Suppose is a nonnegative, locally integrable, radial function on , which is nonincreasing in . Set when and . Given and , we show there exists so that for all , if and only if exists with for all dyadic cubes Q, where . This result is used to refine recent estimates of C.L. Fefferman and D.H. Phong on the distribution of eigenvalues of Schrödinger operators.
Soit une fonction radiale, non négative, localement intégrable sur , qui ne s’accroît pas en . Posons où et . Étant donné et , nous démontrons qu’il existe de sorte que pour tout , si et seulement si, existe avec pour tout cube dyadique , où .
On se sert de ce résultat pour raffiner des approximations récentes de la part de C.L. Fefferman et D.H. Phong de la distribution de valeurs propres d’opérateurs de Schrödinger.
@article{AIF_1986__36_4_207_0, author = {Kerman, R. and Sawyer, Eric T.}, title = {The trace inequality and eigenvalue estimates for {Schr\"odinger} operators}, journal = {Annales de l'Institut Fourier}, pages = {207--228}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {36}, number = {4}, year = {1986}, doi = {10.5802/aif.1074}, zbl = {0591.47037}, mrnumber = {88b:35150}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1074/} }
TY - JOUR AU - Kerman, R. AU - Sawyer, Eric T. TI - The trace inequality and eigenvalue estimates for Schrödinger operators JO - Annales de l'Institut Fourier PY - 1986 SP - 207 EP - 228 VL - 36 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1074/ DO - 10.5802/aif.1074 LA - en ID - AIF_1986__36_4_207_0 ER -
%0 Journal Article %A Kerman, R. %A Sawyer, Eric T. %T The trace inequality and eigenvalue estimates for Schrödinger operators %J Annales de l'Institut Fourier %D 1986 %P 207-228 %V 36 %N 4 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1074/ %R 10.5802/aif.1074 %G en %F AIF_1986__36_4_207_0
Kerman, R.; Sawyer, Eric T. The trace inequality and eigenvalue estimates for Schrödinger operators. Annales de l'Institut Fourier, Volume 36 (1986) no. 4, pp. 207-228. doi : 10.5802/aif.1074. https://aif.centre-mersenne.org/articles/10.5802/aif.1074/
[1] A trace inequality for generalized potentials, Studia Math., 48 (1973), 99-105. | MR | Zbl
,[2] On the existence of capacitary strong type estimates in Rn, Ark. Mat., 14 (1976), 125-140. | MR | Zbl
,[3] Lectures on Lp-potential theory (preprint), Univ. of Umeä, 2 (1981).
,[4] Theory of Bessel potentials I, Ann. Inst. Fourier, 11 (1961), 385-475. | Numdam | MR | Zbl
and ,[5] Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv., 60 (1985), 217-246. | MR | Zbl
, and ,[6] Lp estimates for fractional integrals and Sobolev inequalities, with applications to Schrödinger operators, Comm. Partial Differential Equations, 10 (1985), 1077-1116. | MR | Zbl
and ,[7] Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), 241-250. | MR | Zbl
and ,[8] Regularity properties of Riesz potentials, Ind. U. Math. J., 28 (1979), 257-268. | MR | Zbl
,[9] The local regularity of solutions of degenerate elliptic equations, Comm. in P.D.E., 7 (1982), 77-116. | MR | Zbl
, and ,[10] The Uncertainty Principle, Bull. A.M.S., (1983), 129-206. | MR | Zbl
,[11] Differentiation of Integrals in Rn, Lecture Notes in Math., vol. 481, Springer-Verlag, Berlin and New York, 1975. | MR | Zbl
,[12] Continuity and compactness of certain convolution operators, Institut Mittage-Leffler, Report No. 9, (1982).
,[13] Weighted norm inequalities for potentials with applications to Schrödinger operators, Fourier transforms and Carleson measures, announcement in Bull. A.M.S., 12 (1985), 112-116. | MR | Zbl
and ,[14] On capacitary estimates of the strong type for the fractional norm, Zap. Sen. LOMI Leningrad, 70 (1977), 161 - 168. | Zbl
,[15] Weighted norm inequalities for fractional integrals, Trans. A.M.S., 192 (1974), 251-275. | MR | Zbl
and ,[16] Methods of Mathematical Physics, Vol. I, Academic Press, New York and London, 1972. | Zbl
and ,[17] Weighted norm inequalities for fractional maximal operators, C.M.S. Conf. Proc., 1 (1980), 283-309. | MR | Zbl
,[18] A characterization of a two-weight norm inequality for maximal operators, Studia Math., 75 (1982), 1-11. | MR | Zbl
,[19] The characterization of functions arising as potentials I, Bull. Amer. Math. Soc., 67 (1961), 102-104, II (IBID), 68 (1962), 577-582. | Zbl
,[20] Singular Integrals and Differentiability Properties of Functions, 2nd edition, Princeton University Press, 1970. | MR | Zbl
,[21] Fractional integrals on weighted Hp and Lp spaces, Trans. Amer. Math., Soc., 287 (1985), 293-321. | Zbl
and ,Cited by Sources: