Let be a two dimensional totally real submanifold of class in . A continuous map of the closed unit disk into that is holomorphic on the open disk and maps its boundary into is called an analytic disk with boundary in . Given an initial immersed analytic disk with boundary in , we describe the existence and behavior of analytic disks near with boundaries in small perturbations of in terms of the homology class of the closed curve in . We also prove a regularity theorem for immersed families of analytic disks, consider several examples, and construct a totally real three torus in with a bizzare polynomially convex hull.
Soit une sous-variété totalement réelle de dimension 2 et classe dans . Une application continue de disque-unité fermé dans , qui est holomorphe sur et applique sa frontière dans , est appelée un disque analytique avec frontière dans . Etant donné un disque initial avec frontière dans , on détermine l’existence des disques près de avec les frontières dans les petites perturbations de à l’aide de la classe d’homologie de courbe dans . On démontre aussi un théorème de régularité pour des familles des disques et on construit un tore totalement réel de dimension 3 dans avec une étrange enveloppe convexe polynomiale.
@article{AIF_1987__37_1_1_0, author = {Forstneric, Franc}, title = {Analytic disks with boundaries in a maximal real submanifold of ${\bf C}^2$}, journal = {Annales de l'Institut Fourier}, pages = {1--44}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {37}, number = {1}, year = {1987}, doi = {10.5802/aif.1076}, zbl = {0583.32038}, mrnumber = {88j:32019}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1076/} }
TY - JOUR AU - Forstneric, Franc TI - Analytic disks with boundaries in a maximal real submanifold of ${\bf C}^2$ JO - Annales de l'Institut Fourier PY - 1987 SP - 1 EP - 44 VL - 37 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1076/ DO - 10.5802/aif.1076 LA - en ID - AIF_1987__37_1_1_0 ER -
%0 Journal Article %A Forstneric, Franc %T Analytic disks with boundaries in a maximal real submanifold of ${\bf C}^2$ %J Annales de l'Institut Fourier %D 1987 %P 1-44 %V 37 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1076/ %R 10.5802/aif.1076 %G en %F AIF_1987__37_1_1_0
Forstneric, Franc. Analytic disks with boundaries in a maximal real submanifold of ${\bf C}^2$. Annales de l'Institut Fourier, Volume 37 (1987) no. 1, pp. 1-44. doi : 10.5802/aif.1076. https://aif.centre-mersenne.org/articles/10.5802/aif.1076/
[1] Hulls of deformations in Cn, Trans. Amer. Math. Soc., 266 (1981), 243-257. | MR | Zbl
,[2] A note on polynomially convex hulls, Proc. Amer. Math. Soc., 33 (1972), 389-391. | MR | Zbl
,[3] Polynomial hulls with convex fibers, Math. Ann., 271 (1985), 99-109. | MR | Zbl
and ,[4] Stability of the polynomial hull of T2, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 8 (1982), 311-315. | Numdam | Zbl
,[5] Levi flat hypersurfaces in C2 with prescribed boundary : Stability, Annali Scuola Norm. Sup. Pisa cl. Sci., 9 (1982), 529-570. | Numdam | MR | Zbl
,[6] Envelopes of holomorphy of certain two-spheres in C2, Amer. J. Math., 105 (1983), 975-1009. | MR | Zbl
and ,[7] Differentiable manifolds in complex Euclidean spaces, Duke Math. J., 32 (1965), 1-21. | MR | Zbl
,[8] CR extensions near a point of higher type, Duke Math. J., 52 (1985), 67-102. | Zbl
and ,[9] Cohomology of maximal ideal spaces, Bull Amer. Math. Soc., 67 (1961), 515-516. | MR | Zbl
,[10] Calcul Différentiel, Hermann, Paris 1967. | MR | Zbl
,[11] A theorem on orientable surfaces in four-dimensional space, Comm. Math. Helv., 25 (1951), 205-209, North Holland, Amsterdam 1975. | MR | Zbl
and ,[12] Regularity of boundaries of analytic sets, (Russian) Math. Sb (N.S.) 117 (159), (1982), 291-334. English translation in Math. USSR Sb., 45 (1983), 291-336. | MR | Zbl
,[13] Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., 140 (1960), 94-123. | MR | Zbl
and ,[14] Maximum modulus sets, Ann. Inst. Fourier, 31-3 (1981), 37-69. | Numdam | MR | Zbl
and ,[15] The Theory of Hp spaces, Academic Press, New-York and London, 1970. | MR | Zbl
,[16] Stable Mappings and their Singularities, Graduate Texts in Mathematics, 41, Springer-Verlag, New-York, Heidelberg, Berlin 1973. | MR | Zbl
and ,[17] Holomorphic approximation and hyperfunction theory on a C1 totally real submanifold of a complex manifold, Math. Ann., 197 (1972), 287-318. | MR | Zbl
and ,[18] Grundzüge einer allgemeiner Theorie der linearen Integralgleichungen, Leipzig, 1912.
,[19] Families of analytic disks in Cn with boundaries in a prescribed CR manifold, Ann. Scuola Norm. Sup. Pisa, 5 (1978), 327-380. | Numdam | Zbl
and ,[20] The local hull of holomorphy of a surface in the space of two complex variables, Invent. Math., 67 (1982), 1-21. | MR | Zbl
and ,[21] On the hull of holomorphy of n-manifold in Cn, Annali Scuola Norm. Sup. Pisa sci., 11 (1984), 261-280. | Numdam | MR | Zbl
and ,[22] La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109 (1981), 427-474. | Numdam | MR | Zbl
,[23] Integral Equations and their Applications, Pergamon Press, Oxford, 1966. | MR | Zbl
,[24] Totally real Klein bottles in C2, Proc. Amer. Math. Soc., 82 (1981), 653-654. | MR | Zbl
,[25] The Topology of Fiber Bundles, Princeton University Press, Princeton, New Jersey, 1951. | Zbl
,[26] A hull with no analytic structure, J. Math. Mech., 12 (1963), 103-112. | MR | Zbl
,[27] Minimal surfaces in Kähler manifolds, Preprint. | Zbl
,[28] The Euler and Pontrjagin numbers of an n-manifold in Cn, Preprint. | Zbl
,[29] Lectures on Symplectic Manifolds, Regional Conference Series in Mathematics 29, Amer. Math. Soc., Providence, R.I., 1977. | MR | Zbl
,[30] Polynomially convex hulls and analyticity, J. Math. Mech., 20 (1982), 129-135. | MR | Zbl
,[31] A class of nonlinear Riemann-Hilbert problems for holomorphic functions, Math. Nachr., 116 (1984), 89-107. | MR | Zbl
,[32] Polynomially convex hulls with piecewise smooth boundaries, Math. Ann., 276 (1986), 97-104. | MR | Zbl
,[33] On the nonlinear Riemann - Hilbert problem. To appear.
,Cited by Sources: