This paper focuses on -spaces, i.e. possibly non-smooth metric measure spaces with nonnegative Ricci curvature and dimension at most . First, we establish a list of the compact topological spaces admitting an -structure. We then describe the moduli space of -structures for each space and show that it is contractible.
Dans cet article, nous étudions les espaces , autrement dit les espaces métriques mesurés (potentiellement singuliers) de courbure de Ricci positive et de dimension au plus . Tout d’abord, nous établissons la liste des espaces topologiques compacts qui admettent une structure . Nous décrivons ensuite l’espace de modules des structures pour chacun des éléments de la liste et nous montrons qu’il est contractile.
Revised:
Accepted:
Online First:
Keywords: Metric Geometry, Ricci curvature, Topology, RCD spaces, Moduli Spaces
Mots-clés : Géométrie métrique, Courbure de Ricci, Topologie, Espaces RCD, Espace de modules
Navarro, Dimitri 1
@unpublished{AIF_0__0_0_A2_0, author = {Navarro, Dimitri}, title = {Contractibility of moduli spaces of {RCD(0,2)-structures}}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3714}, language = {en}, note = {Online first}, }
Navarro, Dimitri. Contractibility of moduli spaces of RCD(0,2)-structures. Annales de l'Institut Fourier, Online first, 47 p.
[1] Isometric approximation, Isr. J. Math., Volume 125 (2001), pp. 61-82 | DOI | MR | Zbl
[2] Riemannian Ricci curvature lower bounds in metric measure spaces with -finite measure, Trans. Am. Math. Soc., Volume 367 (2015) no. 7, pp. 4661-4701 | DOI | MR | Zbl
[3] Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., Volume 163 (2014) no. 7, pp. 1405-1490 | DOI | MR | Zbl
[4] Short-time behavior of the heat kernel and Weyl’s law on spaces, Ann. Global Anal. Geom., Volume 53 (2018) no. 1, pp. 97-119 | DOI | MR | Zbl
[5] Nonlinear diffusion equations and curvature conditions in metric measure spaces, Memoirs of the American Mathematical Society, 262, American Mathematical Society, 2019 no. 1270, v+121 pages | DOI | MR | Zbl
[6] The Gromov–Hausdorff hyperspace of nonnegatively curved -spheres, Proc. Am. Math. Soc., Volume 146 (2018) no. 4, pp. 1757-1764 | DOI | MR | Zbl
[7] Hyperspaces of smooth convex bodies up to congruence, Adv. Math., Volume 332 (2018), pp. 176-198 | DOI | MR | Zbl
[8] Teichmüller theory and collapse of flat manifolds, Ann. Mat. Pura Appl., Volume 197 (2018) no. 4, pp. 1247-1268 | DOI | MR | Zbl
[9] Constancy of the dimension for spaces via regularity of Lagrangian flows, Commun. Pure Appl. Math., Volume 73 (2020) no. 6, pp. 1141-1204 | DOI | MR | Zbl
[10] A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, 2001, xiv+415 pages | DOI | MR | Zbl
[11] A. D. Alexandrov spaces with curvature bounded below, Russ. Math. Surv., Volume 47 (1992) no. 2, pp. 1-58 | DOI | MR | Zbl
[12] Geometry III. Theory of surfaces (Burago, Yuri D.; Zalgaller, Viktor A.; Gamkrelidze, Revaz V., eds.), Encyclopaedia of Mathematical Sciences, 48, Springer, 1992 | DOI | Zbl
[13] The globalization theorem for the curvature-dimension condition, Invent. Math., Volume 226 (2021) no. 1, pp. 1-137 | DOI | MR | Zbl
[14] Bieberbach groups and flat manifolds, Universitext, Springer, 1986, xiv+242 pages | DOI | MR | Zbl
[15] Non-collapsed spaces with Ricci curvature bounded from below, J. Éc. Polytech., Math., Volume 5 (2018), pp. 613-650 | DOI | Numdam | MR | Zbl
[16] On a conjecture of Cheeger, Measure theory in non-smooth spaces (Partial Differential Equations and Measure Theory), De Gruyter Open, 2017, pp. 145-155 | DOI | MR | Zbl
[17] Spaces and Moduli Spaces of Flat Riemannian Metrics on Closed Manifolds, Ph. D. Thesis, Karlsruher Institut für Technologie (KIT) (2020)
[18] An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature, Anal. Geom. Metr. Spaces, Volume 2 (2014) no. 1, pp. 169-213 | DOI | MR | Zbl
[19] On the differential structure of metric measure spaces and applications, Memoirs of the American Mathematical Society, 236, American Mathematical Society, 2015 no. 1113, vi+91 pages | DOI | MR | Zbl
[20] Behaviour of the reference measure on spaces under charts, Commun. Anal. Geom., Volume 29 (2021) no. 6, pp. 1391-1414 | DOI | MR | Zbl
[21] Algebraic topology, Cambridge University Press, 2002, xii+544 pages | MR | Zbl
[22] New differential operator and noncollapsed RCD spaces, Geom. Topol., Volume 24 (2020) no. 4, pp. 2127-2148 | DOI | MR | Zbl
[23] On the volume measure of non-smooth spaces with Ricci curvature bounded below, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (2018) no. 2, pp. 593-610 | MR | Zbl
[24] Characterization of low dimensional spaces, Anal. Geom. Metr. Spaces, Volume 4 (2016) no. 1, pp. 187-215 | DOI | MR | Zbl
[25] A. D. Alexandrov selected works. Part II. Intrinsic geometry of convex surfaces, Chapman & Hall/CRC, 2006, xiv+426 pages | MR
[26] Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., Volume 169 (2009) no. 3, pp. 903-991 | DOI | MR | Zbl
[27] Ricci curvature in dimension 2, J. Eur. Math. Soc., Volume 25 (2023) no. 3, pp. 845-867 | DOI | MR | Zbl
[28] Algebraic topology: an introduction, Graduate Texts in Mathematics, 56, Springer, 1977, xxi+261 pages | MR | Zbl
[29] Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc., Volume 21 (2019) no. 6, pp. 1809-1854 | DOI | MR | Zbl
[31] On the universal cover and the fundamental group of an -space, J. Reine Angew. Math., Volume 753 (2019), pp. 211-237 | DOI | MR | Zbl
[32] On Riemannian manifolds of almost nonnegative curvature, Indiana Univ. Math. J., Volume 40 (1991) no. 2, pp. 551-565 | DOI | MR | Zbl
[33] On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | DOI | MR | Zbl
[34] On the geometry of metric measure spaces. II, Acta Math., Volume 196 (2006) no. 1, pp. 133-177 | DOI | MR | Zbl
[35] On the topology of moduli spaces of non-negatively curved Riemannian metrics, Math. Ann., Volume 384 (2022) no. 3-4, pp. 1629-1651 | DOI | MR | Zbl
[36] Moduli spaces of Riemannian metrics, Oberwolfach Seminars, 46, Birkhäuser, 2015, x+123 pages (Second corrected printing) | DOI | MR | Zbl
[37] Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer, 2009, xxii+973 pages | DOI | MR | Zbl
Cited by Sources: