We give effective bounds on the number of twists by ample line bundles, for global generations of pushforwards of log-pluricanonical bundles on klt pairs. This gives a partial answer to a conjecture proposed by Popa and Schnell. We prove two types of statements: first, more in the spirit of the general conjecture, we show generic global generation with the predicted bound when the dimension of the variety is less than or equal to 4 and more generally, with a quadratic Angehrn–Siu type bound. Secondly, assuming that the relative canonical bundle is relatively semi-ample, we make a very precise statement. In particular, when the morphism is smooth, it solves the conjecture with the same bounds, for certain pluricanonical bundles.
Nous donnons des limites effectives sur le nombre de torsions par fibrés en droites amples pour des générations globales de faisceaux log-pluricanoniques sur des paires de klt. Cela donne une réponse partielle à une hypothèse proposée par Popa et Schnell. Nous démontrons deux types d’énoncés : premièrement, plus dans l’esprit de la conjecture générale, nous démontrons la génération globale générique avec la borne annoncée quand la dimension de la variété est inférieure ou égale à 4 et plus généralement, avec une limite de type Angehrn–Siu. Deuxièmement, en supposant que le fibré canonique relatif soit relativement semi-ample, nous donnons un énoncé très précis. En particulier, quand le morphisme est lisse, ceci résout la conjecture avec les mêmes limites, pour certains faisceaux pluricanoniques.
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3351
Keywords: pluricanonical bundles, Fujita’s conjecture, effective results.
Mot clés : faisceaux pluricanoniques, conjecture de Fujita, résultats effectifs.
@article{AIF_2020__70_4_1545_0, author = {Dutta, Yajnaseni}, title = {On the {Effective} {Freeness} of the {Direct} {Images} of {Pluricanonical} {Bundles}}, journal = {Annales de l'Institut Fourier}, pages = {1545--1561}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {4}, year = {2020}, doi = {10.5802/aif.3351}, zbl = {07197935}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3351/} }
TY - JOUR AU - Dutta, Yajnaseni TI - On the Effective Freeness of the Direct Images of Pluricanonical Bundles JO - Annales de l'Institut Fourier PY - 2020 SP - 1545 EP - 1561 VL - 70 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3351/ DO - 10.5802/aif.3351 LA - en ID - AIF_2020__70_4_1545_0 ER -
%0 Journal Article %A Dutta, Yajnaseni %T On the Effective Freeness of the Direct Images of Pluricanonical Bundles %J Annales de l'Institut Fourier %D 2020 %P 1545-1561 %V 70 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3351/ %R 10.5802/aif.3351 %G en %F AIF_2020__70_4_1545_0
Dutta, Yajnaseni. On the Effective Freeness of the Direct Images of Pluricanonical Bundles. Annales de l'Institut Fourier, Volume 70 (2020) no. 4, pp. 1545-1561. doi : 10.5802/aif.3351. https://aif.centre-mersenne.org/articles/10.5802/aif.3351/
[1] Effective freeness and point separation for adjoint bundles, Invent. Math., Volume 122 (1995) no. 2, pp. 291-308 | DOI | MR | Zbl
[2] Canonical models of surfaces of general type, Publ. Math., Inst. Hautes Étud. Sci. (1973) no. 42, pp. 171-219 | DOI | Numdam | MR | Zbl
[3] Applications of the Ohsawa–Takegoshi Extension Theorem to Direct Image Problems, Int. Math. Res. Not. (2020), rnaa018 | DOI
[4] Effective generation and twisted weak positivity of direct images, Algebra Number Theory, Volume 13 (2019) no. 2, pp. 425-454 | DOI | MR | Zbl
[5] Lectures on vanishing theorems, DMV Seminar, 20, Birkhäuser, 1992, vi+164 pages | DOI | MR | Zbl
[6] Effective base point free theorem for log canonical pairs — Kollár type theorem, Tôhoku Math. J., Volume 61 (2009) no. 4, pp. 475-481 | DOI | MR | Zbl
[7] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | MR | Zbl
[8] On Fujita’s conjecture, Duke Math. J., Volume 88 (1997) no. 2, pp. 201-216 | DOI | MR | Zbl
[9] On global generation of adjoint linear systems, Math. Ann., Volume 313 (1999) no. 4, pp. 635-652 | DOI | MR | Zbl
[10] On the global generation of direct images of pluri-adjoint line bundles, Math. Z. (2017), pp. 1-8 | DOI | MR | Zbl
[11] Théorèmes de Bertini et applications, Progress in Mathematics, 42, Birkhäuser, 1983, ii+127 pages | MR | Zbl
[12] On the finiteness of generators of a pluricanonical ring for a 3-fold of general type, Am. J. Math., Volume 106 (1984) no. 6, pp. 1503-1512 | DOI | MR | Zbl
[13] On a relative version of Fujita’s freeness conjecture, Complex geometry (Göttingen, 2000), Springer, 2002, pp. 135-146 | DOI | MR | Zbl
[14] Higher direct images of dualizing sheaves. I, Ann. Math., Volume 123 (1986) no. 1, pp. 11-42 | DOI | MR | Zbl
[15] Shafarevich maps and automorphic forms, Princeton University Press, 1995, x+201 pages | DOI | Zbl
[16] Singularities of pairs, Algebraic geometry (Santa Cruz, 1995) (Proceedings of Symposia in Pure Mathematics), Volume 62, American Mathematical Society, 1997, pp. 221-287 | DOI | MR | Zbl
[17] Singularities of the minimal model program, Cambridge Tracts in Mathematics, 200, Cambridge University Press, 2013 (in collaboration with Sandor Kovács) | DOI | MR | Zbl
[18] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, Springer, 2004, xviii+387 pages | DOI | Zbl
[19] On direct images of pluricanonical bundles, Algebra Number Theory, Volume 8 (2014) no. 9, pp. 2273-2295 | DOI | MR | Zbl
[20] A nonvanishing theorem, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 49 (1985) no. 3, pp. 635-651 | MR
[21] Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Algebraic varieties and analytic varieties (Tokyo, 1981) (Advanced Studies in Pure Mathematics), Volume 1, North-Holland, 1983, pp. 329-353 | DOI | MR | Zbl
Cited by Sources: