Un fibré vectoriel holomorphe sur est dit uniforme si ses images réciproques sous tous les plongements linéaires sont isomorphes. Nous classons les fibrés uniformes de rang 4 sur .
A holomorphic vector bundle on is said to be uniform if its pull-backs by all linear embeddings are isomorphic. We classify uniform bundles of rank 4 on .
@article{AIF_1981__31_4_89_0,
author = {Elencwajg, Georges},
title = {Fibr\'es uniformes de rang \'elev\'e sur ${\mathbb {P}}_2$},
journal = {Annales de l'Institut Fourier},
pages = {89--114},
year = {1981},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {31},
number = {4},
doi = {10.5802/aif.850},
zbl = {0483.14003},
mrnumber = {83c:14012},
language = {fr},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.850/}
}
TY - JOUR
AU - Elencwajg, Georges
TI - Fibrés uniformes de rang élevé sur ${\mathbb {P}}_2$
JO - Annales de l'Institut Fourier
PY - 1981
SP - 89
EP - 114
VL - 31
IS - 4
PB - Institut Fourier
PP - Grenoble
UR - https://aif.centre-mersenne.org/articles/10.5802/aif.850/
DO - 10.5802/aif.850
LA - fr
ID - AIF_1981__31_4_89_0
ER -
Elencwajg, Georges. Fibrés uniformes de rang élevé sur ${\mathbb {P}}_2$. Annales de l'Institut Fourier, Volume 31 (1981) no. 4, pp. 89-114. doi: 10.5802/aif.850
[1] , Fibrés uniformes sur P2, Thèse 3e cycle, (1980). | Zbl
[2] , Les fibrés uniformes de rang 3 sur P2(C) sont homogènes, Math. Ann., 231 (1978), 217-227. | Zbl | MR
[3] , Des fibrés uniformes non homogènes, Math. Ann., 239 (1979), 185-192. | Zbl | MR
[4] , Thèse de Doctorat d'État, Nice (1979).
[5] et , Bounding Cohomology groups of Vector Bundles on Pn, Math. Ann., 246 (1980), 251-270. | Zbl | MR
[6] , et , Les fibrés uniformes de rang au plus n sur Pn(C) sont ceux qu'on croit, Proceedings of the Nice Conference 1979 on Vector Bundles and Differential equations, Birkhäuser, Boston, 1980. | Zbl | MR
[7] , Algebraic Geometry. Graduate texts in mathematics, Vol. 52, Berlin, Heidelberg, New-York, Springer-Verlag, 1977. | Zbl | MR
[8] , Topological Methods in Algebraic Geometry, 3rd ed. Berlin, Heidelberg, New-York. Springer Verlag 1966. | Zbl | MR
[9] , The enumerative theory of singularities, Real and Complex Singularities, Oslo 1976, Sÿthoff et Noordhoof (1977). | Zbl
[10] , et , Vector Bundles on Complex Projective Spaces, Progress in Mathematics, 3, Boston, Basel, Stuttgart, Birkhäuser, 1980. | Zbl | MR
[11] , Der Satz von Grauert-Mülich für beliebige semistabile holomorphe Vektorraumbündel über dem n-dimensionalen komplex-projektiven Raum, Math. Ann., 243 (1979), 131-141. | Zbl | MR
[12] . On uniform vector bundles, Math. Ann., 195 (1972), 246-248. | Zbl | MR
Cited by Sources:



