Mixed Hodge structure of affine hypersurfaces
Annales de l'Institut Fourier, Volume 57 (2007) no. 3, pp. 775-801.

In this article we give an algorithm which produces a basis of the n-th de Rham cohomology of the affine smooth hypersurface f -1 (t) compatible with the mixed Hodge structure, where f is a polynomial in n+1 variables and satisfies a certain regularity condition at infinity (and hence has isolated singularities). As an application we show that the notion of a Hodge cycle in regular fibers of f is given in terms of the vanishing of integrals of certain polynomial n-forms in n+1 over topological n-cycles on the fibers of f. Since the n-th homology of a regular fiber is generated by vanishing cycles, this leads us to study Abelian integrals over them. Our result generalizes and uses the arguments of J. Steenbrink for quasi-homogeneous polynomials.

Dans cet article nous donnons un algorithme qui produit une base du n-ième groupe de cohomology de De Rham de l’hypersurface affine lisse f -1 (t) compatible avec la structure de Hodge mixte, où f est un polynôme en n+1 variables et satisfait une condition de régularité à l’infini (en particulier, il a des singularités isolées). Comme application nous montrons que la notion de cycle de Hodge dans une fibre régulière de f est donnée par l’annulation des intégrales de certaines n-formes polynomiales dans n+1 sur des n-cycles topologiques dans les fibres de f. Puisque l’homologie de degré n d’une fibre régulière est engendrée par les cycles évanescents, cela conduit à étudier des intégrales abéliennes obtenues en intégrant sur ceux-ci. Notre résultat généralise et utilise les arguments de J. Steenbrink pour les polynômes quasi-homogènes.

DOI: 10.5802/aif.2276
Classification: 14C30, 32S35
Keywords: Mixed Hodge structures of affine varieties, Gauss-Manin connection
Mot clés : problème d’appartenance, idéaux de polynômes, courant résidu, représentation intégrale

Movasati, Hossein 1

1 Instituto de Matemática Pura e Aplicada, IMPA Estrada Dona Castorina, 110 22460-320, Rio de Janeiro (Brazil)
@article{AIF_2007__57_3_775_0,
     author = {Movasati, Hossein},
     title = {Mixed {Hodge} structure of affine hypersurfaces},
     journal = {Annales de l'Institut Fourier},
     pages = {775--801},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {3},
     year = {2007},
     doi = {10.5802/aif.2276},
     mrnumber = {2336829},
     zbl = {1123.14007},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2276/}
}
TY  - JOUR
AU  - Movasati, Hossein
TI  - Mixed Hodge structure of affine hypersurfaces
JO  - Annales de l'Institut Fourier
PY  - 2007
SP  - 775
EP  - 801
VL  - 57
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2276/
DO  - 10.5802/aif.2276
LA  - en
ID  - AIF_2007__57_3_775_0
ER  - 
%0 Journal Article
%A Movasati, Hossein
%T Mixed Hodge structure of affine hypersurfaces
%J Annales de l'Institut Fourier
%D 2007
%P 775-801
%V 57
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2276/
%R 10.5802/aif.2276
%G en
%F AIF_2007__57_3_775_0
Movasati, Hossein. Mixed Hodge structure of affine hypersurfaces. Annales de l'Institut Fourier, Volume 57 (2007) no. 3, pp. 775-801. doi : 10.5802/aif.2276. https://aif.centre-mersenne.org/articles/10.5802/aif.2276/

[1] Arnolʼd, V. I.; Guseĭn-Zade, S. M.; Varchenko, A. N. Singularities of differentiable maps. Vol. II, Monographs in Mathematics, 83, Birkhäuser Boston Inc., Boston, MA, 1988 (Monodromy and asymptotics of integrals, Translated from the Russian by Hugh Porteous, Translation revised by the authors and James Montaldi) | MR | Zbl

[2] Borel, Armand; Haefliger, André La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. France, Volume 89 (1961), pp. 461-513 | Numdam | MR | Zbl

[3] Brieskorn, Egbert Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math., Volume 2 (1970), pp. 103-161 | DOI | MR | Zbl

[4] Chéniot, D. Vanishing cycles in a pencil of hyperplane sections of a non-singular quasi-projective variety, Proc. London Math. Soc. (3), Volume 72 (1996) no. 3, pp. 515-544 | DOI | MR | Zbl

[5] Deligne, Pierre Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971) no. 40, pp. 5-57 | DOI | Numdam | MR | Zbl

[6] Deligne, Pierre; Milne, James S.; Ogus, Arthur; Shih, Kuang-yen Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, 900, Springer-Verlag, Berlin, 1982 | MR | Zbl

[7] Dimca, Alexandru; Némethi, András On the monodromy of complex polynomials, Duke Math. J., Volume 108 (2001) no. 2, pp. 199-209 | DOI | MR | Zbl

[8] Dolgachev, Igor Weighted projective varieties, Group actions and vector fields (Vancouver, B.C., 1981) (Lecture Notes in Math.), Volume 956, Springer, Berlin, 1982, pp. 34-71 | MR | Zbl

[9] El Zein, Fouad Théorie de Hodge des cycles évanescents, Ann. Sci. École Norm. Sup. (4), Volume 19 (1986) no. 1, pp. 107-184 | Numdam | MR | Zbl

[10] Gavrilov, Lubomir Petrov modules and zeros of Abelian integrals, Bull. Sci. Math., Volume 122 (1998) no. 8, pp. 571-584 | DOI | MR | Zbl

[11] Gavrilov, Lubomir The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math., Volume 143 (2001) no. 3, pp. 449-497 | DOI | MR | Zbl

[12] Green, M.; Murre, J.; Voisin, C. Algebraic cycles and Hodge theory, Lecture Notes in Mathematics, 1594, Springer-Verlag, Berlin, 1994 (Lectures given at the Second C.I.M.E. Session held in Torino, June 21–29, 1993, Edited by A. Albano and F. Bardelli) | MR

[13] Greuel, G. M.; Pfister, G.; Schönemann, H. Singular 2.0.4, A computer algebra system for polynomial computations (2001) (http://www.singular.uni-kl.de/) | Zbl

[14] Griffiths, Phillip A. On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460-495; ibid. (2), Volume 90 (1969), pp. 496-541 | MR | Zbl

[15] Grothendieck, A. On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1966) no. 29, pp. 95-103 | DOI | Numdam | MR | Zbl

[16] Kulikov, Vik. S.; Kurchanov, P. F. Complex algebraic varieties: periods of integrals and Hodge structures [ MR1060327 (91k:14010)], Algebraic geometry, III (Encyclopaedia Math. Sci.), Volume 36, Springer, Berlin, 1998, p. 1-217, 263–270 | MR | Zbl

[17] Movasati, H.; Reiter, S. Hypergeometric series and Hodge cycles of four dimensional cubic hypersurfaces (to appear in Int. Jou. Number Theory, Vol 2, No 3, 2006) | Zbl

[18] Movasati, Hossein Calculation of mixed Hodge structures, Gauss-Manin connections and Picard-Fuchs equations (To appear in the proceeding of Sao Carlos Conference at CIRM, Brikhauser. Together with the Library foliation.lib written in Singular and available at http://www.impa.br/~hossein/) | Zbl

[19] Movasati, Hossein Abelian integrals in holomorphic foliations, Rev. Mat. Iberoamericana, Volume 20 (2004) no. 1, pp. 183-204 | MR | Zbl

[20] Movasati, Hossein Center conditions: rigidity of logarithmic differential equations, J. Differential Equations, Volume 197 (2004) no. 1, pp. 197-217 | DOI | MR | Zbl

[21] Movasati, Hossein Relative cohomology with respect to a Lefschetz pencil, J. Reine Angew. Math. (2006) no. 594, pp. 175-199 | DOI | MR | Zbl

[22] Pink, R. Hodge structures over function fields (preprint 1997)

[23] Sabbah, Claude Hypergeometric period for a tame polynomial, C. R. Acad. Sci. Paris Sér. I Math., Volume 328 (1999) no. 7, pp. 603-608 | DOI | MR | Zbl

[24] Scherk, J.; Steenbrink, J. H. M. On the mixed Hodge structure on the cohomology of the Milnor fibre, Math. Ann., Volume 271 (1985) no. 4, pp. 641-665 | DOI | MR | Zbl

[25] Schmid, Wilfried Variation of Hodge structure: the singularities of the period mapping, Invent. Math., Volume 22 (1973), pp. 211-319 | DOI | MR | Zbl

[26] Schulze, Mathias Good bases for tame polynomials, J. Symbolic Comput., Volume 39 (2005) no. 1, pp. 103-126 | DOI | MR | Zbl

[27] Shioda, Tetsuji The Hodge conjecture for Fermat varieties, Math. Ann., Volume 245 (1979) no. 2, pp. 175-184 | DOI | MR | Zbl

[28] Steenbrink, J. H. M. Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 525-563 | MR | Zbl

[29] Steenbrink, Joseph Intersection form for quasi-homogeneous singularities, Compositio Math., Volume 34 (1977) no. 2, pp. 211-223 | Numdam | MR | Zbl

[30] Steenbrink, Joseph; Zucker, Steven Variation of mixed Hodge structure. I, Invent. Math., Volume 80 (1985) no. 3, pp. 489-542 | DOI | MR | Zbl

[31] Usui, Sampei Effect of automorphisms on variation of Hodge structures, J. Math. Kyoto Univ., Volume 21 (1981) no. 4, pp. 645-672 | MR | Zbl

[32] Varčenko, A. N. Asymptotic Hodge structure on vanishing cohomology, Izv. Akad. Nauk SSSR Ser. Mat., Volume 45 (1981) no. 3, p. 540-591, 688 | MR | Zbl

[33] Zucker, Steven The Hodge conjecture for cubic fourfolds, Compositio Math., Volume 34 (1977) no. 2, pp. 199-209 | Numdam | MR | Zbl

Cited by Sources: