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ON THE NON-VANISHING OF p-ADIC HEIGHTS ON
CM ABELIAN VARIETIES, AND THE ARITHMETIC

OF KATZ p-ADIC L-FUNCTIONS

by Ashay A. BURUNGALE & Daniel DISEGNI

Abstract. — Let B be a simple CM abelian variety over a CM field E, p a
rational prime. Suppose that B has potentially ordinary reduction above p and
is self-dual with root number −1. Under some further conditions, we prove the
generic non-vanishing of (cyclotomic) p-adic heights on B along anticyclotomic Zp-
extensions of E. This provides evidence towards Schneider’s conjecture on the non-
vanishing of p-adic heights. For CM elliptic curves over Q, the result was previously
known as a consequence of works of Bertrand, Gross–Zagier and Rohrlich in the
1980s. Our proof is based on non-vanishing results for Katz p-adic L-functions and
a Gross–Zagier formula relating the latter to families of rational points on B.
Résumé. — Soient B une variété abélienne CM simple sur un corps CM E, p

un premier rationnel. On suppose que B a une réduction potentiellement ordi-
naire au dessus de p et est auto-duale avec signe −1. Sous quelques hypothèses
supplementaires, on montre la non-annulation générique des hauteurs p-adiques
(cyclotomiques) sur B le long de Zp-extensions anticyclotomiques de E. Cela con-
firme partiellement la conjecture de Schneider sur la non-annulation des hauteurs
p-adiques. Pour les courbes elliptiques CM sur Q, le résultat était déjà connu
comme conséquence de travaux de Bertrand, Gross–Zagier et Rohrlich dans les
années 80. Notre preuve est basée sur des résultats de non-annulation pour les
fonctions L p-adiques de Katz, et sur une formule de Gross–Zagier qui les relie à
des familles de points rationnels sur B.

1. Introduction and statements of the main results

Let B be an abelian variety over a number field E, and let B∨ be its dual.
Let p be a prime and let L be a finite extension of Qp. The Néron–Tate
height pairing on B(E′)Q ×B∨(E′)Q, where E′ is a finite extension of E,
admits a p-adic analogue (see e.g. [34])

(1.1) B(E′)Q ×B∨(E′)Q → L

Keywords: Keywords: p-adic heights, Katz p-adic L-functions, CM abelian varieties.
2020 Mathematics Subject Classification: 11G50, 11G10, 11G40.



2078 Ashay A. BURUNGALE & Daniel DISEGNI

depending on the choices of a homomorphism ` : E×\E×A∞ → L (“p-adic
logarithm”) and on splittings of the Hodge filtration on H1

dR(B/Ev) at
the primes v|p; in the potentially ordinary case under consideration in this
paper, there are canonical choices (the “unit root” subspaces) for the Hodge
splittings.
While it is a classical result that the Néron–Tate height pairing is non-

degenerate, the pairing (1.1) can vanish for some choices of `. Suppose
however that ` = `Q ◦ NE/Q with `Q a p-adic logarithm of Q such that
`Q|1+pZp is nontrivial (we call such ` a cyclotomic logarithm). Then it is
conjectured [39] that (1.1) is non-vanishing. This long-standing conjecture
is only known in a few special cases: for CM elliptic curves, thanks to
Bertrand [6], and also for elliptic curves over Q at supersingular primes.(1)

The stronger statement that (1.1) is non-degenerate is also conjectured to
be true; this is not known in any cases of rank higher than 1. The non-
degeneracy conjecture has arithmetic consequences: it allows to formally
deduce the p-adic Birch and Swinnerton-Dyer conjecture from the Iwasawa
main conjecture for B.(2)

The pairing (1.1) is equivariant for the actions of Gal(E′/E) and of
K := End0(B) on both sides; for our purposes we can then assume that
B is simple, that the coefficient field L is sufficiently large and has the
structure of aK⊗Qp-algebra, and then decompose the pairing into isotypic
components

(1.2) B(χ)⊗L B∨
(
χ−1)→ L

for the Gal(E′/E)-action. Here and in the rest of the paper, if R is a
K⊗Qp-algebra and χ is an R×-valued character of Gal(Eab/E), we define

B(χ) :=
(
B(Eab)⊗K⊗Qp

R(χ)
)Gal(Eab/E)

,

where R(χ) is a rank-1 R-module with Galois action by χ.
The most significant result of this paper is the proof that, under some

assumptions, the non-vanishing conjecture for (1.2) is true “generically”
when B is a p-ordinary CM abelian variety over a CM field E and χ varies
among anticyclotomic characters of E unramified outside p.
The method of proof, different from that of previous results on this topic,

is automorphic. (In particular, the approach does not involve transcendence
arguments.) It combines two ingredients. The first is a pair of nonvanishing

(1)This was observed in [4]; see [31, Section 4.5] for the comparison between the definition
of the height pairing used in [4] and the “standard” definition of Zarhin and Nekovář [34].
(2)See [39]. For further applications to the classical Birch and Swinnerton–Dyer formula,
see [20, 31, 37].
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ON THE NON-VANISHING OF p-ADIC HEIGHTS 2079

results for Katz p-adic L-functions due to Hida, Hsieh, and the first author
(in turn relying on Chai’s results on Hecke-stable subvarieties of a mod
p Shimura variety [15, 16, 17]). The second ingredient is a Gross–Zagier
formula relating derivatives of Katz p-adic L-functions to families of ra-
tional points on CM abelian varieties. We deduce this formula from work
of the second author, by an argument employed by Bertolini–Darmon–
Prasanna [5] in a different context.
In the rest of this section we describe the main results in more detail.

1.1. Non–vanishing of p-adic heights

Let B/E be a simple CM abelian variety over a CM field E, i.e.
K := End0(B) is a CM field of degree [K : Q] = 2 dimB. Let F be
the maximal totally real subfield of E, and let η = ηE/F be the associated
character of F×\F×A .

1.1.1. Assumptions

The abelian variety B is associated with a Hecke character

λ = (λτ )(τ : K↪→C) : E×\E×A → (K ⊗C)×

([42, Section 19]). Suppose that λ satisfies the condition

(1.3) λ|F×A = η| · |−1
A ;

this holds in particular whenever B arises as the base-change of a real-
multiplication abelian variety A/F [42, Theorem 20.15]. It implies that the
for each τ there is a functional equation with sign w(λ) := ε(1, λτ ) ∈ {±1}
(independent of τ) relating L(s, λτ ) to L(2− s, λτ ). We will assume that

(1.4) w(λ) = −1.

Finally, we assume that

(1.5) B has potentially ordinary reduction at every prime of E above p.

1.1.2. Anticyclotomic regulators

Let E−∞ (respectively E+
∞) be the anticyclotomic Z[F :Q]

p -extension (re-
spectively cyclotomic Zp-extension) of E and, for a prime ℘ of F above
p, let E−℘,∞ ⊂ E−∞ be the ℘-anticyclotomic subextension, i.e. the maxi-
mal subextension unramified outside the primes above ℘ in E; finally, let

TOME 70 (2020), FASCICULE 5



2080 Ashay A. BURUNGALE & Daniel DISEGNI

E∞ := E−∞E
+
∞ and E℘,∞ = E−℘,∞E

+
∞. If • is any combination of subscripts

∅, ℘ and superscripts ∅, +, − (we convene that ‘∅’ denotes no symbol), the
corresponding infinite Galois group is

Γ• := Gal(E•,∞/E) .

Let L be a finite extension of a p-adic completion Kw of K. If • is any
set of sub- and superscripts as above, we let

Λ• := OL[[Γ•]]⊗ L, Y• := Spec Λ•.

When we want to emphasise the role of a specific choice of L, we will write
Λ•, L, Y•, L.
For ◦ = ℘, ∅ we let

χuniv, ◦ : Γ−◦ → Λ−,×◦
be the tautological anticyclotomic character.
We then have a Λ−◦ -module

B(χuniv,◦) :=
(
B(E)⊗ Λ−◦ (χuniv,◦)

)Gal(E/E)
,

whose specialisation at any finite order character χ ∈ Y − is B(χ), and
height pairings ([36, Section 2.3], see also [35, Section 11])

(1.6) B(χuniv,◦)⊗Λ◦ B
∨ (χ−1

univ,◦
)
→ Λ−◦

associated with choices of a p-adic logarithm ` and of Hodge splittings. We
suppose that ` : Gal(Eab/E)→ L is the cyclotomic logarithm and that the
Hodge splittings are given by the unit root subspaces.

Theorem 1.1. — Let B be a simple CM abelian variety over the CM
field E with associated Hecke character λ satisfying (1.3), (1.4), and (1.5);
suppose that the extension E/F is ramified. Let p be a rational prime, and
suppose that p - 2DFh

−
E , where h

−
E = hE/hF is the relative class number

of E/F and DF is the absolute discriminant of F . Let ℘ be a prime of F
above p, and let L ⊃ Kw ⊃ K be as above.

Then for almost all finite-order characters χ of Γ−℘ , the pairing (1.2)

B(χ)⊗L B∨
(
χ−1)→ L

is non-vanishing. Equivalently, the paring (1.6) for ◦ = ℘ (hence also for
◦ = ∅) is nonzero.

Here “almost all” means that the set of finite-order characters χ ∈ Y −℘
which fail to satisfy the conclusion of the theorem is not Zariski dense in
Y −℘ . When dim Y −℘ = 1 (e.g. F = Q), this is equivalent to such set of
exceptions being finite.

ANNALES DE L’INSTITUT FOURIER
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1.2. Gross–Zagier formula for the Katz p-adic L-function

As recalled in Section 2.4, under our conditions and assuming that the
extension L ⊃ Kw splits E, the character λ (more precisely, its w-adic
avatar) has a p-adic CM type ΣE ⊂ Hom(E,L) of E. We also identify ΣE
with (i) a choice, for each prime ℘|p of F , of one among the two primes of
E above ℘, and (ii) an element of Z[Hom(E,L)]. To the CM type ΣE is
attached the Katz p-adic L-function

LΣE ∈ Λ.

It interpolates the values L(0, λ′−1) for characters λ′ whose infinity type
lies in a certain region of Z[Hom(E,Cp)]; this region is uniquely determined
by ΣE and contains in particular the infinity type ΣE .
Let λ∗(x) := λ(xc), where c denotes the complex conjugation of E/F .

The root number assumption (1.4) implies that LΣE (λ) = LΣEc(λ∗)
= L(0, λ∗−1) = L(0, λ−1) = L(1, λ) = L(B, 1) = 0, and more generally
that the function LΣEc, λ∗ : χ′ 7→ LΣEc(λ∗χ′) vanishes along Y − ⊂ Y . We
may then consider the cyclotomic derivative

L′ΣEc, λ∗ : χ 7→ d
dsLΣEc

(
λ∗χ · χscyc

) ∣∣
s=0,

for χ ∈ Y −. (Here χcyc is the p-adic cyclotomic character of E×A).
For ◦ = ∅, ℘, let K −

◦ be the field of fractions of Λ−◦ and let B(χuniv,◦)K −
◦

:= B(χuniv,◦)⊗Λ−◦ K −
◦ ; similarly for B∨(χ−1

univ)K −
◦
.

Theorem 1.2. — Let ◦ = ∅ or ◦ = ℘. Under the assumptions of Theo-
rem 1.1, there is a ‘pair of points’

P ⊗P∨ ∈ B
(
χ−1

univ,◦
)
K −
◦
⊗B(χuniv,◦)K −

◦

satisfying
〈P,P∨〉◦ = L′ΣEc, λ∗ |Y −◦

in K −
◦ , where 〈 , 〉◦ is the height pairing (1.6), and we identify Γ+ ∼= Zp

via the cyclotomic logarithm.

The construction of the points depends on some choices, analogously
to how the construction of rational points on an elliptic curve over Q of
analytic rank one depends on the choice of an auxiliary imaginary quadratic
field. Like in that situation, it comes from Heegner points and relies on a
non-vanishing result for L-functions – in this case, the results of Hida and
Hsieh [25, 28] for anticyclotomic Katz p-adic L-functions. Nevertheless the
auxiliary setup does not seem to be explored in regard to the cyclotomic
derivative.
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The following Conjecture 1.3, which can be regarded as analogous to the
results of Kolyvagin, would imply that the ambiguity is rather mild.

Conjecture 1.3. — Let ◦ = ∅ or ◦ = ℘ for a prime p of F . The
K −
◦ -vector spaces B

(
χ−1

univ,◦
)
K −
◦
, B∨(χuniv,◦)K −

◦
have dimension one.

When E is an imaginary quadratic field and B is the base-change of an
elliptic curve over Q, the conjecture is part of the main result of Agboola
and Howard in [2].

Remark 1.4. — It is natural to wonder about the arithmetic significance
of the values

(1.7) LΣ′
E

(λ∗)

for CM types Σ′E such that

δ(Σ′E) := |Σ′E ∩ ΣE | > 1.

We would like to suggest that if δ(Σ′E) 6 r := ords=1L(B, s), the cyclo-
tomic order of vanishing of LΣ′

E
at λ∗ (that is, the smallest k such that the

cyclotomic derivative L(k)
Σ′
E

(λ∗) 6= 0) should be

(1.8) ordcycLΣ′
E
, λ∗

?= r − δ(ΣE′)

and that there should be an explicit formula relating

L
(r−δ(ΣE′ ))
Σ′
E

(λ∗)

to a p-adic regulator. When [E : Q] is a quadratic field and λ comes from an
elliptic curve, (1.8) was conjectured by Rubin [38] together with a precise
formula, and proved by himself when r 6 1.

Theorem 1.2 provides evidence for the general case of (1.8) in one of the
cases with r 6 1, whereas the other such case is treated, when [E : Q] = 2,
by Rubin’s formula as generalised by Bertolini–Darmon–Prasanna [5].(3)

The particular interest of the case of [E : Q] > 2 lies of course in the
possibility of having δ(Σ′E) > 2: our speculation is also inspired from the
recent work of Darmon–Rotger [19] on p-adic L-functions related to certain
Mordell–Weil groups of rank 2.

(3)We hope to present a generalisation of this formula in a sequel to the present paper.

ANNALES DE L’INSTITUT FOURIER
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1.3. An arithmetic application

For an elliptic curve E/Q and a prime p, let us refer to the implication

corankZp Selp∞(E/Q) = 1 =⇒ ords=1L(s, E/Q) = 1

as the “p-converse theorem” (to the one of Gross–Zagier, Kolyvagin and
Rubin). In [13], the authors establish the p-converse theorem in the case of
p-ordinary CM elliptic curves (complementing the earlier works [43, 46]).
The approach crucially relies on the auxiliary setup introduced in the proof
of the main results here, and also on the main results themselves (Theo-
rem 1.1 and Theorem 1.2).

1.4. Context and strategy of proof

When E is an imaginary quadratic field and B = AE for a CM
elliptic curve A/Q, Theorem 1.1 is a consequence (see Rubin [3]) of the
aforementioned result of Bertrand together with Mazur’s conjecture on the
generic non-vanishing of Heegner points along anticyclotomic extensions
(which in that case is proved, via the Gross–Zagier formula, by the generic
non-vanishing of derivatives of L-functions established by Rohrlich). Our
method is rather different (although not distant in spirit): we first deduce
the formula of Theorem 1.2 from the p-adic Gross–Zagier formula of the
second author [21]. Theorem 1.1, or rather its more precise version Theo-
rem 2.11 below, is then a consequence of Theorem 1.2 and non-vanishing
results of the first author [7] (or their refinement in [11]) for the derivatives
of Katz p-adic L-functions. As a corollary we recover Mazur’s conjecture,
which in our case was proved by Aflalo–Nekovář [1] as a generalisation of
work of Cornut and Vatsal. Note further that our method would readily
adapt to cover the case of (generalised) Heegner cycles upon availability
of a suitably general p-adic Gross–Zagier formula for them. The second
author expects to present such a formula as part of a forthcoming version
of [22].(4)

A parallel approach is followed by the first author in a series of works [9],
[10] establishing, without assumptions of complex multiplication, the gene-
ric non-vanishing of Heegner points and cycles, or more precisely of (the
reduction modulo p of) their images under the Abel–Jacobi map (also see [8]

(4)Note added in proof: this formula has now been proven.

TOME 70 (2020), FASCICULE 5



2084 Ashay A. BURUNGALE & Daniel DISEGNI

and [12]).(5) The strategy to prove Theorem 1.2 is inspired from the proof
of Rubin’s formula in [5]. As in [5], we can remark that we have established
a result for a motive attached to the group U(1) by making use of p-adic
L-functions for U(1) × U(2). Readers with a generous attitude towards
mathematical induction might find in this a good omen for future progress.
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2. Proofs

2.1. CM theory

We start by reviewing some basic results in the theory of Complex Mul-
tiplication. The classical reference is [42] (see especially Sections 18-20); see
also [18, Section 2.5].

Let B be an abelian variety of dimension d over a field E, such that
End0(B) = K is a CM field of degree 2d. Denote by M ⊂ K the maximal
totally real subfield. The action of K on LieB gives, after base-change
from E to an extension ι : E ↪→ C which splits K, a CM type (K,Σ)
over C, namely Σ = Σ(B, ι) is a set of representatives for the action of
Gal(K/M) on Hom(K,C). Finally, to the CM type (K,Σ) we can associate
its reflex CM type (K∗,Σ∗); the reflex field K∗ = K∗(ι) (which depends
on ι) comes as a subfieldK∗ ⊂ E. The set ΣE := InfE/K∗ Σ∗ ⊂ Hom(E,C),
consisting of those embeddings whose restriction to K∗ belongs to Σ∗, is
a CM type of E. Finally, the CM type Σ(ι) gives rise to a homomorphism
NΣ(ι)∗ : K∗(ι)× → K× called the reflex norm. The homomorphism

(2.1) NΣE := NΣ(ι)∗ ◦NE/K∗(ι) : E× → K×

(5)Note that, as p-adic heights factor through the p-adic Abel–Jacobi map, their non-
vanishing is a finer statement.
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is independent of choices.
A CM type Σ′ of K ′ with values in an extension C of Qp splitting E

is said to be a p-adic CM type(6) if its elements induce pairwise distinct
p-adic places of K ′. This condition can only be satisfied if all primes p′+ of
K ′+ (the maximal totally real subfield of K ′) above p split in K ′. We may
and will identify a p-adic CM type with a set of primes p′ of K ′ containing
exactly one prime above each p′+|p of K ′+.

Lemma 2.1. — Suppose that B has potentially ordinary reduction at
all primes of E above p. Then:

(1) for each embedding ιp : E ↪→ Qp, the set Σ(B, ιp) is a p-adic CM
type of K;

(2) the prime p is totally split in K∗;
(3) for each ιp : E ↪→ Qp, the set Σ∗(ιp) := Σ(B, ιp)∗ is a p-adic CM

type of K∗.

Proof. — Part (1), which is in fact equivalent to the hypothesis of the
lemma, can be checked after base-change from E to a finite extension over
which B acquires good reduction. There it becomes a well-known immedi-
ate consequence of the Shimura–Taniyama formula [18, (2.1.4.1)]. Part (1)
implies part (2) by [29, Proposition 7.1]. Part (3) is implied by part (2). �
The main theorem of Complex Multiplication attaches to B a character

λ : E×A∞ → K×

such that

(2.2)
for all τ : E ↪→ C,

λτ := τ ◦ λ ·
(
Nτ

ΣE ,∞
)−1 : E×A → C× satisfies λτ|E× = 1,

(2.3) λ(x)λ(x)ρ = |x|−1
A∞ for all x ∈ E×A∞ .

Here ρ is the complex conjugation in K and Nτ
ΣE ,∞ : E×∞ → K×∞ → K×τ is

the continuous extension of NΣE . We say that λτ is an an algebraic Hecke
character of infinity type ΣτE , where ΣτE ⊂ Hom(E,C) is defined by

Nτ
ΣE,∞(x) =

∏
ι∈Στ

E

ι(x) for all x ∈ E×∞.

The L-function of B is

(2.4) L(B, s) = L(s, λ) := (L(s, λτ ))τ∈Hom(K,C) ∈ K ⊗C ∼= CHom(K,C);

it satisfies a functional equation with centre at s = 1.

(6) In some of the literature this is called a p-ordinary CM type.

TOME 70 (2020), FASCICULE 5
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Suppose now that B = AE for an abelian variety A/F with End0(A)
= M (the maximal totally real subfield of K). Then E = K∗F [42, Re-
mark 20.5].
Suppose conversely that λ is a Hecke character of E satisfying the con-

ditions (2.2), (2.3) for a CM type (K,Σ). Then by a theorem of Casselman
(e.g. [18, Theorem 2.5.2]), there is an abelian variety B = Bλ/E, unique up
to E-isogeny, satisfying (2.4). The abelian variety B is simple if and only
if the CM type (K,Σ) is not induced from a CM type of a subfield of K.

2.2. Theta lifts of Hecke characters

Let Q denote an algebraic closure of K, let χ0 : E×\E×A → Q× be finite
order character, and let ψ be a Hecke character of E with the same CM
type as the character λ from the Introduction. We suppose that

(2.5) χ0|F×A = ω := η · ψ|F×A · | |AF
.

LetK ′ ⊂ Q be a CM extension ofK containing the values of χ0 and ψ|E×A∞ .

2.2.1. The abelian variety associated with ψ

By construction, ψ satisfies conditions (2.2), (2.3) for the CM type (K ′,
InfK′/K Σ), and in particular it is associated with an abelian variety Bψ,K′
/E of dimension [K ′ : Q]/2, which is uniquely determined up to E-isogeny,
has CM by K ′, and is K-linearly isogenous to a sum of copies of a sim-
ple CM abelian variety. (Note that Bψ,K′ depends on the choice of K ′:
if K ′ ⊂ K ′′ is a finite extension of CM fields of degree d′, then Bψ,K′′ ∼
B⊕d

′

ψ,K′ .) We denote by B\ψ any one of the simple E-isogeny factors of Bψ,K′ .
On the other hand, the theta correspondence attaches to ψ a Gal(M/Q)-

conjugacy class (for some totally real field M ⊂ K ′) of cuspidal automor-
phic representations σ = (στM )(τM ∈Hom(M,C)) of ResF/QGL2 of parallel
weight 2; namely στM = θ(ψτ ′) if τ ′ : K ′ ↪→ C satisfies τ ′|M = τM .(7)

Let A := Aσ/F be the simple abelian variety associated with σ = θ(ψ),
which is determined uniquely up to F -isogeny. Suppose that

(2.6) ε
(
1/2, σE ⊗ χ−1

0
)

= −1

As discussed in the introductions to [45] or [21], the condition (2.6) guaran-
tees that A can be found as an isogeny factor of the Jacobian of a Shimura

(7) In the terminology of [21, 45], σ is an M -rational representation.
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curve over F ; its endomorphism algebra End0A is a totally real field of
dimension d = dimA, which can be identified with M .

For any embedding τM : M ↪→ C, we have L(s, στM ) = L(s, ψτ ′) for
τ ′ : K ↪→ C such that τ ′|M = τM . The following consequences of this
identity are proved in [23] (note that the CM type of ψτ ′ is ΣE):

(1) A acquires complex multiplication by K over some finite extension
of F , and in fact, as remarked before, a minimal such extension is
K∗F = E;

(2) AE is isogenous to a sum of copies of the abelian variety B\ψ defined
above.

As M is contained in the maximal real subfield of K ′, the dimension
[M : Q] of AE divides the dimension [K ′ : Q]/2 of Bψ,K′ ; hence in fact
Bψ,K′ is K-linearly isogenous to a sum of copies of AE , i.e. for some r > 1,

(2.7) Bψ,K′ ∼ A⊕rE .

2.3. Rankin–Selberg p-adic L-function

Moving to a more general context for this subsection only, let F be a
totally real field, E a CM quadratic extension of F . Let M be a number
field and let σ be anM -rational automorphic representation of ResF/QGL2
of parallel weight 2, with central character ω. LetMv be a p-adic completion
of M , let L be a finite extension of Mv, and let

χ0 : E×\E×A → L×

be a finite-order character satisfying χ0|F×A = ω. (We will later specialise to
the situation σ = θ(ψ) considered in Section 2.2). We recall the definition
of a p-adic Rankin–Selberg L-function on YL attached to the base-change
σE of σ to E twisted by χ−1

0 .
Given a place ℘|p of F , we say that σ is nearly ordinary at ℘ with

unit characters α℘ if, after possibly enlarging L, there exist characters
α℘ : F×℘ → O×L , such that σ℘⊗L is either special α℘ ·St with character α℘,
or irreducible principal series Ind(| · |℘α℘, β℘) (un-normalised induction) for
some other character β℘.

Theorem 2.2. — Suppose that for all ℘|p, σ is nearly ordinary at ℘.
Then there is a function

Lp
(
σE ⊗ χ−1

0
)
∈ Λ
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characterised by the interpolation property

Lp
(
σE ⊗ χ−1

0
)

(χ′) = ep
(
σιE ⊗ (χ0χ

′)ι,−1) · L(p) (1/2, σιE ⊗ (χ0χ
′)ι,−1)

Ωισ
for all sufficiently p-ramified(8) finite order characters χ′ : Γ → Q× and
ι : Q ↪→ C. Here

Ωισ := L(1, σι, ad) and ep
(
σιE ⊗ (χ0χ

′)ι,−1) =
∏
℘|p

e℘
(
σιE ⊗ (χ0χ

′)ι,−1)
with

(2.8) e℘
(
σιE ⊗ (χ0χ

′)ι,−1) = ε
(
0, ι(α−1

℘ χ0,pχ
′
p)
)
· ε
(
0, ι(α−1

℘ χ0,pcχ
′
pc)
)
.

Proof. — This is essentially [21, Theorem A]. Our Lp(σE ⊗ χ−1
0 ) differs

from the one of loc. cit. by the involution χ′ 7→ χ′−1, the shift χ−1
0 , and

some algebraic constants. Regarding the interpolation factors, note that if
χ′p, χ′pc are sufficiently ramified then all local L-values in the interpolation
formula from [21] are equal to 1. The relation between the Gauß sums used
in [21] and our epsilon factors (2.8) follows from e.g. [14, (23.6.2)]. �

2.4. Katz p-adic L-function

From now until the end of this paper, let K, E, ΣE be as in Section 2.1.
Fix a p-adic place w of K, and denote by v be the induced place of the
maximal real subfield M ⊂ K. We let Q ⊂ Qp ⊃ Kw be algebraic closures
of K and of Kw, and let Cp be the completion of Qp. We also let L be a
sufficiently large finite extension of Kw inside Qp as in the introduction.

2.4.1. p-adic CM type associated with w

Let N (w)
ΣE ,p : E×p → K×p → K×w be the continuous extension of NΣE .

We let

Σ(w)
E :=

{
p |p prime of E : | ·

∣∣∣w ◦N (w)
ΣE , p

∣∣∣
E×p

is a non-trivial norm on E×p
}
,

which, by Lemma 2.1 and the construction of NΣE , has the property that
Σ(w)
E tΣ(w)

E c is the set of all primes p of E above p. Hence Σ(w)
E is a p-adic

CM type of E, identified with a set of embeddings E ↪→ Qp.

(8)See the proof for the precise meaning.
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Lemma 2.3. — Every prime of F above p splits in E, and the CM type
Σ(w)
E is a p-adic CM type of E.

Proof. — The first assertion is Lemma 2.1part (2). The second assertion
follows from Lemma 2.1part (3), after noting that Σ(w)

E = InfE/K∗ Σ∗(ιp)
for any ιp : E ↪→ Qp inducing a prime in ΣE . �

2.4.2. p-adic Hecke characters

Assume that L splits E, and let

χ : E×\E×A∞ → L×

be a locally algebraic p-adic character. We say that χ is a Hecke character
of p-adic infinity type k ∈ Z[Hom(E,L)] if there exists an open subgroup
U ⊂ E×A∞ such that

χ(t) =
∏

σ∈Hom(E,L)

t−kσσ

for t ∈ U . Note that this definition differs from the one in some of the
literature (e.g. [27] and [25]) by a sign in the exponents; it agrees with [5].
If χ is a locally algebraic character of p-adic infinity type k and ι : L→

C is an embedding, we can define the ι-avatar χι : E×A → C× similarly
to [32, Definition 1.5]. The embedding ι induces an isomorphism Hom(E,L)
→ Hom(E,C) by σ 7→ ι ◦ σ; the infinity type kι ∈ Z[Hom(E,C)] of χι
corresponds to k under this bijection. The association χ → χι defines a
bijection between locally algebraic Hecke characters over E with values in
L and arithmetic Hecke characters over E in the usual sense.
For example, if λ is as in Section 2.1, the character

λ(w)(x) := λ(x)N (w)
ΣE , p(xp)

−1 : E×\E×A∞ → K×w

is a Hecke character of p-adic infinity type Σ(w)
E .(9) The place w being fixed,

in the rest of this paper we will often abuse notation by simply writing λ
in place of λ(w).

2.4.3. p-adic L-function

Let now L be an extension of Kw splitting E, and let ΣE be a p-adic
CM type of E over some L. Let E]∞ be a finite extension of E∞ contained
in Eab, and let Γ] := Gal(E]∞/E). Let Λ] := Zp[[Γ]]]L, Y ] := Spec Λ].

(9)Strictly speaking this assertion holds after considering λ(w) as valued in some exten-
sion L ⊃ Kw splitting E.
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By [27, 30] and the first assertion of Lemma 2.3, there is an element

LΣE ∈ Λ]

uniquely characterised by the interpolation property that we now describe.
The domain of interpolation consists of locally algebraic p-adic Hecke char-
acters λ′ : Γ] → Q×p with infinity type

kΣ(w)
E + κ(1− c)

for k ∈ Z, κ ∈ Z[Σ(w)
E ] such that

(i) k > 1, or
(ii) k 6 1 and kΣ(w)

E + κ ∈ Z>0[Σ(w)
E ].

The interpolation property is then the following. There exist explicit p-adic
periods

ΩΣE = (ΩΣE , p)p∈ΣE ∈
(
Z̄×p
)ΣE

and, for each complex CM type ΣE,∞ of E, complex periods

ΩΣE,∞ = (ΩΣE,∞,τ )τ ∈ΣE,∞ ∈
(
C×
)ΣE,∞

(both defined in [27, (4.4)]) such that for any character λ′ : Γ→ Q×p in the
domain of interpolation, and any ι : L(λ′) ↪→ C, we have(10)

ι

(
LΣE (λ′)
Ωk+2κ

ΣE

)

= ep
(
(λ′)−1)ι ) · L(p) (0, ((λ′)−1)ι

)
Ωk+2κ

ΣE, ι,
· π

κΓΣ(kΣE, ι + κ)
(=ϑ)κ ·

[O×E : O×F ]√
|DF |

In the interpolation formula, ΣE,ι is the complex CM type induced from
Σ(w)
E via ι, and we then identify κ with κι ∈ Z>0[ΣE,ι]; when k ∈ Z appears

in the exponent of one of the periods ΩΣ it is considered as k ·
∑
τ ∈Σι

E
τ .

If χ = (λ′)−1 is ramified at all p|p, the p-Euler factor is given by

ep(χι) =
∏

p∈Σ(w)
E

e(χιp)

for (dropping all superscripts ι)

(2.9) e(χp) = L(0, χp)
ε(0, χp)L

(
1, χ−1

p

)
(10)Note that we are ignoring interpolation factors at places away from p appearing
elsewhere in the literature, since those, while non-integral, can be interpolated by poly-
nomial functions on Y ].

ANNALES DE L’INSTITUT FOURIER



ON THE NON-VANISHING OF p-ADIC HEIGHTS 2091

Finally, ΓΣ(kΣE,ι + κ) =
∏
τ ∈ΣE, ι Γ(k+ κτ ) for the usual Γ-function, and

ϑ ∈ E as in [28, Section 3.1]. All local epsilon factors in this paper are
understood with respect to some uniform choice of additive characters of
Ep of level one for all p|p.
For a later consideration, we fix a sufficiently large extension E] as above

and consider the restriction of LΣE to certain open subsets of Y ]: if λ0 is
a p-adic Hecke character factoring through Γ] with values in L, and ΣE is
a p-adic CM type, we define

LΣE , λ0 ∈ Λ

by
LΣE , λ0(χ′) := LΣE (λ0χ

′).
We will henceforth drop the superscript w from the notation for the

character λ(w).

2.5. Factorisation of the Rankin–Selberg p-adic L-function

Let σ := θ(ψ) as in Section 2.2. There is a factorisation

(2.10) L
(
s− 1/2, σE ⊗ (χ0χ

′)−1) = L
(
s, ψ(χ0χ

′)−1)L (s, ψ∗(χ0χ
′)−1) )

of complex (more precisely K ⊗C-valued) L-functions, valid for algebraic
Hecke characters χ′ over E. It implies the following factorisation of p-adic
L-functions.

Lemma 2.4. — Let Lp(σE ⊗ χ−1
0 ) be the p-adic L-function associated

with σ = θ(ψ) and the embedding M ⊂ Mv ⊂ Kw, where w is the place
of K fixed above and v its restriction to M . Let L be a finite extension of
Kw splitting E. We have

(2.11) Lp
(
σE ⊗ χ−1

0
) .= LΣE , ψχ∗−1

0

Ωp,ΣE
·
LΣEc, ψ∗χ∗−1

0

Ωp,ΣEc
in Λ = ΛL, where we use the symbol .= to signify an equality which holds
up to multiplication by a constant in Q×.

Proof. — We evaluate both sides of the proposed equality at finite order
characters χ′ of Γ which are sufficiently ramified in the sense that, for
all primes p|p of E, χp has conductor larger than the conductors of ψp

and χ0,p. This is sufficient as such characters are dense in Y − (cf. [21,
Lemma 10.2.1]).
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Note first the self-duality relation

(2.12) λ′∗ = λ′−1 | · |−1
AE

(where | · | = | · |AE
), valid for both λ′ = ψχ−1

0 and λ′ = ψχ∗−1
0 (this follows

from (2.5)). Evaluating (2.10) at s = 1, we find

L
(
1/2, σE ⊗ (χ0χ

′)−1) = L
(
0, ψ| · | (χ0χ

′)−1)L (0, ψ∗| · | (χ0χ
′)−1)

= L
(
0, (ψ∗χ∗−1

0 χ′)−1)L(0,
(
ψχ∗−1

0 χ′)−1) .
Therefore the L-values agree with the ones being interpolated by the

p-adic L-functions in (2.11). We now compare the local Euler-like interpo-
lation factors and the complex periods.

Recall from e.g. [26, p. 119] that, for ℘OE = ppc, we have

σ℘ ' π(ψp, ψpc)

By the construction of Σ(w)
E and the Shimura–Taniyama formula for Hecke

characters (see [18, Proposition A.4.7.4(ii)], cf. also the paragraph after
Example A 4.8.3 ibid.), the character ψp has values in w-adic units if and
only if p /∈ Σ(w)

E , equivalently p ∈ Σ(w)
E c.

Denoting by ℘ a fixed prime of F above p and by p the unique prime in
Σ(w)
E above ℘, it follows that α℘ = ψpc under the identification Epc = F℘.

Then, under our assumption on the ramification of χ′, we have

(2.13) e℘
(
σE ⊗ χ−1

0 , χ′
)

= ε
(
0, ψ−1

pc χ0, pχ
′
p

)
· ε
(
0, ψ−1

pc χ0, pcχ
′
pc
)

whereas the Katz interpolation factors above ℘ are

ε
(
0, ψ−1

p χ0, pcχ
′
p
−1)−1 · ε

(
0, ψ−1

p χ0, pχ
′
pc
−1)−1

.

By the functional equation

ε(s, χ)−1 = ε(1− s, χ−1)χ(−1)

valid for any character χ of a local field (e.g. [14, (23.4.2)]) and the self-
dualities (2.12), these equal

ε
(
0, | · |ψpχ

−1
0,pcχ

′
p

)
· ε
(
0, | · |ψpχ

−1
0,pχ

′
pc
)

= ε
(
0, ψ−1

pc χ0,pχ
′
p

)
· ε
(
0, ψ−1

pc χ0,pcχ
′
pc
)

matching (2.13).
In regard to periods, we first note that the periods in the asserted equality

are independent of χ′. As

Ad(σ) ' η ⊕ IndFE
(
ψ(ψ∗)−1) ,
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we have

L(1, σι, ad) = L(1, η)L
(
1, ψ(ψ∗)−1) = L(1, η)L

(
0, (ψ(ψ∗)−1)D

)
The infinity type of ι(ψ(ψ∗)−1)D is 2ΣιE . From the algebraicity of Hecke

L-values due to Shimura, we have

L
(
0, (ψ(ψ∗)−1)D

) .= Ω2
Σι
E

(see [40] and [27, Section 4], especially [27, pp. 215–16]). Moreover, we have
a period relation

Ω1
Σι
E

.= Ω1
Σι
E
◦c

(see [41] and [42, Theorem. 32.5]).
It follows that

Ωισ
.= Ω2

Σι
E

.= ΩΣι
E

ΩΣι
E
◦c.

�

2.6. Construction of an auxiliary character

We will now look for a character χ0 suitable for our purposes. If a Hecke
character λ′ of E×A satisfies (2.12), then its functional equation relates
L(s, λ′) with L(1 − s, λ′−1) = L(2 − s, λ′∗) = L(2 − s, λ′); the sign of
this functional equation is the root number

w(λ′) := ε(1, λ′) ∈ {±1}.

We say that finite-order character χ : E×\E×A∞ → Q× is anticyclotomic
if it satisfies the following two conditions, which are equivalent by [24,
Lemma 5.31]:

(1) χ∗ = χ−1;
(2) there exists a finite-order character χ0 : E×\E×A∞ → Q× such that

(2.14) χ = χ0/χ
∗
0.

Lemma 2.5. — Let λ be a Hecke character satisfying (2.12). Suppose
that the extension E/F is ramified. Then there exist an anticyclotomic
finite-order character χ = χ0/χ

∗
0 : E×\E×A → Q× such that the root num-

ber
w(λχ) = +1.

TOME 70 (2020), FASCICULE 5



2094 Ashay A. BURUNGALE & Daniel DISEGNI

Proof. — Suppose first that λ satisfies the following condition. (We will
later reduce to this case.)

(∗) there is a prime ℘ of E, ramified over F, such that ord℘(C) is odd,

where C is the conductor of λ. In particular, the norm ideal NE/F (C) is
not a square. For a quadratic character χ′ over F , let χ′E = χ′ ◦NE/F be
the corresponding Hecke character over E. By definition, χ′E is a quadratic
Hecke character over E and also anticyclotomic. For the latter, note that

χ′E(a)χ′∗E(a) = χ′
(
NE/F (a)

)
χ′
(
NE/F (c(a))

)
= χ′

(
NE/F (a)

)2 = 1.

We consider twists of λ by characters of the form χ′E with the conductor
of χ′E prime to C. Recall that the twist of a self-dual character by an
anticyclotomic character is again self-dual. To prove existence of twist with
change in the root number, it thus suffices to show that χ′ can be chosen
so that χ′(NE/F (C)) takes value 1 or −1. The sufficiency follows from the
explicit root number formula for the twist λχ′E in [44, (3.4.6)]. As the norm
ideal NE/F (C) is not a square, the existence of desired χ′ follows readily.

To reduce to condition (∗), it suffices, given λ, to find λ′ = λχ1/χ
∗
1

satisfying (∗). Let ℘ be a prime of E ramified in E/F and let δ := ord℘(2).
Let r be an odd integer greater than δ + 2 and the exponent of ℘ in the
conductor of λ. Let χ1 be a finite order character of E×A/E× such that the
exponent of ℘ in the conductor of χ1 is exactly r − δ. As (1 + ℘t−δOE)2

= 1 + ℘tOE for all t > δ + 1, the conductor of χ2
1,℘ is exactly ℘r. Letting

χ = χ1/χ
∗
1, and denoting by $ a uniformiser at ℘, for any t > δ + 1 we

have for any t > (r − δ)/2:

χ℘
(
1 +$ta

)
= χ1,℘

(
1 +$ta

)
χ1,℘

(
1−$ta

)−1 = χ1, ℘
(
1 +$ta

)2
.

It follows that the conductor of χ℘ is the same as the conductor of χ2
1,

that is, ℘r; by our choice of r the same is true of λχ, and in particular λ′
satisfies (∗). �

Remark 2.6. — Let χ = χ0χ
∗−1
0 be as in the Lemma 2.5 and let ψ

:= λχ0, where λ is as fixed in the Introduction. Then ψ satisfies (2.5); by
the analogous formula to (2.10), σ := θ(ψ) has root number −1 (i.e., it
satisfies (2.6)).

2.7. p-adic Gross–Zagier formula

We recall a formula relating Rankin–Selberg p-adic L-functions to points
on abelian varieties; we will later deduce from it an analogous formula for
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Katz p-adic L-functions. Let σ, A = Aσ, and χ0 be as in Theorem 2.2, and
assume that E/F splits at each prime above p. and that

(2.15) ε
(
1/2, σE ⊗ χ−1

0
)

= −1.

Theorem 2.7. — Let ◦ = ∅ or ◦ = ℘ for a prime ℘|p of F . There is a
‘pair of points’

Pχ0 ⊗P∨
χ0
∈ AE

(
χ−1

0 χ−1
univ,◦

)
⊗Λ−◦ A

∨
E(χ0χuniv,◦)⊗Λ−◦ K −

◦ ,

such that 〈
Pχ0 ⊗P∨

χ0

〉
= L′p

(
σE ⊗ χ−1

0
)

in K −
◦ . Here 〈x ⊗ y〉 := 〈x, y〉 is the big height pairing relative to the

cyclotomic logarithm as in (1.6).

Proof. — This follows from [21, Theorem C.4]. Consider the scheme
YV p/L corresponding to the rigid space with that name in loc. cit. (in
the sense that our YV p is the spectrum of the ring of bounded functions
on the space YV p of [21]), for a choice of level V p ⊂ E×Ap∞ ; it parametrises
continuous p-adic characters χ̃ of E×A∞/E×V p satisfying ωχ̃|F×A∞ = 1. We
denote by

χ̃univ : E×A∞/E
×V p → O(YV )×

the universal character. Assume that ω|V p = 1. Then we may identify Y −

with the connected component Y ◦χ0
⊂ YV p containing the character χ−1

0
via

(2.16) χ 7→ χ̃ = χ−1
0 χ−1.

Using the notation of loc. cit. with the addition of a tilde, the p-adic
Gross–Zagier formula proved there has the form〈

P̃+(f+, p), P̃−(f−, p)ι
〉

= L̃′p(σE) · Q̃
(
f+, p, f−, p

) ∣∣
Yχ0

in Λ−

up to an explicit and nonzero rational constant. Here ι is the involution
χ̃ 7→ χ̃−1 on YV p , and the

P̃± (f±, p) ∈ A± ((χ̃univ)±1)
are families of Heegner points associated with E/F and (the limits of cer-
tain sequences of) parametrisations f±,p of A and A∨ by a (tower of)
Shimura curves. The term Q̃(·, ·) ∈ Λ− is a product of local terms at
primes not dividing p.
By results of Tunnell and Saito explained in [21, Introduction], under

the assumption (2.15) for each χ ∈ Yχ0 we may find families of Shimura
curve parametrisations f±, p such that Q̃(f+,p, f−,p)(χ) 6= 0. Applying this
result to a character χ in the image Yχ0,◦ of Y −◦ under the isomorphism
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Y − → Yχ0 , we find f±, p such that Q̃(f+,p, f−, p)|Yχ0,◦
6= 0. Up to con-

stants in L×, we have

L′p
(
σE ⊗ χ−1

0
)

(χ) = −L̃′p(σE)
(
χ−1

0 χ−1) .
Then we may choose, using the identification (2.16)

Pχ0 ⊗P∨
χ0

:= −Q̃
(
f+, p, f−, p

) ∣∣−1
Yχ0,◦

· P̃
(
f+) ∣∣

Yχ0, ◦
⊗ P̃

(
f−
)ι ∣∣

Yχ0, ◦
.

There are four conditions to be verified in order to be able to invoke the
result of [21].(11) The first one is (weaker than) the potential ordinariness
of A, which can be verified after base-change to E where it becomes the
converse to Lemma 2.1part (1). The second one is that all primes of F
above p split in E: this is satisfied by Lemma 2.3. Finally, the conditions
on the central character and root number are satisfied by Remark 2.6. �

2.8. Non-vanishing of p-adic L-functions

Let λ be the character fixed in the Introduction.

Theorem 2.8. — Let χ = χ0/χ
∗
0 be as in Lemma 2.5. For every ℘|p,

the restriction of the anticyclotomic Katz p-adic L-function

LΣE , λχ∗0χ
−1
0
|Y −℘

does not vanish.

Proof. — By construction, w(λχ∗0χ−1
0 ) = +1. The Theorem 2.8 thus fol-

lows from [11, Theorem B] combined with the main results of [25] and [28].
Here we only use the hypothesis p - 2DF . �

Theorem 2.9. — For every ℘|p, the restriction of the cyclotomic deriv-
ative

L′ΣEc, λ∗ |Y −℘
does not vanish.

Proof. — Recall from the Introduction that λ∗ is self-dual with infinity
type ΣEc and root number −1. The Theorem 2.9 thus follows from [11,
Thmeorem C] combined with the main result of [7]. Here we use the hy-
pothesis p - 2DFh

−
E . �

(11) It is crucial here that in [21] the sets of ramified primes of E/F and of bad-reduction
primes for A are not required to be disjoint.
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2.9. Proofs of main theorems

We introduce the useful category

CME, (K,Σ),

described as follows. The objects are abelian varieties B over E of dimen-
sion equal to d

2 [K : Q] for some d > 1, together with an inclusion i : R
↪→ End0(B) of a K-algebra R of dimension d such that the type of i is
(K, dΣ). For two objects B = (B,R, i), B′ = (B,R′, i′) of CME, (K,Σ), let
R◦ ⊂ R and R◦′ ⊂ R′ be finite-index subrings in the integral closure of OK
in R, R′ whose image by i, i′ is contained in End(B), End(B′) respectively.
Let

preHomCME, (K,Σ)
(B,B′)

be the set of pairs of morphisms (f, γ) with f : B → B′, γ : R → R′ such
that i′(γ(r))◦f = f ◦i(r) for any r ∈ R. This is a module over a sufficiently
small order O in K, and we let

HomCME, (K,Σ)(B,B
′) := preHomCME, (K,Σ)

(B,B′)⊗O K.

If (B, i,R) is an object of CME, (K,Σ) and T is a finite-dimensional K-
algebra, then Serre’s construction provides a well-defined isomorphism class
(B ⊗K T, i ⊗ idT , R ⊗K T ) of objects in CME, (K,Σ), with action by the
K-algebra R⊗K T .
Note that in CME, (K,Σ) any object (B, i,R) is isomorphic to one such

that End(B) contains the integral closure Rint of OK in R: namely, if R◦ ⊂
Rint is an order conatined in End(B) we may take B′ := HomR◦(Rint, B).
Given an object (B, i,R) of CME, (K,Σ) and a finite-order character
χ : Gal(Hχ/E)→ K× we define the twist

B ⊗K K(χ)

(an object of CME, (K,Σ) with the R-action of induced from the one on
B) as follows. Assume that R ⊃ OK , which as noted above is not re-
strictive. Then we may regard χ as an element in H1(Gal(Hχ/E),O×K) ⊂
H1(Gal(H/E),AutK(B)); the abelian variety B⊗KK(χ) is the correspond-
ing inner twist (denoted by Bχ in [5]), so that for any finite character
χ′ : Gal(E/E)→ K× we have (B ⊗K(χ)(χ′) = B(χχ′).
Let us now return to our usual setting, so that B = Bλ. It is an object of

CME,(K,Σ) with R = K. (Note that, as the validity of the statements we are
interested in is invariant under K-linear isogenies, it is appropriate to work
in this category.) Let χ0 : Gal(E/E) → K ′× be a finite-order character,
where K ′ is the CM extension of K fixed above. Let ψ := λχ−1

0 and let
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A = Aσ be the abelian variety associated with σ = θ(ψ) as in 2.2. The
abelian varieties Aσ and Bψ,K′ have CM by K ′.

Lemma 2.10. — There is an isomorphism in CME, (K′,Σ)

f : Bλ ⊗K K ′ → Bψ,K′ ⊗K′ K ′
(
χ−1

0
) ∼= A⊕rE ⊗K K ′

(
χ−1

0
)
.

Proof. — The second isomorphism is (2.7). The proof of the first one,
based on Casselman’s theorem, is entirely analogous to the proof of [5,
Lemma 2.9]. �

Proof of Theorem 1.2. — We prove the p-adic Gross–Zagier formula of
Theorem 1.2. Let χ0 be as in Lemma 2.5 for λ′ := λ∗, let A = Aθ(λχ−1

0 )
and let

Pχ0 ⊗P∨
χ0
∈ AE

(
χ−1

0 χ−1
univ,◦

)
⊗Λ−◦ A

∨
E(χ0χuniv,◦)⊗Λ−◦ K −

◦

be as in Theorem 2.7. Let f be as in Lemma 2.10 and let

P ⊗P∨ := LΣEc, λ∗χ0χ
∗−1
0

∣∣∣−1
Y −◦
·
(
f−1 ⊗ f∨

) (
i1
(
P∨
χ0
⊗P∨

χ0

))∣∣∣
Y −◦

,

which is an element of B(χ−1
univ,◦)K −

◦
⊗B(χuniv,◦)K −

◦
. by Theorem 2.8.

By the projection formula for heights [33], for any P1 ∈ B(E), P2 ∈
B∨(E) we have〈

f−1(P1), f∨(P2)
〉
B

= 〈P1, P2〉Bψ,K′ = 〈P1, P2〉A⊕r
E
.

As maps of finitely generated Λ−◦ -modules are determined by their spe-
cialisations at finite order characters, this implies the analogous result for
big height pairings. Then Theorem 1.2 follows from Theorem 2.7 and the
factorisation (2.10). �

Proof of Theorem 1.1. — We state and prove the following slightly more
precise version of Theorem 1.1. Recall from the Introduction that we say
that a property P holds for almost all finite-order characters in Y −◦ if the
set of those χ not satisfying P is not Zariski dense in Y −◦ .
We keep the assumption of Theorem 1.1. �

Theorem 2.11. — For almost all finite-order χ ∈ Y −◦ , we have

L′ΣE (λχ) 6= 0,

the specialisation P ⊗P∨(χ) is a well-defined and non-zero element of
B(χ−1)⊗B∨(χ), and

〈P ⊗P∨(χ)〉 6= 0.
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Proof. — The first assertion is equivalent to Theorem 2.9. That the
points are generically well-defined at χ amounts to the assertion that

LΣE , λχ∗0 χ
−1
0
|Y −℘ 6= 0,

which is Theorem 2.8. Finally the non-vanishing of p-adic heights follows
from the other assertions and the Gross–Zagier formula of Theorem 1.2. �
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