Class groups of abelian fields, and the main conjecture
Annales de l'Institut Fourier, Volume 42 (1992) no. 3, pp. 449-499.

This first part of this paper gives a proof of the main conjecture of Iwasawa theory for abelian base fields, including the case p=2, by Kolyvagin’s method of Euler systems. On the way, one obtains a general result on local units modulo circular units. This is then used to deduce theorems on the order of χ-parts of p-class groups of abelian number fields: first for relative class groups of real fields (again including the case p=2). As a consequence, a generalization of the Gras conjecture is stated and proved.

Le début de cet article est consacré à une démonstration de la Conjecture Principale en théorie d’Iwasawa, le cas p=2 étant inclus, par la méthode de systèmes eulériens due à Kolyvagin. Au cours de cette démonstration on obtient un résultat assez général sur le groupe quotient des unités semilocales par les unités cyclotomiques. Ensuite, on en tire des théorèmes donnant l’ordre des parties χ de certains groupes de classes pour les corps abéliens sur . D’abord, on traite des groupes de classes relatives comme Solomon vient de le fait pour p impair, et puis, les groupes de classes des corps abéliens réels. Ces méthodes permettent aussi une généralisation de la conjecture de Gras.

@article{AIF_1992__42_3_449_0,
     author = {Greither, Cornelius},
     title = {Class groups of abelian fields, and the main conjecture},
     journal = {Annales de l'Institut Fourier},
     pages = {449--499},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {42},
     number = {3},
     year = {1992},
     doi = {10.5802/aif.1299},
     zbl = {0729.11053},
     mrnumber = {93j:11071},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1299/}
}
TY  - JOUR
AU  - Greither, Cornelius
TI  - Class groups of abelian fields, and the main conjecture
JO  - Annales de l'Institut Fourier
PY  - 1992
DA  - 1992///
SP  - 449
EP  - 499
VL  - 42
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1299/
UR  - https://zbmath.org/?q=an%3A0729.11053
UR  - https://www.ams.org/mathscinet-getitem?mr=93j:11071
UR  - https://doi.org/10.5802/aif.1299
DO  - 10.5802/aif.1299
LA  - en
ID  - AIF_1992__42_3_449_0
ER  - 
%0 Journal Article
%A Greither, Cornelius
%T Class groups of abelian fields, and the main conjecture
%J Annales de l'Institut Fourier
%D 1992
%P 449-499
%V 42
%N 3
%I Institut Fourier
%C Grenoble
%U https://doi.org/10.5802/aif.1299
%R 10.5802/aif.1299
%G en
%F AIF_1992__42_3_449_0
Greither, Cornelius. Class groups of abelian fields, and the main conjecture. Annales de l'Institut Fourier, Volume 42 (1992) no. 3, pp. 449-499. doi : 10.5802/aif.1299. https://aif.centre-mersenne.org/articles/10.5802/aif.1299/

[1] J. Coates, p-adic L-functions and Iwasawa theory, Proc. Symp. Alg. Number theory, Durham (1975), 269-353. | Zbl

[2] R. Coleman, Division values in local fields, Invent. Math., 53 (1979), 91-116. | EuDML | MR | Zbl

[3] R. Coleman, Local units modulo circular units, Proc. Amer. Math. Soc., 89, 1 (1983), 1-7. | MR | Zbl

[4] L.J. Federer, Regulators, Iwasawa modules, and the Main conjecture for p = 2, in : N. KOBLITZ (ed.) : Number theory related to Fermat's Last Theorem, Birkhäuser Verlag (1982), 289-296. | Zbl

[5] R. Gillard, Unités cyclotomiques, unités semi-locales et Zl-extensions, Ann. Inst. Fourier, Grenoble, 29-1 (1979), 49-79. | EuDML | Numdam | Zbl

[6] R. Gold, J. Kim, Bases for cyclotomic units, Comp. Math., 71 (1989), 13-28. | EuDML | Numdam | MR | Zbl

[7] G. Gras, Sur l'annulation en 2 des classes relatives des corps abéliens, C.R. Math. Rep. Acad. Sci. Canada, 1 (1978), n°2, 107-110. | MR | Zbl

[8] R. Greenberg, On p-adic L-functions and cyclotomic fields I, Nagoya Math. J., 56 (1975), 61-77. | MR | Zbl

[9] R. Greenberg, On p-adic L-functions and cyclotomic fields II, Nagoya Math. J., 67 (1977), 139-158. | MR | Zbl

[10] B. Gross, p-adic L-series at s = 0, J. Math. Soc. Japan, 28 (1981), 979-994. | MR | Zbl

[11] K. Iwasawa, On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, 16 (1964), 42-82. | MR | Zbl

[12] K. Iwasawa, Lectures on p-adic L-functions, Annals of Math. Studies n°74, Princeton University Press, Princeton 1972. | MR | Zbl

[13] K. Iwasawa, On Zl-extensions of algebraic number fields, Ann. of Math., (2) (1979), 236-326. | Zbl

[14] M. Kolster, A relation between the 2-primary parts of the main conjecture and the Birch-Tate conjecture, Canad. Math. Bull., 32 (1989), 248-251. | MR | Zbl

[15] V. A. Kolyvagin, Euler systems. In : The Grothendieck Festschrift, vol. 2, 435-483, Birkhäuser Verlag 1990. | Zbl

[16] S. Lang, Cyclotomic fields II, Graduate Texts in Mathematics, Springer Verlag, 1980. | MR | Zbl

[17] B. Mazur, A. Wiles, Class fields of abelian extensions of Q, Invent. Math., 76 (1984), 179-330. | MR | Zbl

[18] K. Rubin, On the main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math., 93 (1988), 701-713. | MR | Zbl

[19] K. Rubin, The Main Conjecture, Appendix to the second edition of S. Lang : Cyclotomic fields, Springer Verlag, 1990.

[20] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math., 62 (1980), 181-234. | MR | Zbl

[21] W. Sinnott, Appendix to L. Federer, B. Gross : Regulators and Iwasawa modules, Invent. Math., 62 (1981), 443-457. | Zbl

[22] D. Solomon, On the class groups of imaginary abelian fields, Ann. Inst. Fourier, Grenoble, 40-3 (1990), 467-492. | Numdam | MR | Zbl

[23] L. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics n°83, Springer Verlag, 1982. | MR | Zbl

[24] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. Math., 131 (1990), 493-540. | MR | Zbl

Cited by Sources: