In this paper we will prove that for a threefold of general type and large volume the second plurigenera is positive and the fifth canonical map is birational.
Nous prouvons que pour une variété de dimension 3 de type général et de grand volume le second plurigenre est positif et la cinquième application canonique est birationnelle
Keywords: Threefolds, pluricanonical maps, extension theorems
Mot clés : dimension 3, application pluricanonique
@article{AIF_2007__57_4_1315_0, author = {Todorov, Gueorgui Tomov}, title = {Pluricanonical maps for threefolds of~general type}, journal = {Annales de l'Institut Fourier}, pages = {1315--1330}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {4}, year = {2007}, doi = {10.5802/aif.2295}, mrnumber = {2339333}, zbl = {1122.14031}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2295/} }
TY - JOUR AU - Todorov, Gueorgui Tomov TI - Pluricanonical maps for threefolds of general type JO - Annales de l'Institut Fourier PY - 2007 SP - 1315 EP - 1330 VL - 57 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2295/ DO - 10.5802/aif.2295 LA - en ID - AIF_2007__57_4_1315_0 ER -
%0 Journal Article %A Todorov, Gueorgui Tomov %T Pluricanonical maps for threefolds of general type %J Annales de l'Institut Fourier %D 2007 %P 1315-1330 %V 57 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2295/ %R 10.5802/aif.2295 %G en %F AIF_2007__57_4_1315_0
Todorov, Gueorgui Tomov. Pluricanonical maps for threefolds of general type. Annales de l'Institut Fourier, Volume 57 (2007) no. 4, pp. 1315-1330. doi : 10.5802/aif.2295. https://aif.centre-mersenne.org/articles/10.5802/aif.2295/
[1] The 5-canonical system on 3-folds of general type (math.AG/0512617)
[2] The locus of log canonical singularities (arXiv:mathAG/9806067)
[3] Sur les applications pluricanoniques des variété de type très général en dimension 3, Amer J. Math, Volume 108 (1986), pp. 433-449 | DOI | MR | Zbl
[4] Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ., Volume 42 (1973), pp. 171-219 | DOI | Numdam | MR | Zbl
[5] Boundedness of pluricanonical maps of varieties of general type (arXiv:math.AG/0504327, to appear in Inv. Math) | Zbl
[6] On pluricanonical maps for threefolds of general type, J.Math. Soc. Japan, Volume 50 (1998), pp. 615-621 | DOI | MR | Zbl
[7] Linear series of irregular varieties, World Scientific Press, Japan, 2002 | MR | Zbl
[8] On the extension problem of pluricanonical forms, Contemp. Math, Volume 241 (199), pp. 193-207 | MR | Zbl
[9] On Fujita’s freeness conjecture for 3-folds and 4-folds, Math. Ann., Volume 308 (1997), pp. 893-899 | DOI | Zbl
[10] Boundedness of log terminal Fano pairs of bounded index (arXiv:math.AG/0205214 v1)
[11] Higher direct images of sheaves I, Ann. of Math, Volume 127 (1988), pp. 93-163
[12] Shafarevich maps and automorphic forms, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1995 | MR | Zbl
[13] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998 | MR | Zbl
[14] Positivity in algebraic geometry. II, Springer-Verlag, Berlin, 2004 | MR | Zbl
[15] Quint-canonical systems on canonical threefolds of index 1, Comm. Algebra, Volume 28 (2000), pp. 5517-5530 | DOI | MR | Zbl
[16] Pluricanonical systems on algebraic varieties of general type (preprint, to appear in Inv. Math.) | Zbl
[17] Pluricanonical systems of projective varieties of general type (arXiv:math.AG/9909021)
Cited by Sources: