We prove that the Kawamata–Viehweg vanishing theorem holds for a log Calabi–Yau surface over an algebraically closed field of large characteristic when has standard coefficients.
Nous démontrons le théorème d’annulation de Kawamata–Viehweg pour une surface log Calabi–Yau sur un corps algébriquement clos de grande caractéristique, lorsque a des coefficients standards.
Revised:
Accepted:
Online First:
Keywords: Kawamata–Viehweg vanishing, log Calabi–Yau surfaces, liftability to the ring of Witt vectors, positive characteristic
Mots-clés : annulation de Kawamata–Viehweg, surfaces log Calabi–Yau, relèvements à l’anneau des vecteurs de Witt, caractéristique positive
Kawakami, Tatsuro 1
@unpublished{AIF_0__0_0_A154_0, author = {Kawakami, Tatsuro}, title = {On the {Kawamata{\textendash}Viehweg} vanishing theorem for log {Calabi{\textendash}Yau} surfaces in large characteristic}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3709}, language = {en}, note = {Online first}, }
TY - UNPB AU - Kawakami, Tatsuro TI - On the Kawamata–Viehweg vanishing theorem for log Calabi–Yau surfaces in large characteristic JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3709 LA - en ID - AIF_0__0_0_A154_0 ER -
Kawakami, Tatsuro. On the Kawamata–Viehweg vanishing theorem for log Calabi–Yau surfaces in large characteristic. Annales de l'Institut Fourier, Online first, 19 p.
[1] On the Kawamata–Viehweg vanishing theorem for log del Pezzo surfaces in positive characteristic, Compos. Math., Volume 158 (2022) no. 4, pp. 750-763 | DOI | MR | Zbl
[2] Algebraic surfaces, Universitext, Springer, 2001 (translated from the 1981 Romanian original by Vladimir Maşek and revised by the author) | DOI | MR | Zbl
[3] Lifting globally -split surfaces to characteristic zero, J. Reine Angew. Math., Volume 816 (2024), pp. 47-89 | DOI | MR | Zbl
[4] Vanishing theorems for three-folds in characteristic , Int. Math. Res. Not. (2023) no. 4, pp. 2846-2866 | DOI | MR | Zbl
[5] Smooth rational surfaces violating Kawamata–Viehweg vanishing, Eur. J. Math., Volume 4 (2018) no. 1, pp. 162-176 | DOI | MR | Zbl
[6] On log del Pezzo surfaces in large characteristic, Compos. Math., Volume 153 (2017) no. 4, pp. 820-850 | DOI | MR | Zbl
[7] Birational boundedness of low-dimensional elliptic Calabi–Yau varieties with a section, Compos. Math., Volume 157 (2021) no. 8, pp. 1766-1806 | DOI | MR | Zbl
[8] On the rationality of Kawamata log terminal singularities in positive characteristic, Algebr. Geom., Volume 6 (2019) no. 5, pp. 516-529 | DOI | MR | Zbl
[9] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI | MR | Zbl
[10] Bogomolov–Sommese vanishing and liftability for surface pairs in positive characteristic, Adv. Math., Volume 409 (2022), 108640 | DOI | MR | Zbl
[11] Quasi--splittings in birational geometry (2022) to appear in Annales Scientifiques de l’École Normale Supérieure (4) | arXiv
[12] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 (with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original) | DOI | MR | Zbl
[13] On rank one log del Pezzo surfaces in characteristic different from two and three, Adv. Math., Volume 442 (2024), 109568 | DOI | MR | Zbl
[14] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002 (translated from the French by Reinie Erné, Oxford Science Publications) | Numdam | MR | Zbl
[15] Effective bounds on singular surfaces in positive characteristic, Mich. Math. J., Volume 66 (2017) no. 2, pp. 367-388 | DOI | MR | Zbl
Cited by Sources: