The boundedness from to , , , of bilinear pseudo-differential operators with symbols in the bilinear Hörmander class , , is proved for the critical order . Related results for the cases , or are also obtained.
On considère des opérateurs pseudo-différentiels avec des symboles dans la classe exotique de Hörmander. On prouve des estimations dans des espaces de Lebesgue pour ces opérateurs, sous l’hypothèse que leurs symboles soient dans la classe exotique de Hörmander d’ordre critique. On donne aussi des résultats reliés pour les espaces de Hardy et BMO.
Revised:
Accepted:
Published online:
Keywords: Bilinear pseudo-differential operators, bilinear Hörmander symbol classes, exotic symbols
Mot clés : opérateurs pseudo-différentiels bilinéaires, symbole exotique
@article{AIF_2020__70_6_2737_0, author = {Miyachi, Akihiko and Tomita, Naohito}, title = {Bilinear pseudo-differential operators with exotic symbols}, journal = {Annales de l'Institut Fourier}, pages = {2737--2769}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {6}, year = {2020}, doi = {10.5802/aif.3401}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3401/} }
TY - JOUR AU - Miyachi, Akihiko AU - Tomita, Naohito TI - Bilinear pseudo-differential operators with exotic symbols JO - Annales de l'Institut Fourier PY - 2020 SP - 2737 EP - 2769 VL - 70 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3401/ DO - 10.5802/aif.3401 LA - en ID - AIF_2020__70_6_2737_0 ER -
%0 Journal Article %A Miyachi, Akihiko %A Tomita, Naohito %T Bilinear pseudo-differential operators with exotic symbols %J Annales de l'Institut Fourier %D 2020 %P 2737-2769 %V 70 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3401/ %R 10.5802/aif.3401 %G en %F AIF_2020__70_6_2737_0
Miyachi, Akihiko; Tomita, Naohito. Bilinear pseudo-differential operators with exotic symbols. Annales de l'Institut Fourier, Volume 70 (2020) no. 6, pp. 2737-2769. doi : 10.5802/aif.3401. https://aif.centre-mersenne.org/articles/10.5802/aif.3401/
[1] On the Hörmander classes of bilinear pseudodifferential operators II, Indiana Univ. Math. J., Volume 62 (2013) no. 6, pp. 1733-1764 | DOI | MR | Zbl
[2] On the Hörmander classes of bilinear pseudodifferential operators, Integral Equations Oper. Theory, Volume 67 (2010) no. 3, pp. 341-364 | DOI | MR | Zbl
[3] Symbolic calculus and the transposes of bilinear pseudodifferential operators, Commun. Partial Differ. Equations, Volume 28 (2003) no. 5-6, pp. 1161-1181 | DOI | MR | Zbl
[4] Almost orthogonality and a class of bounded bilinear pseudodifferential operators, Math. Res. Lett., Volume 11 (2004) no. 1, pp. 1-11 | DOI | MR | Zbl
[5] A class of bounded pseudo-differential operators, Proc. Natl. Acad. Sci. USA, Volume 69 (1972), pp. 1185-1187 | DOI | MR | Zbl
[6] Au delà des opérateurs pseudo-différentiels, Astérisque, 57, Société Mathématique de France, 1978, i+185 pages (with an English summary) | Numdam | MR | Zbl
[7] Classical Fourier analysis, Graduate Texts in Mathematics, 249, Springer, 2008, xvi+489 pages | MR | Zbl
[8] Multilinear Calderón-Zygmund theory, Adv. Math., Volume 165 (2002) no. 1, pp. 124-164 | DOI | MR | Zbl
[9] Multilinear pseudodifferential operators beyond Calderón-Zygmund theory, J. Math. Anal. Appl., Volume 414 (2014) no. 1, pp. 149-165 | DOI | MR | Zbl
[10] Calderón-Vaillancourt-type theorem for bilinear operators, Indiana Univ. Math. J., Volume 62 (2013) no. 4, pp. 1165-1201 | DOI | MR | Zbl
[11] On the mapping property for certain bilinear pseudodifferential operators, Proc. Am. Math. Soc., Volume 143 (2015) no. 12, pp. 5323-5336 | DOI | MR | Zbl
[12] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993, xiv+695 pages (with the assistance of Timothy S. Murphy) | MR | Zbl
Cited by Sources: