A factorization theorem in Banach lattices and its application to Lorentz spaces
Annales de l'Institut Fourier, Volume 31 (1981) no. 1, pp. 239-255.

p-convexity and q-concavity of a Banach lattice L are characterized by factorization of multiplication operators from L q into L p through L. This characterization is applied to calculate the concavity type of Lorentz spaces.

On caractérise la p-convexité et la q-concavité d’un treillis de Banach L à l’aide de la factorisation des opérateurs de multiplication de L q dans L p à travers l’espace L. Cette caractérisation est utilisée pour calculer le type de concavité des espace de Lorentz.

@article{AIF_1981__31_1_239_0,
     author = {Reisner, Sholomo},
     title = {A factorization theorem in {Banach} lattices and its application to {Lorentz} spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {239--255},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     number = {1},
     year = {1981},
     doi = {10.5802/aif.825},
     zbl = {0437.46025},
     mrnumber = {82g:46066},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.825/}
}
TY  - JOUR
AU  - Reisner, Sholomo
TI  - A factorization theorem in Banach lattices and its application to Lorentz spaces
JO  - Annales de l'Institut Fourier
PY  - 1981
SP  - 239
EP  - 255
VL  - 31
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.825/
DO  - 10.5802/aif.825
LA  - en
ID  - AIF_1981__31_1_239_0
ER  - 
%0 Journal Article
%A Reisner, Sholomo
%T A factorization theorem in Banach lattices and its application to Lorentz spaces
%J Annales de l'Institut Fourier
%D 1981
%P 239-255
%V 31
%N 1
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.825/
%R 10.5802/aif.825
%G en
%F AIF_1981__31_1_239_0
Reisner, Sholomo. A factorization theorem in Banach lattices and its application to Lorentz spaces. Annales de l'Institut Fourier, Volume 31 (1981) no. 1, pp. 239-255. doi : 10.5802/aif.825. https://aif.centre-mersenne.org/articles/10.5802/aif.825/

[1] Z. Altshuler, Uniform convexity in Lorentz sequence spaces, Israel J. Math., 20 (1975), 260-274. | MR | Zbl

[2] A.P. Calderon, Intermediate spaces and interpolation, the complex method, Studia Math., 24 (1964), 113-190. | MR | Zbl

[3] T. Figiel, W.B. Johnson and L. Tzafriri, On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces, J. Approx. Th., 13 (1975), 395-412. | MR | Zbl

[4] I. Halperin, Uniform convexity in function spaces, Canadian J. Math., 21 (1954), 195-204. | MR | Zbl

[5] R.E. Jamison and W.H. Ruckle, Factoring absolutely convergent series, Math. Ann., 227 (1976), 143-148. | MR | Zbl

[6] J.L. Krivine, Théorèmes de factorisation dans les espaces réticulés, Séminaire Maurey-Schwartz, 1973-1974, Exp. 12-13. | Numdam

[7] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, parts I and II, Springer Verlag, 1979. | MR | Zbl

[8] G.G. Lorentz, On the theory of spaces Λ, Pacific J. Math., 1 (1951), 411-429. | MR | Zbl

[9] G.Y. Lozanovskii, On some Banach lattices, Siberian Math. J., 10 (1969), 419-430. | Zbl

[10] G. Pisier, Some applications of the complex interpolation method to Banach lattices, J. D'Analyse Math., 35 (1979), 264-280. | MR | Zbl

Cited by Sources: