Bilinear pseudo-differential operators with exotic symbols
Annales de l'Institut Fourier, Volume 70 (2020) no. 6, pp. 2737-2769.

The boundedness from L p ×L q to L r , 1<p,q, 0<1/p+1/q=1/r1, of bilinear pseudo-differential operators with symbols in the bilinear Hörmander class BS ρ,ρ m , 0ρ<1, is proved for the critical order m. Related results for the cases p=1, q=1 or r= are also obtained.

On considère des opérateurs pseudo-différentiels avec des symboles dans la classe exotique de Hörmander. On prouve des estimations dans des espaces de Lebesgue pour ces opérateurs, sous l’hypothèse que leurs symboles soient dans la classe exotique de Hörmander d’ordre critique. On donne aussi des résultats reliés pour les espaces de Hardy et BMO.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3401
Classification: 42B15, 42B20, 47G30
Keywords: Bilinear pseudo-differential operators, bilinear Hörmander symbol classes, exotic symbols
Mot clés : opérateurs pseudo-différentiels bilinéaires, symbole exotique
Miyachi, Akihiko 1; Tomita, Naohito 2

1 Department of Mathematics Tokyo Woman’s Christian University Zempukuji, Suginami-ku, Tokyo 167-8585, Japan
2 Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka 560-0043, Japan
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2020__70_6_2737_0,
     author = {Miyachi, Akihiko and Tomita, Naohito},
     title = {Bilinear pseudo-differential operators with exotic symbols},
     journal = {Annales de l'Institut Fourier},
     pages = {2737--2769},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {6},
     year = {2020},
     doi = {10.5802/aif.3401},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3401/}
}
TY  - JOUR
AU  - Miyachi, Akihiko
AU  - Tomita, Naohito
TI  - Bilinear pseudo-differential operators with exotic symbols
JO  - Annales de l'Institut Fourier
PY  - 2020
SP  - 2737
EP  - 2769
VL  - 70
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3401/
DO  - 10.5802/aif.3401
LA  - en
ID  - AIF_2020__70_6_2737_0
ER  - 
%0 Journal Article
%A Miyachi, Akihiko
%A Tomita, Naohito
%T Bilinear pseudo-differential operators with exotic symbols
%J Annales de l'Institut Fourier
%D 2020
%P 2737-2769
%V 70
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3401/
%R 10.5802/aif.3401
%G en
%F AIF_2020__70_6_2737_0
Miyachi, Akihiko; Tomita, Naohito. Bilinear pseudo-differential operators with exotic symbols. Annales de l'Institut Fourier, Volume 70 (2020) no. 6, pp. 2737-2769. doi : 10.5802/aif.3401. https://aif.centre-mersenne.org/articles/10.5802/aif.3401/

[1] Bényi, Árpád; Bernicot, Frédéric; Maldonado, Diego; Naibo, Virginia; Torres, Rodolfo H. On the Hörmander classes of bilinear pseudodifferential operators II, Indiana Univ. Math. J., Volume 62 (2013) no. 6, pp. 1733-1764 | DOI | MR | Zbl

[2] Bényi, Árpád; Maldonado, Diego; Naibo, Virginia; Torres, Rodolfo H. On the Hörmander classes of bilinear pseudodifferential operators, Integral Equations Oper. Theory, Volume 67 (2010) no. 3, pp. 341-364 | DOI | MR | Zbl

[3] Bényi, Árpád; Torres, Rodolfo H. Symbolic calculus and the transposes of bilinear pseudodifferential operators, Commun. Partial Differ. Equations, Volume 28 (2003) no. 5-6, pp. 1161-1181 | DOI | MR | Zbl

[4] Bényi, Árpád; Torres, Rodolfo H. Almost orthogonality and a class of bounded bilinear pseudodifferential operators, Math. Res. Lett., Volume 11 (2004) no. 1, pp. 1-11 | DOI | MR | Zbl

[5] Calderón, Alberto-P.; Vaillancourt, Rémi A class of bounded pseudo-differential operators, Proc. Natl. Acad. Sci. USA, Volume 69 (1972), pp. 1185-1187 | DOI | MR | Zbl

[6] Coifman, Ronald R.; Meyer, Yves Au delà des opérateurs pseudo-différentiels, Astérisque, 57, Société Mathématique de France, 1978, i+185 pages (with an English summary) | Numdam | MR | Zbl

[7] Grafakos, Loukas Classical Fourier analysis, Graduate Texts in Mathematics, 249, Springer, 2008, xvi+489 pages | MR | Zbl

[8] Grafakos, Loukas; Torres, Rodolfo H. Multilinear Calderón-Zygmund theory, Adv. Math., Volume 165 (2002) no. 1, pp. 124-164 | DOI | MR | Zbl

[9] Michalowski, Nicholas; Rule, David; Staubach, Wolfgang Multilinear pseudodifferential operators beyond Calderón-Zygmund theory, J. Math. Anal. Appl., Volume 414 (2014) no. 1, pp. 149-165 | DOI | MR | Zbl

[10] Miyachi, Akihiko; Tomita, Naohito Calderón-Vaillancourt-type theorem for bilinear operators, Indiana Univ. Math. J., Volume 62 (2013) no. 4, pp. 1165-1201 | DOI | MR | Zbl

[11] Naibo, Virginia On the L ×L BMO mapping property for certain bilinear pseudodifferential operators, Proc. Am. Math. Soc., Volume 143 (2015) no. 12, pp. 5323-5336 | DOI | MR | Zbl

[12] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993, xiv+695 pages (with the assistance of Timothy S. Murphy) | MR | Zbl

Cited by Sources: