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RESTRICTIONS OF FOURIER TRANSFORMS
TO CURVES^

by Stephen W. DRURY

Introduction.

Given a smooth curve in R" and a smooth measure a on the
curve one may ask for which a and b does the restriction estimate
/1/00\bda(x) \l/b < C ||/||̂  (/E S) hold. Such an estimatev / /\

implies that for / in L (R ) the restriction of / to the curve
"makes sense". We refer the reader to [1] and [2] for general
information about restriction theorems. The object of this article
is to extend the restriction theorem of Prestini [3] to the full range
of exponents.

Since Silt is an affinely invariant space (that is invariant
under the group of affine motions) we will consider only affine
invariants of the curve. For a discussion of these invariants the
reader may consult Guggenheimer [4] pp. 170-173. For the sake
•of simplicity in laying out the basic idea of this paper we will
restrict attention to the special case of the non-compact curve

x (t) = (^, , r2, ̂  t3) in R3 . This is essentially the unique

curve for which the first and second affine curvatures vanish
and the affine arc length measure is just dt.

THEOREM 1.-Let l<a<~, let a ' = 6b (so that—<b <oo)
/ 1 1 \ 6 6

and let x(t) = {t, - r2,- t3) . Then
2 6
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j/l/OcO))!' dtV^ <CJ/||, for all /e§(R3).

The same techniques also yield the corresponding result in
higher dimensions.

THEOREM 1'. - Let n > 2 , 1 < a < (^2 -h 71 + 2)/Qi2 + n),

a' = - „ ( „ + i )6 and let x(t) = ( t , - r2 , . . . ,- ^V Then
2 \ 2 ^! /

jj'IAxCOl^rj^^cjI/ll,
/or all /€§(R").

It is well known that the ranges of a and b in the above theorems
are optimal at least for n = 2 and 3. The theorem is well kno^n
incase n = 2 (Zygmund [5]).

Our methods can also be used to establish a local result. For
this we demand that the curve possess an affine arc length parame-
trization, that is a parametrization x(t) such that

detOc0^), jc^O),. .. ̂ ^ (t)) = 1
for all t. Here x^ denotes the kth derivative of x viewed as
a column vector.

THEOREM 2.-Let n>2 and let x(t) be a C^ curve in
R" defined for a < t < P and such that t is the affine arc length.

Then for 1 <a < (n2 + n + 2)/(n2 4- n) and a ' ^ ^ - n ^ ^ D b
(^ . . ) 1 / ^ 2

we have ] j , \f(x(t)) {b dt\ <C^^J/||, (/GS) for
ros / ' '

every compact subinterval [c/,j3'] o/(a,j3).
Proofs of the theorems. — We now seek to prove Theorem 1.

We will adopt the dual formulation of the problem. Thus we will
prove that

II (^^A l l ^<CMip (i)
for 1 <p < 7 and p~1 + 6q"1 = 1. Here a denotes the affine
arc length measure on the curve and ^ is a function in Lp(a).
We will prove this result by induction on the exponent p . Therefore
we shall assume that equation (1) holds in the range 1 <p <po
for some fixed PQ < 7.
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Because of the special geometry of the situation there is a
1 -parameter group of affine motions of R3 given by

a s ( x , y , z ) = ( x + s,y + sx -^--s2^ + sy •}•-s2x +-s3)
L 2 b

which fix our curve and act on it by translation of the parameter
t . The orbits of this action are curves affinely equivalent to the
initial one. In fact let us parametrize the curves by y and z
(taking x = 0) so that the corresponding curve is

t—^ G^+^2,z+ ty-^-t3) .
2 b

By affine equivalence our induction hypothesis applies equally
well to each of the orbits. For a function fe L^(R3) we introduce
the auxiliary function F by defining

F(^,z;r)=/(^+-|-^2,z+ ty+^t3) . (2)

By disintegrating the function / on the family of orbits and
applying the induction hypothesis on each orbit we have

LEMMA 1. - Let 1 < p < po and p~~1 + 6q~1 = 1 . Then
11/11, <C^ || F|^.

Here the mixed norm space is L1 (R^ ^ , 1̂  (R^)).

A simple change of variable and an application of the Plancherel
Theorem also yield \\f\\^ = \\f\\^ == II F 11^2) • Thus by a routine
interpolation argument (Benedeck and Panzone [6]) we have

LEMMA 2.-Far (a"1,^1) in the triangle with vertices

(1 ,1) , ( l , p o 1 ) ' {^^)and c ^fi^d by 5a-1 +6-1 ̂ c^^

we have ||/||, <C^J|F||^^.

This lemma may be viewed as a substitute for the Hausdorff-
Young Theorem.

We now follow the method of Prestini. Let ^ be a function
on R satisfying |<^| < Ig and meas(E) == m. We consider
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((^ • a) * (<^ • a) * dp • a) and scale the resulting measure by a

factor of — so as to adapt it to the original curve. The scaled

measure is given by a locally integrable density / such that

((^ • a)^ (3u))3 = f(u) (3)
and

/( 3(^1) + ̂ 2) + ̂ 3))) =cv-1 (^i)^)^)

where i; stands for the Vandermonde | (^ — ^3) (^ — r,) (^ — ^) |
and c is an absolute constant. A calculation now leads to

11 PW)^ [f^^^^^dh.dh^'1 (4)
with t; the Vandermonde \h^h^(h^ — h^) \ and

^(h^h^) = f\^p(t)^(t+ h^)^(t + /^)|6 dr.

Clearly I ^ ^ ^ A ^ j < w and /| ̂ (h^h^) \ dh^dh^ <m3 .
Combining these estimates gives

II ̂ "L^C^,^1^-1 (5)

where L, i denotes the Lorentz space L, ^(dh^dh^) (see Stein
and Weiss [7] or Hunt [8]) and where 1 < ba~1 < s < oo. On the
other hand routine calculations show that i;"^"0 lies in the dual

Lorentz space L^ ^(dh^dh^) for 2 = 3(a - l ) s ' and 1 <a<-.

Thus we obtain from (4) and (5) that for

I <a<-, Sa-'-lb-'O, fl<6,
we have,

H F II •<'P ,^5a~i+b~l—3r "L0^) ^S^ w

We are now in a position to apply lemma 2 for (a~\b~1) in the

quadrilateral defined by a~1 > b~\a~1 >-, Sa"1 - 26~1 < 3 and

(po ~ 2)a-l + Po b^^po - 1. Thus there exists a number OQ

depending only on p^ with OQ <- so that lemma 2 can be applied
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in case OQ < a < — and b is given by

(^-2)a- l+po^^- l=^-~l•
We conclude that for suitable CQ we have 11/11,, < C^ w3"6^1 for
all c in the range 30po(l3po - 1)~1 < c < CQ . Thus by (3)

|| (^-(^ II^C^m1-6^1

for all ^7 in the range 90po(l3po - 1)~1 < q < 3co . Routine
interpolation arguments now yield ||<p • a^ ||̂  < Cp|| ̂  || foy
P~1 + 6q~1 = 1 and 1 <p < 15po(2po 4- I)-1. This completes
the induction step.

The induction starts trivially with ?o = 1 . One step of the
induction yields the result for 1 < p < 5 — that is the result of
Prestini and with the same proof. With two steps we have the result
for 1 < p < 75/11 and it is clear that for any p with 1 < p < 7
the result for that p will follow after only finitely many steps.

The proof of theorem 1 / is entirely analogous.
We will leave the detailed proof of theorem 2 to the reader.

Some comments however are in order. First of all in general there
is no group action preserving the initial curve. Thus a typical
curve of our family will be defined by

n
t ——> n~1 H ;c(r+ /^)

f c = = i

the family of curves being indexed by the (n — 1)-dimensional
n

manifold of ( h ^ , . . . , h^) satisfying 1, h^ == 0. The inductive
f c = = i

nature of the proof then leads in general to further curves of the
form

K
y(t)= 1 a^ x(t+ £^ (6)

f c = = i
K

where o^ > 0, 1̂  c^ = 1 and the £'5- are sums of the h ' s .
f c = = i

Let to be a fixed point a < to < j3. It will be necessary
to establish uniform estimates for the curve (6) on an interval
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IQ— e < t < tQ + e and for | £J < e. Towards this we select
convex neighbourhoods V^ of x^ro) such that

2 > d e t ( i ^ , . . . , ̂ )>-

for i ^ e V ^ ( l < ^ < n ) . It now follows from the fact that the
initial curve is C^ that there exists a number e > 0 such that

2>det(^ l)(T,),...,/w)(T„))> l

for | r^ — IQ | < e and | J^ | < e. (In particular it follows that
the measure dt is uniformly equivalent to the affine arc length
measure of (6) for | r — ^ | < e , |£ j J<e) . The vital estimate
is a lower bound on the absolute value of the Jacobian J of the

1 "
barycentre map ( t ^ , . . . , ^ )—>— ̂  y ( t ^ ) . Up to a constant

n f c= i
factor this is | detO^^), . .. , y^^Q) | and by a generalization of
the mean-value theorem (Polya, Szego [9]. Vol. II, part V, Chap. 1,
No. 95) this is equivalent to

( n l^ , - ^ l ) lde tO/< l ) (T , ) , . . . , ^ ) (T„ ) |
'Ki</<n / n

for suitable r ^ , . . ., ?•„ . This now yields the uniform estimate
| J |>^ n |^-^| (€„>())

Ki<f<n

for |ro - ̂  | < e(l < k < M ) , |̂  | < e. This completes our
comments on Theorem 2.
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