Families of codimension-one foliations and laminations are constructed in certain 3-manifolds, with the property that their transverse intersection with the boundary torus of the manifold consists of parallel curves whose slope varies continuously with certain parameters in the construction. The 3-manifolds are 2-bridge knot complements and punctured-torus bundles.
Nous construisons des familles de feuilletages de codimension 1 et de laminations dans certaines variétés de dimension 3, telles que leur intersection transverse avec le tore bordant la variété soit des courbes dont la pente varie continûment en fonctions des paramètres de la construction. Les variétés de dimension 3 considérées sont des complémentaires de nœuds à 2 ponts et des fibrés en tores troués.
@article{AIF_1992__42_1-2_313_0, author = {Hatcher, Allen}, title = {Some examples of essential laminations in 3-manifolds}, journal = {Annales de l'Institut Fourier}, pages = {313--325}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {42}, number = {1-2}, year = {1992}, doi = {10.5802/aif.1293}, zbl = {0759.57006}, mrnumber = {93e:57026}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1293/} }
TY - JOUR AU - Hatcher, Allen TI - Some examples of essential laminations in 3-manifolds JO - Annales de l'Institut Fourier PY - 1992 SP - 313 EP - 325 VL - 42 IS - 1-2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1293/ DO - 10.5802/aif.1293 LA - en ID - AIF_1992__42_1-2_313_0 ER -
%0 Journal Article %A Hatcher, Allen %T Some examples of essential laminations in 3-manifolds %J Annales de l'Institut Fourier %D 1992 %P 313-325 %V 42 %N 1-2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1293/ %R 10.5802/aif.1293 %G en %F AIF_1992__42_1-2_313_0
Hatcher, Allen. Some examples of essential laminations in 3-manifolds. Annales de l'Institut Fourier, Volume 42 (1992) no. 1-2, pp. 313-325. doi : 10.5802/aif.1293. https://aif.centre-mersenne.org/articles/10.5802/aif.1293/
[B] Essential laminations in Seifert-fibered spaces, preprint. | Zbl
,[FH1] The space of incompressible surfaces in a 2-bridge link complement, Trans. A.M.S., 305 (1988), 575-599. | MR | Zbl
and ,[FH2] Incompressible surfaces in punctured-torus bundles, Topology and its Appl., 13 (1982), 263-282. | MR | Zbl
and ,[G] Laminations transverse to foliations, to appear.
,[GO] Essential laminations in 3-manifolds, Annals of Math., 130 (1989), 41-73. | MR | Zbl
and ,[H] On the boundary curves of incompressible surfaces, Pac. J. Math., 99 (1982), 373-377. | MR | Zbl
,[HO] Affine lamination spaces for surfaces, Pac. J. Math., to appear. | Zbl
and ,[HT] Incompressible surfaces in 2-bridge knot complements, Invent. Math., 79 (1985), 225-246. | MR | Zbl
and ,[JN] Rotation numbers of products of circle homeomorphisms, Math. Annalen, 271 (1985), 381-400. | MR | Zbl
and ,Cited by Sources: