We present new obstructions for a knot in to admit purely cosmetic surgeries, which arise from the study of Witten–Reshetikhin–Turaev invariants at fixed level, and can be framed in terms of the colored Jones polynomials of .
In particular, we show that if has purely cosmetic surgeries then the slopes of the surgery are of the form , except if , where is the Jones polynomial of . For any odd prime , we also give an obstruction for to have a surgery slope with that involves the values of the first colored Jones polynomials of at an -th root of unity. We verify the purely cosmetic surgery conjecture for all knots with at most crossings.
Nous donnons de nouvelles obstructions pour qu’un nœud dans admette des chirurgies purement cosmétiques, qui proviennent de l’étude des invariants de Witten-Reshetikhin-Turaev à niveau fixé.
En particulier, nous montrons que si a des chirurgies purement cosmétiques alors les pentes sont de la forme , sauf si , où est le polynôme de Jones de . Pour tout nombre premier , nous donnons aussi une obstruction pour ce que ait une chirurgie purement cosmétique de pentes avec qui fait intervenir les premiers polynômes de Jones coloriés de en une racine -ème de l’unité. Nous vérifions la conjecture pour tous les nœuds à moins de croisements.
Revised:
Accepted:
Online First:
Keywords: Dehn surgery, cosmetic surgeries, Jones polynomial, Reshetikhin–Turaev TQFTs
Mots-clés : chirurgie de Dehn, chirurgies cosmétiques, polynôme de Jones, TQFTs de Reshetikhin-Turaev
Detcherry, Renaud 1
@unpublished{AIF_0__0_0_A159_0, author = {Detcherry, Renaud}, title = {A quantum obstruction for purely cosmetic surgeries}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3673}, language = {en}, note = {Online first}, }
Detcherry, Renaud. A quantum obstruction for purely cosmetic surgeries. Annales de l'Institut Fourier, Online first, 19 p.
[1] The Turaev genus of an adequate knot, Topology Appl., Volume 156 (2009) no. 17, pp. 2704-2712 | DOI | MR | Zbl
[2] Topological quantum field theories derived from the Kauffman bracket, Topology, Volume 34 (1995) no. 4, pp. 883-927 | DOI | MR | Zbl
[3] Surgery formulae for Casson’s invariant and extensions to homology lens spaces, J. Reine Angew. Math., Volume 405 (1990), pp. 181-220 | MR | Zbl
[4] et al. Regina: Software for low-dimensional topology, http://regina-normal.github.io/, 1999–2023
[5] Effective bilipschitz bounds on drilling and filling (2019) (to appear in Geometry & Topology) | arXiv
[6] The mapping cone formula in Heegaard Floer homology and Dehn surgery on knots in , Algebr. Geom. Topol., Volume 17 (2017) no. 4, pp. 1917-1951 | DOI | MR | Zbl
[7] On the Witten-Reshetikhin-Turaev representations of mapping class groups, Proc. Am. Math. Soc., Volume 127 (1999) no. 8, pp. 2483-2488 | DOI | MR | Zbl
[8] Dehn surgery on knots, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Mathematical Society of Japan, 1991, pp. 631-642 | MR | Zbl
[9] Heegaard Floer homology and cosmetic surgeries in (2019) (to appear in J. Eur. Math. Soc.) | arXiv
[10] A note on Jones polynomial and cosmetic surgery (2016) | arXiv
[11] Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semiclassical approximation, Commun. Math. Phys., Volume 147 (1992) no. 3, pp. 563-604 | DOI | MR | Zbl
[12] The 3-manifold invariants of Witten and Reshetikhin–Turaev for , Invent. Math., Volume 105 (1991) no. 3, pp. 473-545 | DOI | MR | Zbl
[13] On knot Floer width and Turaev genus, Algebr. Geom. Topol., Volume 8 (2008) no. 2, pp. 1141-1162 | DOI | MR | Zbl
[14] Closed 3-manifolds unchanged by Dehn surgery, J. Knot Theory Ramifications, Volume 1 (1992) no. 3, pp. 279-296 | DOI | MR | Zbl
[15] Cosmetic surgeries on knots in , J. Reine Angew. Math., Volume 706 (2015), pp. 1-17 | DOI | MR | Zbl
[16] Knot Floer homology and rational surgeries, Algebr. Geom. Topol., Volume 11 (2011) no. 1, pp. 1-68 | DOI | MR | Zbl
[17] Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., Volume 103 (1991) no. 1, pp. 547-597 | DOI | MR | Zbl
[18] Cable knots do not admit cosmetic surgeries, J. Knot Theory Ramifications, Volume 28 (2019) no. 4, 1950034, 11 pages | DOI | MR | Zbl
[19] Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter, 2016, xii+596 pages | DOI | MR
[20] Verification of the Jones unknot conjecture up to 22 crossings, J. Knot Theory Ramifications, Volume 27 (2018) no. 3, 1840009, 18 pages | DOI | MR | Zbl
[21] On Witten’s 3-manifold invariants, https://canyon23.net/math/1991TQFTNotes.pdf, 1991 (Preliminary version #2)
[22] Cosmetic surgeries on genus one knots, Algebr. Geom. Topol., Volume 6 (2006), pp. 1491-1517 | DOI | MR | Zbl
[23] Quantum field theory and the Jones polynomial, Commun. Math. Phys., Volume 121 (1989) no. 3, pp. 351-399 | DOI | MR | Zbl
[24] Cosmetic surgery in L-space homology spheres, Geom. Topol., Volume 15 (2011) no. 2, pp. 1157-1168 | DOI | MR | Zbl
Cited by Sources: