Contractibility of moduli spaces of RCD(0,2)-structures
Annales de l'Institut Fourier, Online first, 47 p.

This paper focuses on RCD(0,2)-spaces, i.e. possibly non-smooth metric measure spaces with nonnegative Ricci curvature and dimension at most 2. First, we establish a list of the compact topological spaces admitting an RCD(0,2)-structure. We then describe the moduli space of RCD(0,2)-structures for each space and show that it is contractible.

Dans cet article, nous étudions les espaces RCD(0,2), autrement dit les espaces métriques mesurés (potentiellement singuliers) de courbure de Ricci positive et de dimension au plus 2. Tout d’abord, nous établissons la liste des espaces topologiques compacts qui admettent une structure RCD(0,2). Nous décrivons ensuite l’espace de modules des structures RCD(0,2) pour chacun des éléments de la liste et nous montrons qu’il est contractile.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/aif.3714
Classification: 51F99
Keywords: Metric Geometry, Ricci curvature, Topology, RCD spaces, Moduli Spaces
Mots-clés : Géométrie métrique, Courbure de Ricci, Topologie, Espaces RCD, Espace de modules

Navarro, Dimitri 1

1 12 Chemin des écoliers 69320 Feyzin (France)
@unpublished{AIF_0__0_0_A2_0,
     author = {Navarro, Dimitri},
     title = {Contractibility of moduli spaces of {RCD(0,2)-structures}},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3714},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Navarro, Dimitri
TI  - Contractibility of moduli spaces of RCD(0,2)-structures
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3714
LA  - en
ID  - AIF_0__0_0_A2_0
ER  - 
%0 Unpublished Work
%A Navarro, Dimitri
%T Contractibility of moduli spaces of RCD(0,2)-structures
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3714
%G en
%F AIF_0__0_0_A2_0
Navarro, Dimitri. Contractibility of moduli spaces of RCD(0,2)-structures. Annales de l'Institut Fourier, Online first, 47 p.

[1] Alestalo, Pekka; Trotsenko, Dmitry A.; Väisälä, Jussi Isometric approximation, Isr. J. Math., Volume 125 (2001), pp. 61-82 | DOI | MR | Zbl

[2] Ambrosio, Luigi; Gigli, Nicola; Mondino, Andrea; Rajala, Tapio Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure, Trans. Am. Math. Soc., Volume 367 (2015) no. 7, pp. 4661-4701 | DOI | MR | Zbl

[3] Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., Volume 163 (2014) no. 7, pp. 1405-1490 | DOI | MR | Zbl

[4] Ambrosio, Luigi; Honda, Shouhei; Tewodrose, David Short-time behavior of the heat kernel and Weyl’s law on RCD * (K,N) spaces, Ann. Global Anal. Geom., Volume 53 (2018) no. 1, pp. 97-119 | DOI | MR | Zbl

[5] Ambrosio, Luigi; Mondino, Andrea; Savaré, Giuseppe Nonlinear diffusion equations and curvature conditions in metric measure spaces, Memoirs of the American Mathematical Society, 262, American Mathematical Society, 2019 no. 1270, v+121 pages | DOI | MR | Zbl

[6] Belegradek, Igor The Gromov–Hausdorff hyperspace of nonnegatively curved 2-spheres, Proc. Am. Math. Soc., Volume 146 (2018) no. 4, pp. 1757-1764 | DOI | MR | Zbl

[7] Belegradek, Igor Hyperspaces of smooth convex bodies up to congruence, Adv. Math., Volume 332 (2018), pp. 176-198 | DOI | MR | Zbl

[8] Bettiol, Renato G.; Derdzinski, Andrzej; Piccione, Paolo Teichmüller theory and collapse of flat manifolds, Ann. Mat. Pura Appl., Volume 197 (2018) no. 4, pp. 1247-1268 | DOI | MR | Zbl

[9] Bruè, Elia; Semola, Daniele Constancy of the dimension for RCD(K,N) spaces via regularity of Lagrangian flows, Commun. Pure Appl. Math., Volume 73 (2020) no. 6, pp. 1141-1204 | DOI | MR | Zbl

[10] Burago, Dmitri; Burago, Yuri D.; Ivanov, Sergei A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, 2001, xiv+415 pages | DOI | MR | Zbl

[11] Burago, Yuri D.; Gromov, Mikhael; Perel’man, Grigoriĭ A. D. Alexandrov spaces with curvature bounded below, Russ. Math. Surv., Volume 47 (1992) no. 2, pp. 1-58 | DOI | MR | Zbl

[12] Geometry III. Theory of surfaces (Burago, Yuri D.; Zalgaller, Viktor A.; Gamkrelidze, Revaz V., eds.), Encyclopaedia of Mathematical Sciences, 48, Springer, 1992 | DOI | Zbl

[13] Cavalletti, Fabio; Milman, Emanuel The globalization theorem for the curvature-dimension condition, Invent. Math., Volume 226 (2021) no. 1, pp. 1-137 | DOI | MR | Zbl

[14] Charlap, Leonard S. Bieberbach groups and flat manifolds, Universitext, Springer, 1986, xiv+242 pages | DOI | MR | Zbl

[15] De Philippis, Guido; Gigli, Nicola Non-collapsed spaces with Ricci curvature bounded from below, J. Éc. Polytech., Math., Volume 5 (2018), pp. 613-650 | DOI | Numdam | MR | Zbl

[16] De Philippis, Guido; Marchese, Andrea; Rindler, Filip On a conjecture of Cheeger, Measure theory in non-smooth spaces (Partial Differential Equations and Measure Theory), De Gruyter Open, 2017, pp. 145-155 | DOI | MR | Zbl

[17] Garcia, Karla Spaces and Moduli Spaces of Flat Riemannian Metrics on Closed Manifolds, Ph. D. Thesis, Karlsruher Institut für Technologie (KIT) (2020)

[18] Gigli, Nicola An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature, Anal. Geom. Metr. Spaces, Volume 2 (2014) no. 1, pp. 169-213 | DOI | MR | Zbl

[19] Gigli, Nicola On the differential structure of metric measure spaces and applications, Memoirs of the American Mathematical Society, 236, American Mathematical Society, 2015 no. 1113, vi+91 pages | DOI | MR | Zbl

[20] Gigli, Nicola; Pasqualetto, Enrico Behaviour of the reference measure on RCD spaces under charts, Commun. Anal. Geom., Volume 29 (2021) no. 6, pp. 1391-1414 | DOI | MR | Zbl

[21] Hatcher, Allen Algebraic topology, Cambridge University Press, 2002, xii+544 pages | MR | Zbl

[22] Honda, Shouhei New differential operator and noncollapsed RCD spaces, Geom. Topol., Volume 24 (2020) no. 4, pp. 2127-2148 | DOI | MR | Zbl

[23] Kell, Martin; Mondino, Andrea On the volume measure of non-smooth spaces with Ricci curvature bounded below, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (2018) no. 2, pp. 593-610 | MR | Zbl

[24] Kitabeppu, Yu; Lakzian, Sajjad Characterization of low dimensional RCD * (K,N) spaces, Anal. Geom. Metr. Spaces, Volume 4 (2016) no. 1, pp. 187-215 | DOI | MR | Zbl

[25] Kutateladze, S. S. A. D. Alexandrov selected works. Part II. Intrinsic geometry of convex surfaces, Chapman & Hall/CRC, 2006, xiv+426 pages | MR

[26] Lott, John; Villani, Cédric Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., Volume 169 (2009) no. 3, pp. 903-991 | DOI | MR | Zbl

[27] Lytchak, Alexander; Stadler, Stephan Ricci curvature in dimension 2, J. Eur. Math. Soc., Volume 25 (2023) no. 3, pp. 845-867 | DOI | MR | Zbl

[28] Massey, William S. Algebraic topology: an introduction, Graduate Texts in Mathematics, 56, Springer, 1977, xxi+261 pages | MR | Zbl

[29] Mondino, Andrea; Naber, Aaron Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc., Volume 21 (2019) no. 6, pp. 1809-1854 | DOI | MR | Zbl

[30] Mondino, Andrea; Navarro, Dimitri Moduli spaces of compact RCD(0,N)-structures, Math. Ann., Volume 387 (2023) no. 3-4, pp. 1435-1480 | DOI | MR | Zbl

[31] Mondino, Andrea; Wei, Guofang On the universal cover and the fundamental group of an RCD * (K,N)-space, J. Reine Angew. Math., Volume 753 (2019), pp. 211-237 | DOI | MR | Zbl

[32] Shen, Zhong Min; Wei, Guofang On Riemannian manifolds of almost nonnegative curvature, Indiana Univ. Math. J., Volume 40 (1991) no. 2, pp. 551-565 | DOI | MR | Zbl

[33] Sturm, Karl-Theodor On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | DOI | MR | Zbl

[34] Sturm, Karl-Theodor On the geometry of metric measure spaces. II, Acta Math., Volume 196 (2006) no. 1, pp. 133-177 | DOI | MR | Zbl

[35] Tuschmann, Wilderich; Wiemeler, Michael On the topology of moduli spaces of non-negatively curved Riemannian metrics, Math. Ann., Volume 384 (2022) no. 3-4, pp. 1629-1651 | DOI | MR | Zbl

[36] Tuschmann, Wilderich; Wraith, David J. Moduli spaces of Riemannian metrics, Oberwolfach Seminars, 46, Birkhäuser, 2015, x+123 pages (Second corrected printing) | DOI | MR | Zbl

[37] Villani, Cédric Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009, xxii+973 pages | DOI | MR | Zbl

Cited by Sources: