem are the
following :

(a) (A A M), = 20A for some symmetric A € CZ, .. (N,N) if and
Only if [gvs 'gv]k—l = O,

(b) if A, is a weak star-product of order 2k, there always exists some
antisymmetric BeCZ, ,.(N,N) such that (#;A.#})y ., = 28B.
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Moreover [, L.)x — 20B = p*n for some neA?(M) if ¥, derives
from ;.

We thus obtain A and BeC}, . (N,N) such that
M, + \*A + A\2**1B is a weak star-product of order 2k + 1 and that

Z [C2i+1,C2j+1] = 20B + p*n.
i+j=k
i,j>0

The left-hand side also equals 20C,; ;. Thus 20(C, 4, —B) = p*n. By
proposition 2.2, taking account of the form of C,,

C2k+l = B + 2aC3 + "l*Q, + aE,

for some aeR, some Q € A*(M) and some E’'eCj,, ,(N,N). Itis now
a trivial matter to show that

M, — A*2al + A**(aC,+A+8E) + A**1Cy, 4,

is a weak star-product of order 2k + 1.
(iii) Uniqueness follows from corollary 3.7 below.

Part (i) of next lemma is a slight improvement of a result of [10], while
part (ii) is implicitly contained in the proof of the previous theorem in [9].

LEMMA 3.6. — Let # + AP + A2C, + A3C; be a weak star-product
of order 3 and let A,B belong to C%.(N,N).

(i) if PAA =0, then A =a# for some acR.
(ii) if, in addition,
MAB+C,AA=0
and

PAB+C,AA=0 or PAB+C3AA+%AAA=0,

then A =0 and B = b.# for some beR.

Proof. — (i) Denote by o the symbol of A (in the lexicographical
order) and by (ry,r,) its bi-degree. We have to show that r, =r, =0.
Suppose that Ar, > 0. If r; > 1, the symbol of PAA as a function of

€, n, ¢ is AGQo@Em), if ry =1, itis AELo(En) + AEn)o(EL)
and if r, =0, itis AEm)o(E).
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In all cases, PAA = 0 obviously implies that o = 0. Thus r, = 0.
A similar proof shows that 7, = 0. Now A = f.# for some fe N and
PAA =0 implies that f is constant.

(ii)) A = a# by (i); thus AAA = 0 and the second equation of (ii)
reads
0=PAB + C;AA =PAB-aC,)

because C;A# + C,AP =0. By (i), B=aC, + b.# for some beR.
The first equation of (ii) becomes

0=4#AB + C,AA =2a#4AC,
which implies a =0 since #/AC, = —PAP # 0. Hence the result.
CorOLLARY 3.7. — Let .#, be a weak star-product and let
o, = kio A*A, e MY(E(N,A)) where the A,’s are local. If #,Asf, =0

or 2M,Ast, + A, AA, =0, then o, = 0. In particular, if £, derives
from M, and M, then M, = M.

Proof. — If A, is the first non vanishing term of «,, taking the
terms of order 2k +1, 2k +2 and 2k +3 of #, A, =0 or
2M, A, + 4, Ast, =0, we see by lemma 3.6, that A, = 0. Hence a
contradiction.

If &, derives from #, and .#,, setting .#;, = #, + <,, we have
0= MAM, — M, AM, =24,AA, + A, AA,,
hence the result since &/, is of the above-mentioned type.

A further useful result of [9] is

Lemma 3.8. — If #, is a weak star-product, its terms C,; have the
form C2k + azkvl, with CZ& € CIZM_M(N,N) and a:kER.

Denote by = the element of M°(E(N,\)) defined by

ﬂ(u;) = Z k)v"u,,.
k=0

As easily checked, for a formal o, = ) Ao, e MP(E(N,A)), nA S, is
k
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formal and its k-th components is kA,.A linear map from E(N,A) into
itself of the form 2, + n, where 92, is formal, local and nc will be

called of type m. Note also that if o/, = ) A*A, is a formal map, then
sf,2 denotes the formal map ) A*A,. *
k

THEOREM 3.9. — Let &, be a formal deformation of (N,P) admitting a
derivation 2 = 9, + © of type ©. Ifthe class of %, is [S})/3!, then &,
derives from a unique star-product M#,. Moreover, the map of type w
9 = 9,2 + n is a derivation of M, .

Proof. — 1t follows from theorem 3.5 that %, derives from a unique
weak star-product .#,. We have to show that .#, is a star-product and

that QIA-/”]' = 0. Set '/”l = 2 xkck al’ld @V = Z Vka. One haS
k=0 k=0

(@,A"”K)Zk = z DrACZS + 2kC2k,

r+s=k

(P AMy)ssy = Y, D,ACyuy + (2k+1)Chy,y
r+s=k
and

2,20 = Y [D,,Cor1] + @k+1)Cohsy = (DA M)y
r+s=k
because, for De M°(N) and Ce M!(N), DAC =[D,C]. As 2 is a
derivation of &, [2,Z )i = 0 hence the odd components of 2' A A4,
are vanishing. It follows then from corollary 3.7 and from the identity

MADAM) =0
that 9'A 4, = 0.

Recall that D, = L, where £ is such that L,F = F. Assume that
C,; is nc for i < k. In view of lemma 3.8, C,, = C,, + a,# with
CueCi. .. (NN) and a, eR. Thus

0=(2AM)= )Y DAC,+ (Le+2K)Cy, + 2kay M
r+s=k
r>0

yields a,, = 0. Since C, is nc, it follows by induction on k that the
C,/’s are nc. Hence the result.
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4. Derivations.

The case of star-products.

The formal derivations of star-products and of formal deformations of
(N,P) have been determined in [10]. It has been seen in § 3 that, when F is
exact, there exist star-products and formal deformations which admit some
special type of non formal derivations. We describe here the space of all
derivations for arbitrary weak star-products and, if M is non compact, for
arbitrary formal deformations of (N,P).

Denote by .#, a weak star-product, by der .#, its algebra of
derivations and by der, .#, its subalgebra of formal derivations. For
X eL, with the notation of (3),

Ay, Ly
Dx" = Dx'|v=»2

where 2, is the formal deformation of (N,P) deriving from .#, belongs
to der, 4, and its 0-th component is Ly.

Suppose now that .#, is a star-product and let 2 be a derivation of
M,. It stabilizes the center of E(N,A) which is E(R,A), R being
identified with the center of N. In particular, g, = 2(A1) € E(R,A). Since
Ay, = #,(\Ml,u;), one has

P2(M\u) — A2 (w,) = a, 0 u,
where

[+ o]
— j .
a4, 0 u, ';0 v Y au

i+j=k

It is easily seen that &eMC°(E(N,A)) is formal if and only if
&(\u,)) = AME(u,) for each u, e E(N,A). On the other hand, defining

' :ENA) - ENA) tuy > Y Ak,
k=1
one has n'(Au,) — Av'(w,) = u,. Thus 2 — g, on’ is formal:

2=9,+aqo0n,

With 91 = Z ;\'ka.

k=0



EXISTENCE OF STAR-PRODUCTS 137

Taking u, =ueN and v, =veN, the 0-th component of
DA M, (uv) =0 shows that Dy A A + a,P =0. Since Dy A A is
symmetric, it follows that a, =0. Setting g, = Aa;, we get
D=9, +aqo0m.

The second component of 2 A4, =0 gives us
Dy AP + apP + D; A # = 0. We have already seen that Dy A # = 0,
thus D, = Ly for some X e #(M). If a; = 0, the antisymmetric part
of the Apreceeding equality reads [D,,P] =0, hence XeL. Then
9D — Dyt = AD' is a new derivation of .4,.

If 2 is not formal, 2’ is not formal. By induction, we find thus a
derivation 2" = 9; + a; on with ag # 0; a; admits an inverse b, in
E(R,\). Then b, 02" is another derivation

©)] =6 +m,
where &, = ) A'E, is formal.
k=0
Now, for our initial 2, 2 — a; 0o & is formal and still a derivation.
We are thus left to describe the formal derivations. This was done in [10] by
the argument we have used here in the case when ap = 0. It shows that, if
9, is a formal derivation,

2, =Y Mogr (XeL, V).

k=0

Let us now try to find out which star-products admit non formal
derivations. Let us take the non formal & obtained in (4).

We may assume that the odd components of &, are vanishing. Indeed,
assume that E,,_, =0 for /£ < k. One has

0=(FAM)sn_ =Ep_ Al + Y EpAC,_; +(2k—1)Cy_;.
r+s=k
s>0

The symmetric part of this equality reads E,,_; A # =.0. Similarly, the
antisymmetric part of (£A.#,),, = 0 reads E,,_, AP = 0. This shows
that E,,_, = Lx for some XeL. Thus (09’1—9:")2,_l =0 for £ <k.
The result follows by induction.

We need the following lemma, partly in [10].



138 M. DE WILDE AND P. B. A. LECOMTE

LemMa 4.1. — (i) If Ee M°(N) and if 8E is local, then E is local;
OE is nc if and only if E is nc.

(i) Let M be non compact and E belong to M°(N); if E is local, E
is local; if OE is local and nc, E = E + al, with Enc and aeR; if
moreover [F] = 0, then there exists E' e MY, ,.(N) such that JE = JE'.

Proof. — (i) is contained in [10], as well as the first part of (ii). If JE is
local and nc, E =E + f.1 for some EeMy], ,(N) and some feN.
Then p*df A 1 = 0E — 0E + fP is nc, thus df = 0 and f is constant.
If [F]=0, FA=do for some ®, hence P = p*F = du*0 and
0E = 0(E—fu*w).

Let us come back to the non formal derivation & = &, + © for which
we may assume that E,, , =0 for £ > 1. Each E,, is local and nc.
Indeed, we have already seen that it is true for E,. If it is true for
E, (£ <k), it is true for E,, using (F§A.#,),, =0 and lemma 4.1 (i).

If %, is the formal deformation which derives from
My, & = Y VE, + O is a derivation of type ® of Z,. It follows
k=0
then from lemma 3.1 that F is exact.

Conversely, by theorem 3.3 and 3.9, if F is exact, there exists a star-
product with a non formal derivation.

If two star-products #, and .#; admit non formal derivations, the
corresponding formal deformations &, and %, admit a derivation of
type ©. Having the same class (thm. 3.5), they are equivalent (thm. 3.4) :
L, =Tr#,. Then &, derives from both #, and T}.#;, hence
(thm. 3.9) #, = ThA,.

The preceeding results are summarized in the following :

THEOREM 4.2. — Let (M,F) be a symplectic manifold.
(i) If [F] # 0, for each star-product #, of (M,F)

der A, = der, M, = { Y Mg XeL, Vk}.
k=0

(ii) If [F] =0, there exists a unique equivalence class M of star-
products admitting non formal derivations. If #, € M, it admits a derivation
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D, of type D,2 + m where 9,2 is formal, local and nc. Moreover
der #, =.der, #, ® E(RZ,,)\).

The case of weak star-products.

If #, is a weak star-product, it follows easily from lemma 3.8 that
there exists a star-product 71 and a, e E(R,A) such that g, = 1 and
M, = T:le, where T,u, = a,0u,. Then 2 is a derivation of M, if
and only if T2 is a derivation of .#,. Since a,eE(R]),
T,ln =7+ Tbx’ where

b, = Z A* Z jai(al_l)j'
k=0 i+j=k
It is now a trivial matter to formulate the analogue of theorem 4.2, for
weak star-products, the only difference being that in the derivation
9,=9,2+n, 9, is still formal and local, but no longer nc.

The case of formal deformations.

We shall assume that M is not compact. If it is compact, on one side
there exist some non local derivations which, even when they are formal,
are uneasy to handle (see [10]). On the other side, we are specially interested
in exact manifolds, which are never compact.

LemMA 4.3. — If M is not compact and if £, is a formal deformation
of (N,P), then the algebra E(N,v) is equal to its derived ideal.

Proof. — The so-called Calabi’s lemma states that, given U open in
M, if suppu =« M\U, there exist u;, v;e N with supportin M\ U such

that u = ) P(u;,v;) [see 1]. It is important to note that the v,’s and the
i=1

number n can be fixed independently of u.

For u,e E(N,v), one has, for suitable u), u, = ) P(ul,n) hence
] i=1
u,— Y £,wlyv)=vu, Repeating the argument with «, and
i=1

continuing by induction, we obtain elements u; ,€ E(N,v) such that

n
u, = z gv(“i,va vi)'
i=1



140 M. DE WILDE AND P. B. A. LECOMTE

We denote by der &, the algebra of derivations of %, and by
der, &, its subalgebra of formal derivations.

THEOREM 4.4. — Let M be a non compact manifold and &£, be a
formal deformation of (N,P).

a) If &, is equivalent to P,

der, &, = { Y V*D,: D,eder (N,P)}
k=0

and
der &, = der, &, ® E(R®',v).

b) If &, is not equivalent to P,

®) dervz’v:{z v*@f;:x,,eL}.
k=0
If [F]#0,
der &, = der, &,.

If [F] =0, there may exist a non formal derivation

E=6,+m,

where &, is formal and its components E, belong to Mg, .(N) ® R1;
moreover

6) der &, =der, &, ® E(RE,v).

Proof. — Let 2 be a derivation of #,. Denote by Ent.#, the
space of intertwinning maps T of the adjoint action with itself:
TZ,(u,v,) = 2Z,(Tu,w,) = £,u,,Tv,) for all wu,,v,e E(N,v). It is
easily checked that [2,T]eEnt.¥, whenever TeEnt%, and that
[T, T] = 0 on the derived ideal of E(N,v) hence (lemma 4.3) on E(N,v)
itself for all T, T € Ent.%,.

Since vleEnt.%,, it follows from the latter that, for each
TeEN,v), T(vu,) = vT(u,). Thus T is formal. It is easily seen that

Ent(N,P) = R1. If T =) V*T,, it follows by induction on k that
k
T, = a1 for some a,eR. Thus Tu, = q,ou, for some a,e EQR,v).

We have thus 2 (vu,) — v9(u,) = a, o u, for some a,e E(R,v). Asin
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the case of star-products, 2 — a,on’ is formal, thus
9 =9,+a,0m
with 2, = fj V'D,.
k=0
For Q, =1 + VVE, Q*#, has the same components as £, up to

k — 1 and its k-th components is C, — JE. Moreover, P =4d1. It
follows that £, is always equivalent either to P, either to a formal

deformation of type P + ) V'C,, with [C,]¢R[P], by a map R,
k=k0

which is formal and whose components are local and nc up to constant

multiples of 1.

Such a R, transforms the sets (5) and (6) into sets of the same type. We
may thus replace &%, by R}.Z,.

Assume first that %, = P. It is trivial that =’ is a derivation of
(E(N,v),P). Thus 9, is a derivation. Since [2,,Z,] = Y V*[D,,P] =0,
k

the D,’s are derivations of (N,P). Hence a).
Assume that

Z,=P+ Y VG,

k=kg
with [C, ¢ R[P]. The component ko — 1 of [2,#] =0 gives
[Dy,-1,P] + agkoC,, = 0.

Since [C,]¢ R[P], by lemma 4.1, it implies a, = 0. Thus 2 takes the
form

D=9,+a,0m
for some a,eE(R,v).
The 0-th component of [2,%£,] =0 reads [Dy,P] =0.

If [F] #0, it follows that D, = Ly for some XeL and thus
9 — Qf" = v2'. Repeating the same argument for the .new derivation
2’', it follows by induction that
0
0] 2=Y V95 XeL, k).
k=0

We have thus proved the first part of b).
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If [F] =0, either D, is always Lx for some XeL and all the
derivations take the form (7), or correcting 2 by some va Xel), we
may assume that Do =L, — 1. If a5, =0,

0 = [2,2,),, = [Do,C,) + [Dy,P!

contradicts [C,] # 0. Thus a, is invertible and & =a;"'092 is a
derivation. We have shown that either der &£, = der, £, or there exists a
derivation

E=6,+m,

k=0
Substracting a,é to 2, we obtain a derivation v2’. Thus, by
induction, 2 takes the form

2=Y V95 +bo8,

k=0
with X, eL and b,e E(R,v).

Let us give some more details about &: the E,’s take the form
E, + a1, with E; local and nc. Itis true for k = 0. Assume that it is
true for k < /. Then [£,%,), = 0 shows that [E,P] is local and nc.
The conclusion follows from lemma 4.1.

The question of determining which equivalence classes of formal
deformations admit non formal derivations is more intricated than for star-
products. Of course the formal deformations constructed in § 3 provide
interesting examples. It should be observed that ® =2r + 1. So in
part b) of theorem 4.4, © can be replaced by ®. The term E, of the
derivation &, has the form 6L, + (1—0)1. The main difference with the
derivation 2 of type © considered in § 3, for instance in lemma 3.1, is
that the formal part of 2 is assumed to be nc. This requires that
D, = L;. It fixes [C,] and finally ¥, up to equivalence, while the
existence of & provides only a much weaker information about &,.
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